C. Yazough (Fez)
E. Azroul (Fez)
H. Redwane (Settat)

ON SOME NONLINEAR NONHOMOGENEOUS ELLIPTIC UNILATERAL PROBLEMS INVOLVING NONCONTROLLABLE LOWER ORDER TERMS WITH MEASURE RIGHT HAND SIDE

Abstract. We prove the existence of entropy solutions to unilateral problems associated to equations of the type $A u-\operatorname{div}(\phi(u))=\mu \in L^{1}(\Omega)+$ $W^{-1, p^{\prime}(\cdot)}(\Omega)$, where A is a Leray-Lions operator acting from $W_{0}^{1, p(\cdot)}(\Omega)$ into its dual $W^{-1, p(\cdot)}(\Omega)$ and $\phi \in C^{0}\left(\mathbb{R}, \mathbb{R}^{N}\right)$.

1. Introduction. Let Ω be a bounded open subset of $\mathbb{R}^{N}, N \geq 2$. Let A be a nonlinear operator of the Leray-Lions type from $W_{0}^{1, p(\cdot)}(\Omega)$ into its dual $W^{-1, p(\cdot)}(\Omega)$ defined by $A u=-\operatorname{div}(a(x, u, \nabla u))$, where $a(x, u, \nabla u)$ is a Carathéodory vector valued function on $\Omega \times \mathbb{R} \times \mathbb{R}^{N}$ which satisfies suitable Leray-Lions conditions. Consider now the following nonlinear Dirichlet problem:

$$
\left\{\begin{array}{l}
A u-\operatorname{div}(\phi(u))=f-\operatorname{div}(F) \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \Omega
\end{array}\right.
$$

where $\phi=\left(\phi_{1}, \ldots, \phi_{N}\right) \in\left(C^{0}(\mathbb{R})\right)^{N}, f \in L^{1}(\Omega)$ and $F \in\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$.
The study of problems with variable exponent is a new and interesting topic which raises many mathematical difficulties. One of our motivations for studying (1.1) comes from applications to electrorheological fluids (we refer to [12] for more details), an important class of non-Newtonian fluids (sometimes referred to as smart fluids). Other important applications are related to image processing (see [7]) and elasticity (see [15]). The function $\phi(u)$ does not belong in $\left(L_{\text {loc }}^{1}(\Omega)\right)^{N}$ because ϕ is just assumed to be contin-

[^0]uous on \mathbb{R}, so that proving existence of a weak solution (i.e. in the sense of distributions) seems to be an arduous task. To overcome this difficulty we use the framework of entropy solutions.

The first objective of our paper is to study the problem (1.1) in the generalized Sobolev space with general right hand side μ which lies in $L^{1}(\Omega)+W^{-1, p^{\prime}(\cdot)}(\Omega)$.

The second objective is to treat unilateral problems; more precisely, the existence of an entropy solution for the following obstacle problem:

$$
\left\{\begin{array}{l}
u \in T_{0}^{1, p(\cdot)}(\Omega), u \geq \psi \quad \text { a.e. in } \Omega, \tag{1.2}\\
\int_{\Omega} a(x, u, \nabla u) \nabla T_{k}(u-v) d x+\int_{\Omega} \phi(u) \nabla T_{k}(u-v) d x \\
\leq \int_{\Omega} f T_{k}(u-v) d x+\int_{\Omega} F \nabla T_{k}(u-v) d x \\
\forall v \in K_{\psi} \cap L^{\infty}(\Omega), \forall k>0,
\end{array}\right.
$$

is proved in Theorem 3.1 without assuming regularity of the obstacle ψ, in particular $\psi^{+} \in K_{\psi} \cap L^{\infty}(\Omega)$ is not supposed.

The plan of the paper is as follows. In Section 2 we give some preliminaries and the definition of generalized Sobolev spaces. In Section 3 we make precise all the assumptions and give some technical results and we establish the existence of an entropy solution to problem 1.1). In Section 4 (Appendix) we give the proof of Lemma 3.5.
2. Preliminaries. For each open bounded subset Ω of $\mathbb{R}^{N}(N \geq 2)$, we denote

$$
C^{+}(\bar{\Omega})=\left\{p: \bar{\Omega} \rightarrow \mathbb{R}^{+} \text {continuous } \mid 1<p_{-} \leq p_{+}<\infty\right\}
$$

where $p_{-}=\inf _{x \in \bar{\Omega}} p(x)$ and $p_{+}=\sup _{x \in \bar{\Omega}} p(x)$. We define the variable exponent Lebesgue space for $p \in C^{+}(\bar{\Omega})$ by

$$
L^{p(\cdot)}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable }\left.\left|\int_{\Omega}\right| u(x)\right|^{p(x)} d x<\infty\right\}
$$

The space $L^{p(\cdot)}(\Omega)$ under the norm

$$
\|u\|_{p(\cdot)}=\inf \left\{\lambda>0\left|\int_{\Omega}\right| u(x) /\left.\lambda\right|^{p(x)} d x \leq 1\right\}
$$

is a uniformly convex, reflexive Banach space. We denote by $L^{p^{\prime}(\cdot)}(\Omega)$ the conjugate space of $L^{p(\cdot)}(\Omega)$ where $1 / p(x)+1 / p^{\prime}(x)=1$.

Proposition 2.1 (cf. [8]).
(i) For any $u \in L^{p(\cdot)}(\Omega)$ and $v \in L^{p^{\prime}(\cdot)}(\Omega)$, we have

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\|u\|_{p(\cdot)}\|v\|_{p^{\prime}(\cdot)}
$$

(ii) For all $p_{1}, p_{2} \in C^{+}(\bar{\Omega})$ such that $p_{1}(x) \leq p_{2}(x)$ for any $x \in \bar{\Omega}$, we have $L^{p_{2}(\cdot)}(\Omega) \hookrightarrow L^{p_{1}(\cdot)}(\Omega)$ and the embedding is continuous.

Proposition 2.2 (cf. [8]). If we denote

$$
\rho(u)=\int_{\Omega}|u|^{p(x)} d x \quad \forall u \in L^{p(\cdot)}(\Omega),
$$

then:
(i) $\|u\|_{p(\cdot)}<1($ resp. $=1,>1) \Leftrightarrow \rho(u)<1($ resp. $=1,>1)$.
(ii) $\|u\|_{p(\cdot)}>1 \Rightarrow\|u\|_{p(\cdot)}^{p_{-}} \leq \rho(u) \leq\|u\|_{p(\cdot)}^{p_{+}}$and $\|u\|_{p(\cdot)}<1 \Rightarrow\|u\|_{p(\cdot)}^{p_{+}} \leq$ $\rho(u) \leq\|u\|_{p(\cdot)}^{p_{-}}$.
(iii) $\|u\|_{p(\cdot)} \rightarrow 0 \Leftrightarrow \rho(u) \rightarrow 0$ and $\|u\|_{p(\cdot)} \rightarrow \infty \Leftrightarrow \rho(u) \rightarrow \infty$.

We define the variable exponent Sobolev space by

$$
W^{1, p(\cdot)}(\Omega)=\left\{u \in L^{p(\cdot)}(\Omega)| | \nabla u \mid \in L^{p(\cdot)}(\Omega)\right\}
$$

normed by

$$
\|u\|_{1, p(\cdot)}=\|u\|_{p(\cdot)}+\|\nabla u\|_{p(\cdot)} \quad \forall u \in W^{1, p(\cdot)}(\Omega)
$$

We denote by $W_{0}^{1, p(\cdot)}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p(\cdot)}(\Omega)$ and set $p^{*}(\cdot)=$ $\frac{N p(\cdot)}{N-p(\cdot)}$ for $p(\cdot)<N$.

Proposition 2.3 (cf. [8]).
(i) Assuming $1<p_{-} \leq p_{+}<\infty$, the spaces $W^{1, p(\cdot)}(\Omega)$ and $W_{0}^{1, p(\cdot)}(\Omega)$ are separable reflexive Banach spaces.
(ii) If $q \in C^{+}(\bar{\Omega})$ and $q(x)<p^{*}(x)$ for any $x \in \bar{\Omega}$, then the embedding $W_{0}^{1, p(\cdot)}(\Omega) \hookrightarrow \hookrightarrow L^{q(\cdot)}(\Omega)$ is compact and continuous.
(iii) There is a constant $C>0$ such that $\|u\|_{p(\cdot)} \leq C\|\nabla u\|_{p(\cdot)}$ for all $u \in W_{0}^{1, p(\cdot)}(\Omega)$.

Remark 2.1. By Proposition 2.3 (iii), $\|\nabla u\|_{p(\cdot)}$ and $\|u\|_{1, p(\cdot)}$ are equivalent norms on $W_{0}^{1, p(\cdot)}(\Omega)$.

LEMMA 2.1 (cf. [6]). Let $g \in L^{r(\cdot)}(\Omega)$ and $g_{n} \in L^{r(\cdot)}(\Omega)$ with $\left\|g_{n}\right\|_{r(\cdot)} \leq C$ for $1<r(\cdot)<\infty$. If $g_{n}(\cdot) \rightarrow g(\cdot)$ a.e. on Ω, then $g_{n} \rightharpoonup g$ in $L^{r(\cdot)}(\Omega)$.

3. Main general results

3.1. Basic assumptions and some lemmas. Let $a: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N}$ $\rightarrow \mathbb{R}^{N}$ be a Carathéodory function satisfying the following conditions: for
all $\xi, \eta \in \mathbb{R}^{N}$ and almost every $x \in \Omega$, we have

$$
\begin{align*}
& |a(x, s, \xi)| \leq \beta\left(k(x)+|s|^{p(x)-1}+|\xi|^{p(x)-1}\right) \tag{3.1}\\
& {[a(x, s, \xi)-a(x, s, \eta)](\xi-\eta)>0 \quad \forall \xi \neq \eta} \tag{3.2}\\
& a(x, s, \xi) \xi \geq \alpha|\xi|^{p(x)} \tag{3.3}
\end{align*}
$$

where $k(\cdot)$ is a positive function in $L^{p^{\prime}(\cdot)}(\Omega)$ and α and β are positive constants. Finally, consider the convex set

$$
K_{\psi}=\left\{u \in W_{0}^{1, p(\cdot)}(\Omega) \mid u \geq \psi \text { a.e. in } \Omega\right\}
$$

where ψ is a measurable function such that

$$
\begin{equation*}
K_{\psi} \cap L^{\infty}(\Omega) \neq \emptyset \tag{3.4}
\end{equation*}
$$

We suppose that

$$
\begin{gather*}
\phi \in C^{0}\left(\mathbb{R}, \mathbb{R}^{N}\right), \tag{3.5}\\
f \in L^{1}(\Omega) \tag{3.6}\\
F \in\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}, \tag{3.7}
\end{gather*}
$$

and $p \in C^{+}(\bar{\Omega})$ is such that there is a vector $l \in \mathbb{R}^{N}-\{0\}$ such that for any $x \in \Omega$,

$$
\begin{equation*}
g(t)=p(x+t l) \text { is monotone for } t \in I_{x}=\{t \mid x+t l \in \Omega\} \tag{3.8}
\end{equation*}
$$

Lemma 3.1 (cf. [6]). Assume that (3.1)-3.3) hold, and let $\left(u_{n}\right)_{n}$ be a sequence in $W_{0}^{1, p(\cdot)}(\Omega)$ such that $u_{n} \rightharpoonup u$ in $W_{0}^{1, p(\cdot)}(\Omega)$ and

$$
\begin{equation*}
\int_{\Omega}\left[a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right] \nabla\left(u_{n}-u\right) d x \rightarrow 0 \tag{3.9}
\end{equation*}
$$

Then $u_{n} \rightarrow u$ in $W_{0}^{1, p(\cdot)}(\Omega)$.
Lemma 3.2. Assume that (3.8) holds. Then there is a constant $C>0$ such that

$$
\begin{equation*}
\rho(u) \leq C \rho(\nabla u) \quad \forall u \in W_{0}^{1, p(\cdot)}(\Omega)-\{0\} \tag{3.10}
\end{equation*}
$$

Proof. Let

$$
\lambda_{*}=\inf _{u \in W_{0}^{1, p(\cdot)}(\Omega)-\{0\}} \frac{\int_{\Omega}|\nabla u|^{p(x)} d x}{\int_{\Omega}|u|^{p(x)} d x} .
$$

By [9, Theorem 3.3], we have $\lambda_{*}>0$, which implies that

$$
0<\lambda_{*} \leq \frac{\int_{\Omega}|\nabla u|^{p(x)} d x}{\int_{\Omega}|u|^{p(x)} d x} \quad \forall u \in W_{0}^{1, p(\cdot)}(\Omega)-\{0\}
$$

consequently, there is a constant $C>0$ such that $\rho(u) \leq C \rho(\nabla u)$ for all $u \in W_{0}^{1, p(\cdot)}(\Omega)-\{0\}$.

Remark 3.1. The inequality (3.10) holds true if we assume that there exists a function $\xi \geq 0$ such that $\nabla p \nabla \xi \geq 0$, with $|\nabla \xi| \neq 0$ in $\bar{\Omega}$ (cf. [3]).

Lemma 3.3. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a uniformly Lipschitz function with $F(0)=0$, and $p \in C_{+}(\bar{\Omega})$. If $u \in W_{0}^{1, p(\cdot)}(\Omega)$, then $F(u) \in W_{0}^{1, p(\cdot)}(\Omega)$; moreover, if the set D of discontinuity points of F^{\prime} is finite, then

$$
\frac{\partial(F \circ u)}{\partial x_{i}}= \begin{cases}F^{\prime}(u) \frac{\partial u}{\partial x_{i}} & \text { a.e. in }\{x \in \Omega \mid u(x) \notin D\}, \\ 0 & \text { a.e. in }\{x \in \Omega \mid u(x) \in D\} .\end{cases}
$$

Proof. Consider first the case of $F \in C^{1}(\mathbb{R})$ and $F^{\prime} \in L^{\infty}(\mathbb{R})$. Let $u \in$ $W_{0}^{1, p(\cdot)}(\Omega)$. Since $\overline{C_{0}^{\infty}(\Omega)}{ }^{W^{1, p(\cdot)}(\Omega)}=W_{0}^{1, p(\cdot)}(\Omega)$, there are $u_{n} \in C_{0}^{\infty}(\Omega)$ such that $u_{n} \rightarrow u$ in $W_{0}^{1, p(\cdot)}(\Omega)$, so $u_{n} \rightarrow u$ a.e. in Ω and $\nabla u_{n} \rightarrow \nabla u$ a.e. in Ω. Then $F\left(u_{n}\right) \rightarrow F(u)$ a.e. in Ω. On the other hand, $\left|F\left(u_{n}\right)\right|=$ $\left|F\left(u_{n}\right)-F(0)\right| \leq\left\|F^{\prime}\right\|_{\infty}\left|u_{n}\right|$, so

$$
\begin{aligned}
\left|F\left(u_{n}\right)\right|^{p(x)} & \leq\left(\left\|F^{\prime}\right\|_{\infty}+1\right)^{p+}\left|u_{n}\right|^{p(x)}, \\
\left|\frac{\partial F\left(u_{n}\right)}{\partial x_{i}}\right|^{p(x)} & =\left|F^{\prime}\left(u_{n}\right) \frac{\partial u_{n}}{\partial x_{i}}\right|^{p(x)} \leq M\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p(x)},
\end{aligned}
$$

where $M=\left(\left\|F^{\prime}\right\|_{\infty}+1\right)^{p_{+}}$. We conclude that $F\left(u_{n}\right)$ is bounded in $W_{0}^{1, p(\cdot)}(\Omega)$ and so $F\left(u_{n}\right)$ converges to ν weakly in $W_{0}^{1, p(\cdot)}(\Omega)$. Then $F\left(u_{n}\right)$ converges to ν strongly in $L^{q \cdot \cdot}(\Omega)$ with $1<q(x)<p^{*}(x)$ and $p^{*}(x)=N p(x) /(N-p(x))$, and since $F\left(u_{n}\right) \rightarrow \nu$ a.e. in Ω, we obtain

$$
\nu=F(u) \in W_{0}^{1, p(\cdot)}(\Omega) .
$$

Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a uniformly Lipschitz function. Then $F_{n}=F * \varphi_{n} \rightarrow F$ uniformly on each compact set, where φ_{n} is a regularizing sequence. We conclude that $F_{n} \in C^{1}(\mathbb{R})$ and $F_{n}^{\prime} \in L^{\infty}(\mathbb{R})$. From the first part, we have $F_{n}(u) \in W_{0}^{1, p(\cdot)}(\Omega)$ and $F_{n}(u) \rightarrow F(u)$ a.e. in Ω. Since $\left(F_{n}(u)\right)_{n}$ is bounded in $W_{0}^{1, p(\cdot)}(\Omega)$, it follows that $F_{n}(u) \rightharpoonup \bar{\nu}$ weakly in $W_{0}^{1, p(\cdot)}(\Omega)$ and a.e. in Ω, so $\bar{\nu}=F(u) \in W_{0}^{1, p(\cdot)}(\Omega)$.

Lemma 3.4. Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 1)$. If $u \in$ $\left(W_{0}^{1, p(\cdot)}(\Omega)\right)^{N}$ then

$$
\int_{\Omega} \operatorname{div}(u) d x=0 .
$$

Proof. Fix $u=\left(u^{1}, \ldots, u^{N}\right) \in\left(W_{0}^{1, p(\cdot)}(\Omega)\right)^{N}$. We have $\overline{D(\Omega)}=W_{0}^{1, p(\cdot)}(\Omega)$ and thus each u^{i} can be approximated by a suitable sequence $u_{k}^{i} \in D(\Omega)$ such that u_{k}^{i} converges to u^{i} strongly in $W_{0}^{1, p(\cdot)}(\Omega)$. Moreover, as $u_{k}^{i} \in$
$D(\Omega) \subset \overline{D(\Omega)}$, the Green formula gives

$$
\begin{equation*}
\int_{\Omega} \frac{\partial u_{k}^{i}}{\partial x_{i}} d x=\int_{\partial \Omega} u_{k}^{i} \vec{n} d s=0 \tag{3.11}
\end{equation*}
$$

On the other hand, $\partial u_{k}^{i} / \partial x_{i} \rightarrow \partial u^{i} / \partial x_{i}$ strongly in $L^{p(\cdot)}(\Omega)$. Thus $\partial u_{k}^{i} / \partial x_{i}$ $\rightarrow \partial u^{i} / \partial x_{i}$ strongly in $L^{1}(\Omega)$, which gives $\int_{\Omega} \operatorname{div}(u) d x=0$ by 3.11 .

3.2. General existence result. We now state our main result:

Theorem 3.1. Assume that (3.1)-(3.8) hold true. Then there exists a solution of the unilateral problem

$$
(P)\left\{\begin{array}{l}
u \in T_{0}^{1, p(\cdot)}(\Omega), \quad u \geq \psi \quad \text { a.e. in } \Omega \\
\int_{\Omega} a(x, u, \nabla u) \nabla T_{k}(u-v) d x+\int_{\Omega} \phi(u) \nabla T_{k}(u-v) d x \\
\leq \int_{\Omega} f T_{k}(u-v) d x+\int_{\Omega} F \nabla T_{k}(u-v) d x \\
\forall v \in K_{\psi} \cap L^{\infty}(\Omega), \quad \forall k>0,
\end{array}\right.
$$

where $T_{0}^{1, p(\cdot)}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R}\right.$ measurable $\mid T_{k}(u) \in W_{0}^{1, p(\cdot)}(\Omega)$ for all $k>0\}$.

STEP 1: The approximate problem
THEOREM 3.2. Let $\left(f_{n}\right)_{n}$ be a sequence in $W^{-1, p^{\prime}(\cdot)}(\Omega) \cap L^{1}(\Omega)$ such that $f_{n} \rightarrow f$ in $L^{1}(\Omega)$ and $\left\|f_{n}\right\|_{1} \leq\|f\|_{1}$, and consider the approximate problem

$$
\left(P_{n}\right)\left\{\begin{array}{l}
u_{n} \in K_{\psi}, \tag{3.12}\\
\left\langle A u_{n}, u_{n}-v\right\rangle+\int_{\Omega} \phi_{n}\left(u_{n}\right) \nabla\left(u_{n}-v\right) d x \\
\quad \leq \int_{\Omega} f_{n}\left(u_{n}-v\right) d x+\int_{\Omega} F \nabla\left(u_{n}-v\right) d x \quad \forall v \in K_{\psi} \cap L^{\infty}(\Omega)
\end{array}\right.
$$

where $\phi_{n}(s)=\phi\left(T_{n}(s)\right)$. Assume that $(3.1)-(3.8)$ hold true. Then there exists a weak solution u_{n} of problem $\left(P_{n}\right)$.

Proof. We define the operator $G_{n}=-\operatorname{div} \phi_{n}: W_{0}^{1, p(\cdot)}(\Omega) \rightarrow W^{-1, p^{\prime}(\cdot)}(\Omega)$ such that $\left\langle G_{n}(u), v\right\rangle=-\left\langle\operatorname{div} \phi_{n}(u), v\right\rangle=\int_{\Omega} \phi_{n}(u) \nabla v d x$ for all $u, v \in$ $W_{0}^{1, p(\cdot)}(\Omega)$. From the Hölder inequality we have

$$
\left|\int_{\Omega} \phi_{n}(u) \nabla v d x\right| \leq\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\left\|\phi_{n}(u)\right\|_{p^{\prime}(\cdot)}\|\nabla v\|_{p(\cdot)}
$$

$$
\begin{aligned}
& \leq\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\left(\int_{\Omega}\left|\phi\left(T_{n}(u)\right)\right|^{p^{\prime}(x)} d x\right)^{\gamma_{0}}\|v\|_{1, p(\cdot)} \\
& \leq\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\left(\operatorname{meas}(\Omega) \cdot\left(\sup _{|s| \leq n}|\phi(s)|+1\right)^{p_{+}}\right)^{\gamma_{0}} \cdot\|v\|_{1, p(\cdot)} \\
& \leq C_{0}\|v\|_{1, p(\cdot)}
\end{aligned}
$$

where

$$
\gamma_{0}= \begin{cases}1 / p_{-}^{\prime} & \text { if }\left\|\phi_{n}(u)\right\|_{p^{\prime}(\cdot)}>1 \\ 1 / p_{+}^{\prime} & \text { if }\left\|\phi_{n}(u)\right\|_{p^{\prime}(\cdot)} \leq 1\end{cases}
$$

and C_{0} is a constant which depends only on ϕ, n and p.
Lemma 3.5. The operator $B_{n}=A+G_{n}$ is pseudo-monotone from the space $W_{0}^{1, p(\cdot)}(\Omega)$ into $W^{-1, p^{\prime}(\cdot)}(\Omega)$. Moreover, B_{n} is coercive in the following sense: there exists $v_{0} \in K_{\psi}$ such that

$$
\frac{\left\langle B_{n} v, v-v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}} \rightarrow \infty \quad \text { if }\|v\|_{1, p(\cdot)} \rightarrow \infty, v \in K_{\psi}
$$

Proof. See the Appendix.
In view of Lemma 3.5, there exists a solution $u_{n} \in W_{0}^{1, p(\cdot)}(\Omega)$ of problem $\left(P_{n}\right)$ (cf. 11]).

STEP 2: A priori estimate

Proposition 3.1. Assume that (3.1)-(3.8) hold true and let u_{n} be a solution of problem $\left(P_{n}\right)$. Then for all $k \geq 0$, there exists a constant $c(k)$ (which does not depend on n) such that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p(x)} d x \leq c(k) . \tag{3.13}
\end{equation*}
$$

Proof. Let $v_{0} \in K_{\psi} \cap L^{\infty}(\Omega)$ and let $k \geq\left\|v_{0}\right\|_{\infty}$ be such that $v=$ $T_{h}\left(u_{n}-T_{k}\left(u_{n}-v_{0}\right)\right) \in K_{\psi} \cap L^{\infty}(\Omega)$. Choosing v as a test function in $\left(P_{n}\right)$ and letting $h \rightarrow \infty$, we obtain, for n large enough $\left(n \geq k+\left\|v_{0}\right\|_{\infty}\right)$,

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}\right. & \left.-v_{0}\right) d x+\int_{\Omega} \phi\left(u_{n}\right) \nabla T_{k}\left(u_{n}-v_{0}\right) d x \\
& \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-v_{0}\right) d x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-v_{0}\right) d x
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}-v_{0}\right) d x \\
& \qquad \int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|\phi\left(T_{k+\left\|v_{0}\right\|_{\infty}}\left(u_{n}\right)\right)\right|\left|\nabla u_{n}\right| d x \\
& \\
& \quad+\int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|\phi\left(T_{k+\left\|v_{0}\right\|_{\infty}}\left(u_{n}\right)\right)\right|\left|\nabla v_{0}\right| d x \\
& \\
& \quad+k\|f\|_{L^{1}}+\int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}|F|\left|\nabla u_{n}\right| d x+\int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}|F|\left|\nabla v_{0}\right| d x .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \\
& \leq \int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|a\left(x, u_{n}, \nabla u_{n}\right)\right|\left|\nabla v_{0}\right| d x \\
&+\int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|\phi\left(T_{k+\left\|v_{0}\right\|_{\infty}}\left(u_{n}\right)\right)\right|\left|\nabla u_{n}\right| d x \\
&+\int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|\phi\left(T_{k+\left\|v_{0}\right\|_{\infty}}\left(u_{n}\right)\right)\right|\left|\nabla v_{0}\right| d x \\
&+k\|f\|_{L^{1}}+\int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}|F|\left|\nabla u_{n}\right| d x+\int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}|F|\left|\nabla v_{0}\right| d x .
\end{aligned}
$$

Since $\phi \in C^{0}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ and $F \in\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$, using Young's inequality we have

$$
\begin{aligned}
\alpha \int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|\nabla u_{n}\right|^{p(x)} d x \leq & c_{0} \int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|a\left(x, u_{n}, \nabla u_{n}\right)\right|^{p^{\prime}(x)} d x \\
& +\frac{\alpha}{3} \int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|\nabla u_{n}\right|^{p(x)} d x+c(k)
\end{aligned}
$$

which implies, from (3.1) and (3.3),

$$
\begin{aligned}
\alpha \int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|\nabla u_{n}\right|^{p(x)} d x \leq & \frac{\alpha}{6} \int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left(\left|u_{n}\right|^{p(x)}+\left|\nabla u_{n}\right|^{p(x)}\right) d x \\
& +\frac{\alpha}{3} \int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|\nabla u_{n}\right|^{p(x)} d x+c(k),
\end{aligned}
$$

hence

$$
\frac{\alpha}{2} \int_{\left\{\left|u_{n}-v_{0}\right|<k\right\}}\left|\nabla u_{n}\right|^{p(x)} d x \leq c(k)
$$

where $c(k)$ is a constant which depends on k. Since $\left\{\left|u_{n}\right| \leq k\right\} \subset\left\{\left|u_{n}-v_{0}\right| \leq\right.$ $\left.k+\left\|v_{0}\right\|_{\infty}\right\}$, we deduce that $\int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p(x)} d x \leq c(k)$.

STEP 3: Strong convergence of truncations

Proposition 3.2. Let u_{n} be a solution of problem $\left(P_{n}\right)$. Then there exists a measurable function u such that

$$
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \quad \text { strongly in } W_{0}^{1, p(\cdot)}(\Omega)
$$

We will use the following lemma:
Lemma 3.6. Assume that (3.1)-(3.8) hold true and let u_{n} be a solution of problem $\left(P_{n}\right)$. Then

$$
\begin{equation*}
\int_{\Omega}\left|\nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right|^{p(x)} d x \leq k c \tag{3.14}
\end{equation*}
$$

for all $k>h>\left\|v_{0}\right\|_{\infty}$, where c is a constant that does not depend on k, and $v_{0} \in K_{\psi} \cap L^{\infty}(\Omega)$.

Proof. Let $l \geq\left\|v_{0}\right\|_{\infty}$. It is easy to see that $v=T_{l}\left(u_{n}-T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right)$ $\in K_{\psi} \cap L^{\infty}(\Omega)$. By using v as a test function in $\left(P_{n}\right)$ and letting $l \rightarrow \infty$, we obtain

$$
\begin{aligned}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right) d x+\int_{\Omega} \phi\left(T_{h}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right) d x \\
& \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right) d x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right) d x
\end{aligned}
$$

Let us define

$$
\chi_{h k}(t)= \begin{cases}1 & \text { if } h<|t|<h+k \tag{3.15}\\ 0 & \text { otherwise }\end{cases}
$$

We consider $\theta(t)=\phi(t) \chi_{h k}(t)$ and $\tilde{\theta}(t)=\int_{0}^{t} \theta(s) d s$. Then by Lemma 3.4.

$$
\begin{aligned}
\int_{\Omega} \phi\left(u_{n}\right) \nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right) d x & =\int_{\Omega} \phi\left(u_{n}\right) \chi_{h k}\left(u_{n}\right) \nabla u_{n} d x \\
& =\int_{\Omega} \theta\left(u_{n}\right) \nabla u_{n} d x=\int_{\Omega} \operatorname{div}\left(\tilde{\theta}\left(u_{n}\right)\right) d x=0 .
\end{aligned}
$$

Thus, the second term on the left side of 3.2 vanishes for n large enough, which implies that

$$
\int_{\Omega} a\left(x, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right) d x \leq k\|f\|_{L^{1}(\Omega)}+\int_{\Omega} F \nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right) d x .
$$

By Young's inequality,

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla & T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right) d x \\
& \leq k\|f\|_{L^{1}(\Omega)}+c_{1}+\frac{\alpha}{2} \int_{\Omega}\left|\nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right|^{p(x)} d x .
\end{aligned}
$$

Since $\nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)=\nabla u_{n} \chi(h k)$ we have

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{n}, \nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) & \nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right) d x \\
& \leq k c_{2}+\frac{\alpha}{2} \int_{\Omega}\left|\nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right|^{p(x)} d x
\end{aligned}
$$

Finally, from 3.3 , we deduce that $\int_{\Omega}\left|\nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right|^{p(x)} d x \leq k c$, which concludes the proof of Lemma 3.6.

Proof of Proposition 3.2. We will show first that $\left(u_{n}\right)_{n}$ is a Cauchy sequence in measure. Let $k>2 h>2\left\|v_{0}\right\|_{\infty}$. Then

$$
k \text { meas }\left\{\left|u_{n}-T_{h}\left(u_{n}\right)\right|>k\right\} \leq \int_{\left\{\left|u_{n}-T_{h}\left(u_{n}\right)\right|>k\right\}}\left|T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right| d x
$$

By Hölder's inequality, Poincaré's inequality and (3.14) one has k meas $\left\{\left|u_{n}-T_{h}\left(u_{n}\right)\right|>k\right\}$

$$
\begin{aligned}
& \leq \int_{\Omega}\left|T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right| d x \leq\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\|1\|_{p^{\prime}(\cdot)}\left\|T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right\|_{p(\cdot)} \\
& \leq\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)(\operatorname{meas}(\Omega)+1)^{1 / p_{-}^{\prime}}\left\|T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right\|_{p(\cdot)} \leq C_{4} k^{1 / \gamma}
\end{aligned}
$$

where

$$
\gamma= \begin{cases}1 / p_{-} & \text {if }\left\|\nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right\|_{p(\cdot)}>1 \tag{3.16}\\ 1 / p_{+} & \text {if }\left\|\nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right\|_{p(\cdot)} \leq 1\end{cases}
$$

Finally, for $k>2 h>2\left\|v_{0}\right\|_{\infty}$, we have

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}\right|>k\right\} \leq \operatorname{meas}\left\{\left|u_{n}-T_{h}\left(u_{n}\right)\right|>k-h\right\} \leq \frac{c}{(k-h)^{1-1 / \gamma}} \tag{3.17}
\end{equation*}
$$

so

$$
\begin{equation*}
\operatorname{meas}\left(\left\{\left|u_{n}\right|>k\right\} \rightarrow 0 \quad \text { as } k \rightarrow \infty,\right. \tag{3.18}
\end{equation*}
$$

and, for all $\delta>0$,

$$
\begin{aligned}
\operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \leq & \operatorname{meas}\left\{\left|u_{n}\right|>k\right\} \\
& +\operatorname{meas}\left\{\left|u_{m}\right|>k\right\}+\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\delta\right\}
\end{aligned}
$$

By (3.18), for each $\varepsilon>0$, there exists k_{0} such that
(3.19) $\operatorname{meas}\left\{\left|u_{n}\right|>k\right\} \leq \varepsilon / 3 \quad$ and $\quad \operatorname{meas}\left\{\left|u_{m}\right|>k\right\} \leq \varepsilon / 3 \quad \forall k \geq k_{0}$.

By 3.13 , the sequence $\left(T_{k}\left(u_{n}\right)\right)_{n}$ is bounded in $W_{0}^{1, p(\cdot)}(\Omega)$, so a subsequence (not relabeled) converges to η_{k} weakly in $W_{0}^{1, p(\cdot)}(\Omega)$ as $n \rightarrow \infty$, and by the compact embedding, $T_{k}\left(u_{n}\right)$ converges to η_{k} strongly in $L^{p(\cdot)}(\Omega)$ a.e. in Ω. Thus, we can assume that $\left(T_{k}\left(u_{n}\right)\right)_{n}$ is a Cauchy sequence in measure in Ω. Then there exists n_{0} which depends on δ and ε such that
(3.20) $\quad \operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\delta\right\} \leq \varepsilon / 3 \quad \forall m, n \geq n_{0}$ and $k \geq k_{0}$.

In view of (3.19) and 3.20, we obtain

$$
\forall \delta>0, \exists \varepsilon>0: \quad \operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \leq \varepsilon \quad \forall n, m \geq n_{0}\left(k_{0}, \delta\right)
$$

Thus $\left(u_{n}\right)_{n}$ is a Cauchy sequence in measure in Ω, so there exists a subsequence still denoted u_{n} which converges almost everywhere to some measurable function u. Then u_{n} converges to u a.e. in Ω, and by Lemma 2.1, we obtain:

$$
\begin{cases}T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) & \text { in } W_{0}^{1, p(\cdot)}(\Omega) \tag{3.21}\\ T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) & \text { in } L^{p(\cdot)}(\Omega) \text { and a.e. in } \Omega .\end{cases}
$$

Now, we choose $v \equiv T_{l}\left(u_{n}-h_{m}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right)$ as a test function in $\left(P_{n}\right)$, where

$$
h_{m}(s)= \begin{cases}1 & \text { if }|s| \leq m \tag{3.22}\\ 0 & \text { if }|s| \geq m+1 \\ m+1-|s| & \text { if } m \leq|s| \leq m+1\end{cases}
$$

For $n>m+1$, by letting $l \rightarrow \infty$ we get

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla\left(h_{m}(\right. & \left.\left.u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right) d x \\
& +\int_{\Omega} \phi\left(u_{n}\right) \nabla\left(h_{m}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right) d x \\
\leq & \int_{\Omega} f_{n} h_{m}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
& +\int_{\Omega} F \nabla\left(h_{m}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right) d x
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \\
& \quad+\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla\left(u_{n}-v_{0}\right) h_{m}^{\prime}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\int_{\Omega} \phi\left(u_{n}\right) \nabla\left(u_{n}-v_{0}\right) h_{m}^{\prime}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
& \quad+\int_{\Omega} \phi\left(u_{n}\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \\
& \leq \\
& \quad \int_{\Omega} f_{n} h_{m}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
& \quad+\int_{\Omega} F \nabla\left(u_{n}-v_{0}\right) h_{m}^{\prime}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
& \quad+\int_{\Omega} F \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x
\end{aligned}
$$

By almost everywhere convergence of $u_{n}, h_{m}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)$ converges to 0 weakly* in $L^{\infty}(\Omega)$ as $n \rightarrow \infty$, so

$$
\begin{equation*}
\int_{\Omega} f_{n} h_{m}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x=\epsilon(n) \tag{3.23}
\end{equation*}
$$

Moreover, by Lebesgue's theorem, $\phi\left(u_{n}\right) h_{m}\left(u_{n}-v_{0}\right)$ tends to $\phi(u) h_{m}\left(u-v_{0}\right)$ strongly in $L^{p^{\prime}(\cdot)}(\Omega)$, and since $\nabla T_{k}\left(u_{n}\right)$ converges to $\nabla T_{k}(u)$ weakly in $L^{p(\cdot)}(\Omega)$ we can deduce that

$$
\begin{equation*}
\int_{\Omega} \phi\left(u_{n}\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x=\epsilon(n) \tag{3.24}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\int_{\Omega} F \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x=\epsilon(n) \tag{3.25}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\mid \int_{\Omega} F \nabla\left(u_{n}-\right. & \left.v_{0}\right) h_{m}^{\prime}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \mid \\
& =\left|\int_{\Omega} F \nabla\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \chi_{\left\{m<\left|u_{n}-v_{0}\right|<m+1\right\}} d x\right| \\
& \leq \int_{\Omega}\left|F \nabla\left(T_{M}\left(u_{n}\right)-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d x
\end{aligned}
$$

with $M=m+1+\left\|v_{0}\right\|_{\infty}$. Then by Lebesgue's theorem, $F\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)$ converges to 0 strongly in $L^{p^{\prime}(\cdot)}(\Omega)$, and since $\nabla\left(T_{M}\left(u_{n}\right)-v_{0}\right)$ converges to $\nabla\left(T_{M}(u)-v_{0}\right)$ weakly in $\left(L^{p(\cdot)}(\Omega)\right)^{N}$, we have

$$
\begin{equation*}
\int_{\Omega} F \nabla\left(u_{n}-v_{0}\right) h_{m}^{\prime}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x=\epsilon(n) \tag{3.26}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\int_{\Omega} \phi\left(u_{n}\right) \nabla\left(u_{n}-v_{0}\right) h_{m}^{\prime}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x=\epsilon(n) \tag{3.27}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla\left(u_{n}-v_{0}\right) h_{m}^{\prime}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x=\epsilon(n) . \tag{3.28}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& \left|\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla\left(u_{n}-v_{0}\right) h_{m}^{\prime}\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x\right| \\
& =\left|\int_{\left\{m \leq\left|u_{n}-v_{0}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla\left(u_{n}-v_{0}\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x\right| \\
& \leq 2 k \int_{\left\{m \leq\left|u_{n}-v_{0}\right| \leq m+1\right\}}\left|a\left(x, u_{n}, \nabla u_{n}\right) \nabla\left(u_{n}-v_{0}\right)\right| d x \\
& \leq 2 k\left(\int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x+\int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}}\left|a\left(x, \nabla u_{n}\right)\right|\left|\nabla v_{0}\right| d x\right)
\end{aligned}
$$

where $l=m-\left\|v_{0}\right\|_{\infty}$ and $s=2\left\|v_{0}\right\|_{\infty}+1$. We take $v \equiv u_{n}-T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right)$ as a test function in $\left(P_{n}\right)$ to get

$$
\begin{aligned}
& \int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x+\int_{\Omega} \operatorname{div}\left(\tilde{\theta}_{s}\left(u_{n}\right)\right) d x \\
& \leq \int_{\Omega} f_{n} T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right) d x+\int_{\Omega} F \nabla T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right) d x
\end{aligned}
$$

where $\tilde{\theta}_{s}(t)=\int_{0}^{t} \theta_{s}(z) d z$ and $\theta_{s}(z)=\phi(z) \chi_{s l}(z)$ with

$$
\chi_{s l}= \begin{cases}1, & l \leq t \leq l+s \\ 0, & \text { otherwise }\end{cases}
$$

Using the fact that $\tilde{\theta}\left(u_{n}\right) \in\left(W_{0}^{1, p(\cdot)}(\Omega)\right)^{N}$ and Lemma 3.4, we get

$$
\begin{align*}
\int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}} a\left(x, u_{n},\right. & \left.\nabla u_{n}\right) \nabla u_{n} d x \tag{3.29}\\
& \leq s \int_{\left\{\left|u_{n}\right|>l\right\}}\left|f_{n}\right| d x+\int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}} F \nabla u_{n} d x .
\end{align*}
$$

Firstly, we will show that

$$
\int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}} F \nabla u_{n} d x=\epsilon(n, m) .
$$

Indeed, by (3.29) and Young's inequalities, we get

$$
\begin{aligned}
\int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \leq & s \int_{\left\{\left|u_{n}\right|>l\right\}}\left|f_{n}\right| d x+c \int_{\left\{\left|u_{n}\right|>l\right\}}|F|^{p^{\prime}(x)} d x \\
& +\frac{\alpha}{2} \int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}}\left|\nabla u_{n}\right|^{p(x)} d x
\end{aligned}
$$

which yields, thanks to (3.3),

$$
\frac{\alpha}{2} \int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}}\left|\nabla u_{n}\right|^{p(x)} d x \leq s \int_{\left\{\left|u_{n}\right|>l\right\}}\left|f_{n}\right| d x+c \int_{\left\{\left|u_{n}\right|>l\right\}}|F|^{p^{\prime}(x)} d x
$$

which implies that

$$
\int_{\Omega}\left|\nabla T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right)\right|^{p(x)} d x \leq \frac{2 s}{\alpha} \int_{\left\{\left|u_{n}\right|>l\right\}}\left|f_{n}\right| d x+\frac{2 c}{\alpha} \int_{\left\{\left|u_{n}\right|>l\right\}}|F|^{p^{\prime}(x)} d x
$$

Consequently, by the strong convergence in $L^{1}(\Omega)$ of f_{n} and since $F \in$ $L^{p^{\prime}(\cdot)}(\Omega)$, by Lebesgue's theorem we have

$$
\lim _{l \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right)\right|^{p(x)} d x=0
$$

which implies by Hölder's inequality, that

$$
\lim _{l \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\Omega} F \nabla T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right) d x=0
$$

Hence

$$
\begin{equation*}
\int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}} F \nabla u_{n} d x=\epsilon(n, l) \tag{3.30}
\end{equation*}
$$

Finally by (3.29) and 3.30 we deduce

$$
\begin{equation*}
\int_{\left.\left|u_{n}\right| \leq l+s\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x=\epsilon(n, l) . \tag{3.31}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
& \int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}}\left|a\left(x, u_{n}, \nabla u_{n}\right)\right|\left|\nabla v_{0}\right| d x \\
& \leq \\
& \leq\left(\int_{\Omega}\left|a\left(x, \nabla T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right)\right)\right|^{p^{\prime}(x)} d x\right)^{\gamma}\left\|\nabla v_{0} \chi_{\left\{\left|u_{n}\right|>l\right\}}\right\|_{p(\cdot)} \\
& \leq \\
& \leq\left(\int_{\Omega}\left(\left|k(x)+\left|\nabla T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right)\right|^{p(x)}+\left|T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right)\right|^{p(x)}\right) d x\right)^{\gamma}\right. \\
& \quad \times\left\|\nabla v_{0} \chi_{\left\{\left|u_{n}\right|>l\right\}}\right\|_{p(\cdot)}
\end{aligned}
$$

where

$$
\gamma= \begin{cases}1 / p_{-}^{\prime} & \text { if }\left\|a\left(x, \nabla T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right)\right)\right\|_{p^{\prime}(\cdot)} \geq 1 \\ 1 / p_{+}^{\prime} & \text { if }\left\|a\left(x, \nabla T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right)\right)\right\|_{p^{\prime}(\cdot)}<1\end{cases}
$$

Furthermore by Lemma 3.6, we have

$$
\begin{align*}
& \int_{\Omega}\left|\nabla T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right)\right|^{p(x)} d x \leq c(s), \tag{3.32}\\
& \int_{\Omega}\left|T_{s}\left(u_{n}-T_{l}\left(u_{n}\right)\right)\right|^{p(x)} d x \leq c^{\prime}(s) \tag{3.33}
\end{align*}
$$

where $c(s)$ and $c^{\prime}(s)$ are constants independent of l. By 3.2, (3.32) and (3.33), we obtain

$$
\begin{equation*}
\int_{\left\{l \leq\left|u_{n}\right| \leq l+s\right\}}\left|a\left(x, u_{n}, \nabla u_{n}\right)\right|\left|\nabla v_{0}\right| d x=\epsilon(n, l) \tag{3.34}
\end{equation*}
$$

Finally, (3.31) and (3.34) yield the estimate (3.28). Combining (3.23-3.28) and $l=m-\left\|v_{0}\right\|_{\infty}$, we get

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \leq \epsilon(n, m) . \tag{3.35}
\end{equation*}
$$

Splitting the first integral on the left hand side of (3.35) where $\left|u_{n}\right| \leq k$ and $\left|u_{n}\right|>k$, we can write

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{n}, \nabla\right. & \left.u_{n}\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \\
= & \int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \\
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}(u) h_{m}\left(u_{n}-v_{0}\right) d x \\
\geq & \int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \\
& -\int_{\Omega}\left|a\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right)\right|\left|\nabla T_{k}(u)\right| \chi_{\left\{\left|u_{n}\right|>k\right\}} d x
\end{aligned}
$$

where $M=m+\left\|v_{0}\right\|_{\infty}+1$. Since $a\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right)$ is bounded in $\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$, for a subsequence we have $a\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right) \rightharpoonup l_{m}$ weakly in $\left(L^{\infty}(\Omega)\right)^{N}$ as $n \rightarrow \infty$. Since $\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right| \chi_{\left\{\left|u_{n}\right|>k\right\}}$ converges to $\left|\frac{\partial T_{k}(u)}{\partial x_{i}}\right| \chi_{\{|u|>k\}}=0$ strongly in $L^{p(\cdot)}(\Omega)$, we get

$$
\begin{equation*}
\int_{\Omega}\left|a\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right)\right|\left|\nabla T_{k}(u)\right| \chi_{\left\{\left|u_{n}\right|>k\right\}} d x=\epsilon(n) \tag{3.36}
\end{equation*}
$$

From (3.35) and (3.36) we have

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \leq \epsilon(n, m) \tag{3.37}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \tag{3.38}
\end{equation*}
$$

$$
=\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]
$$

$$
\times \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x
$$

$$
+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x
$$

$$
=\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]
$$

$$
\times \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x
$$

$$
+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \nabla T_{k}\left(u_{n}\right) h_{m}\left(u_{n}-v_{0}\right) d x
$$

$$
-\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \nabla T_{k}(u) h_{m}\left(u_{n}-v_{0}\right) d x
$$

By the continuity of the Nemytskiŭ operator, $a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right)$ converges to $a\left(x, T_{k}(u), \nabla T_{k}(u)\right) h_{m}\left(u-v_{0}\right)$ strongly in $\left(L^{p^{\prime}(\cdot)}(\Omega)^{N}\right.$ while $\partial T_{k}\left(u_{n}\right) / \partial x_{i}$ converges to $\partial T_{k}(u) / \partial x_{i}$ weakly in $L^{p(\cdot)}(\Omega)$. The second and third terms of the right hand side of 3.38 tend respectively to $\int_{\Omega} a\left(x, T_{k}(u)\right.$, $\left.\nabla T_{k}(u)\right) \nabla T_{k}(u) h_{m}\left(u-v_{0}\right) d x$ and $-\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) h_{m}(u-$ $\left.v_{0}\right) d x$. So (3.37) and (3.38) yield

$$
\begin{align*}
& \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \tag{3.39}\\
& \quad \times \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \leq \epsilon(n, m)
\end{align*}
$$

which implies that

$$
\begin{align*}
& \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \tag{3.40}\\
& =\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
& \quad \times \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \\
& \quad+\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
& \times \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\left(1-h_{m}\left(u_{n}-v_{0}\right)\right) .
\end{align*}
$$

Since $1-h_{m}\left(u_{n}-v_{0}\right)=0$ in $\left\{x \in \Omega\left|\left|u_{n}-v_{0}\right|<m\right\}\right.$ and $\left\{x \in \Omega\left|\left|u_{n}\right|<k\right\}\right.$ $\subset\left\{x \in \Omega\left|\left|u_{n}-v_{0}\right|<m\right\}\right.$ for m large enough, we deduce from 3.40 that

$$
\begin{aligned}
\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-\right. & \left.a\left(x, \nabla T_{k}(u)\right)\right] \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
= & \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u)\right)\right] \\
& \times \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \\
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x .
\end{aligned}
$$

It is easy to see that the last term tends to zero as $n \rightarrow \infty$, which implies that

$$
\begin{aligned}
\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-\right. & \left.a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
= & \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
& \times \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) h_{m}\left(u_{n}-v_{0}\right) d x \\
& +\epsilon(n) .
\end{aligned}
$$

Combining (3.39) and (3.41), we have

$$
\begin{aligned}
& \int_{\Omega} {\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x } \\
& \leq \epsilon(n, m)
\end{aligned}
$$

By passing to the limsup over n and letting m tend to infinity, we obtain

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a(x,\right. & \left.\left.T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
& \times \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x=0
\end{aligned}
$$

Thus by Lemma 3.1, $T_{k}\left(u_{n}\right)$ converges to $T_{k}(u)$ strongly in $W_{0}^{1, p(\cdot)}(\Omega)$.
Proof of Theorem 3.1. Let $v \in K_{\psi} \cap L^{\infty}(\Omega)$ and take $T_{l}\left(u_{n}-T_{k}\left(u_{n}-v\right)\right)$ as a test function in $\left(P_{n}\right)$. Letting $l \rightarrow \infty$, we can write, for n large enough $\left(n>k+\|v\|_{\infty}\right)$,

$$
\begin{aligned}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}-v\right) d x+\int_{\Omega} \phi\left(u_{n}\right) \nabla T_{k}\left(u_{n}-v\right) d x \\
& \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-v\right) d x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-v\right) d x
\end{aligned}
$$

We get

$$
\begin{aligned}
& \int_{\Omega} a\left(x, T_{k+\|v\|_{\infty}}\left(u_{n}\right), \nabla T_{k+\|v\|_{\infty}}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}-v\right) d x \\
&+\int_{\Omega} \phi\left(T_{k+\|v\|_{\infty}}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}-v\right) d x \\
& \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-v\right) d x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-v\right) d x
\end{aligned}
$$

By Fatou's lemma and the fact that $a\left(x, T_{k+\|v\|_{\infty}}\left(u_{n}\right), \nabla T_{k+\|v\|_{\infty}}\left(u_{n}\right)\right)$ converges to $a\left(x, T_{k+\|v\|_{\infty}}(u), \nabla T_{k+\|v\|_{\infty}}(u)\right)$ weakly in $\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$, it is easy to see that

$$
\begin{aligned}
& \int_{\Omega} a\left(x, T_{k+\|v\|_{\infty}}(u), \nabla T_{k+\|v\|_{\infty}}(u)\right) \nabla T_{k}\left(u_{-} v\right) d x \\
& \quad \leq \liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k+\|v\|_{\infty}}\left(u_{n}\right), \nabla T_{k+\|v\|_{\infty}}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}-v\right) d x
\end{aligned}
$$

On the other hand, by using $F \in\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$, we deduce that

$$
\begin{equation*}
\int_{\Omega} F \nabla T_{k}\left(u_{n}-v\right) d x \rightarrow \int_{\Omega} F \nabla T_{k}(u-v) d x \quad \text { as } n \rightarrow \infty \tag{3.41}
\end{equation*}
$$

Moreover, by Lebesgue's theorem, $\phi\left(T_{k+\|v\|_{\infty}}\left(u_{n}\right)\right)$ tends to $\phi\left(T_{k+\|v\|_{\infty}}(u)\right)$ strongly in $\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$ as $n \rightarrow \infty$, and $\nabla T_{k}\left(u_{n}-v\right)$ converges to $\nabla T_{k}(u-v)$ weakly in $\left(L^{p(\cdot)}(\Omega)\right)^{N}$, so that

$$
\begin{align*}
\int_{\Omega} \phi\left(T_{k+\|v\|_{\infty}}\left(u_{n}\right)\right) & \nabla T_{k}\left(u_{n}-v\right) d x \tag{3.42}\\
& \rightarrow \int_{\Omega} \phi\left(T_{k+\|v\|_{\infty}}(u)\right) \nabla T_{k}(u-v) d x \quad \text { as } n \rightarrow \infty
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\int_{\Omega} f_{n} T_{k}\left(u_{n}-v\right) d x \rightarrow \int_{\Omega} f T_{k}(u-v) d x \tag{3.43}
\end{equation*}
$$

By using (3.43), (3.42), we can pass to the limit in (3.41) to obtain

$$
\begin{aligned}
& \int_{\Omega} a\left(x, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}-v\right) d x+\int_{\Omega} \phi\left(u_{n}\right) \nabla T_{k}\left(u_{n}-v\right) d x \\
& \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-v\right) d x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-v\right) d x
\end{aligned}
$$

which completes the proof of Theorem 3.1.
REmark 3.2. Note that the condition (3.8) is used essentially to prove the coercivity of the operator B_{n}.

We can prove the coercivity of B_{n} if we replace the condition (3.8) by

$$
\begin{equation*}
p_{+}-p_{-}<1 . \tag{3.44}
\end{equation*}
$$

This is the objective of the following theorem:
Theorem 3.3. Assume that (3.1)-(3.7) and (3.44) hold true. Then there exists a solution of problem (P).

Proof. Following the same steps of argument of the proof of Theorem 3.1. it suffices to show the coercivity of the operator B_{n}.

Indeed, let $v_{0} \in K_{\psi}$. From the Hölder inequality and the growth condition, we have

$$
\begin{aligned}
& \left\langle A v, v_{0}\right\rangle=\int_{\Omega} a(x, v, \nabla v) \nabla v_{0} d x \\
& \quad \leq C\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\left(\int_{\Omega}|a(x, v, \nabla v)|^{p^{\prime}(x)} d x\right)^{\gamma^{\prime}}\left\|v_{0}\right\|_{W_{0}^{1, p(\cdot)}(\Omega)} \\
& \\
& \leq C\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\left\|v_{0}\right\|_{W_{0}^{1, p(\cdot)}(\Omega)}\left(\int_{\Omega} \beta\left(k(x)^{p^{\prime}(x)}+|v|^{p(x)}+|\nabla v|^{p(x)}\right) d x\right)^{\gamma^{\prime}} \\
& \leq C_{0}\left(C_{1}+\rho(v)+\rho(\nabla v)\right)^{\gamma^{\prime}} \leq C_{0}\left(C_{1}+C(\rho(\nabla v))^{p_{+} / p_{-}}+\rho(\nabla v)\right)^{\gamma^{\prime}}
\end{aligned}
$$

where

$$
\gamma^{\prime}= \begin{cases}1 / p_{-}^{\prime} & \text { if }\|a(x, v, \nabla v)\|_{L^{p^{\prime}(\cdot)}(\Omega)}>1, \tag{3.45}\\ 1 / p_{+}^{\prime} & \text { if }\|a(x, v, \nabla v)\|_{L^{p^{\prime}(\cdot)(\Omega)}} \leq 1 .\end{cases}
$$

From (3.3) we have

$$
\begin{align*}
& \frac{\langle A v, v\rangle}{\|v\|_{1, p(\cdot)}}-\frac{\left\langle A v, v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}} \tag{3.46}\\
& \quad \geq \frac{1}{\|v\|_{1, p(\cdot)}}\left(\alpha \rho(\nabla v)-C_{0}\left(C_{1}+C(\rho(\nabla v))^{p_{+} / p_{-}}+\rho(\nabla v)\right)^{\gamma^{\prime}}\right) .
\end{align*}
$$

Since $\|v\|_{1, p(\cdot)} \rightarrow \infty$ we have $\|a(x, v, \nabla v)\|_{L^{p^{\prime} \cdot()(\Omega)}}>1$; then $\gamma^{\prime}=1 / p_{-}^{\prime}$, and as $p_{+}-p_{-}<1$, we have $\frac{p_{+}}{p_{-}^{\prime} p_{-}}<1$, so

$$
\frac{\langle A v, v\rangle}{\|v\|_{1, p(\cdot)}}-\frac{\left\langle A v, v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}} \rightarrow \infty \quad \text { as }\|v\|_{1, p(\cdot)} \rightarrow \infty .
$$

Since $\left\langle G_{n} v, v\right\rangle /\|v\|_{1, p(\cdot)}$ and $\left\langle G_{n} v, v_{0}\right\rangle /\|v\|_{1, p(\cdot)}$ are bounded, we have

$$
\frac{\left\langle B_{n} v, v-v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}}=\frac{\left\langle A v, v-v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}}+\frac{\left\langle G_{n} v, v\right\rangle}{\|v\|_{1, p(\cdot)}}-\frac{\left\langle G_{n} v, v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}} \rightarrow \infty
$$

as $\|v\|_{1, p(\cdot)} \rightarrow \infty$.

4. Appendix

Proof of Lemma 3.5. Let $v_{0} \in K_{\psi}$. From the Hölder inequality and the growth condition, we have

$$
\begin{aligned}
\langle A v, & \left.v_{0}\right\rangle=\int_{\Omega} a(x, v, \nabla v) \nabla v_{0} d x \\
& \leq C\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\left(\int_{\Omega}|a(x, v, \nabla v)|^{p^{\prime}(x)} d x\right)^{\gamma^{\prime}} d x\left\|v_{0}\right\|_{W_{0}^{1, p(\cdot)}(\Omega)} \\
& \leq C\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\left\|v_{0}\right\|_{W_{0}^{1, p(\cdot)}(\Omega)}\left(\int_{\Omega} \beta\left(k(x)^{p^{\prime}(x)}+|v|^{p(x)}+|\nabla v|^{p(x)}\right) d x\right)^{\gamma^{\prime}} \\
& \leq C_{0}\left(C_{1}+\rho(v)+\rho(\nabla v)\right)^{\gamma^{\prime}} \leq C_{0}\left(C_{1}+C \rho(\nabla v)+\rho(\nabla v)\right)^{\gamma^{\prime}}
\end{aligned}
$$

where

$$
\gamma^{\prime}= \begin{cases}1 / p_{-}^{\prime} & \text { if }\|a(x, v, \nabla v)\|_{L^{p^{\prime}(\cdot)}(\Omega)} \geq 1, \tag{4.1}\\ 1 / p_{+}^{\prime} & \text { if }\|a(x, v, \nabla v)\|_{L^{p^{\prime}(\cdot)}(\Omega)} \leq 1 .\end{cases}
$$

From (3.3) we have
(4.2) $\quad \frac{\langle A v, v\rangle}{\|v\|_{1, p(\cdot)}}-\frac{\left\langle A v, v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}}$

$$
\geq \frac{1}{\|v\|_{1, p(\cdot)}}\left(\alpha \rho(\nabla v)-C_{0}\left(C_{1}+C \rho(\nabla v)+\rho(\nabla v)\right)^{\gamma^{\prime}}\right) .
$$

Hence $\rho(\nabla v) /\|v\|_{1, p(\cdot)} \rightarrow \infty$ as $\|v\|_{1, p(\cdot)} \rightarrow \infty$, and we have

$$
\frac{\langle A v, v\rangle}{\|v\|_{1, p(\cdot)}}-\frac{\left\langle A v, v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}} \rightarrow \infty \quad \text { as }\|v\|_{1, p(\cdot)} \rightarrow \infty .
$$

Since $\left\langle G_{n} v, v\right\rangle /\|v\|_{1, p(\cdot)}$ and $\left\langle G_{n} v, v_{0}\right\rangle /\|v\|_{1, p(\cdot)}$ are bounded, we have

$$
\frac{\left\langle B_{n} v, v-v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}}=\frac{\left\langle A v, v-v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}}+\frac{\left\langle G_{n} v, v\right\rangle}{\|v\|_{1, p(\cdot)}}-\frac{\left\langle G_{n} v, v_{0}\right\rangle}{\|v\|_{1, p(\cdot)}} \rightarrow \infty
$$

as $\|v\|_{1, p(\cdot)} \rightarrow \infty$. It remains to show that B_{n} is pseudo-monotone.
Let $\left(u_{k}\right)_{k}$ be a sequence in $W_{0}^{1, p(\cdot)}(\Omega)$ such that

$$
\left\{\begin{array}{l}
u_{k} \rightharpoonup u \text { in } W_{0}^{1, p(\cdot)}(\Omega), \tag{4.3}\\
B_{n} u_{k} \rightharpoonup \chi \text { in } W^{-1, p^{\prime}(\cdot)}(\Omega), \\
\limsup _{k \rightarrow \infty}\left\langle B_{n} u_{k}, u_{k}\right\rangle \leq\langle\chi, u\rangle .
\end{array}\right.
$$

We will prove that $\chi=B_{n} u$ and $\left\langle B_{n} u_{k}, u_{k}\right\rangle$ converges to $\langle\chi, u\rangle$ as $k \rightarrow \infty$.
Firstly, since $W_{0}^{1, p(\cdot)}(\Omega) \hookrightarrow \hookrightarrow L^{p(x)}(\Omega)$, we have $u_{k} \rightarrow u$ in $L^{p(\cdot)}(\Omega)$ for a subsequence still denoted by $\left(u_{k}\right)_{k}$. Since $\left(u_{k}\right)_{k}$ is a bounded sequence in $W_{0}^{1, p(\cdot)}(\Omega)$, by the growth condition, $\left(a\left(x, u_{k}, \nabla u_{k}\right)\right)_{k}$ is bounded
in $\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$, therefore there exists $\varphi \in\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$ such that

$$
\begin{equation*}
a\left(x, u_{k}, \nabla u_{k}\right) \rightharpoonup \varphi \quad \text { in }\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N} \quad \text { as } \quad k \rightarrow \infty . \tag{4.4}
\end{equation*}
$$

Then $\phi_{n}=\phi \circ T_{n}$ is a continuous function, and since $u_{k} \rightarrow u$ in $L^{p(\cdot)}(\Omega)$ we have

$$
\begin{equation*}
\phi_{n}\left(u_{k}\right) \rightarrow \phi_{n}(u) \quad \text { in }\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N} \text { as } k \rightarrow \infty \tag{4.5}
\end{equation*}
$$

It is clear that, for all $v \in W_{0}^{1, p(\cdot)}(\Omega)$,

$$
\begin{align*}
\langle\chi, v\rangle & =\lim _{k \rightarrow \infty}\left\langle B_{n} u_{k}, v\right\rangle \tag{4.6}\\
& =\lim _{k \rightarrow \infty} \int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla v d x-\lim _{k \rightarrow \infty} \int_{\Omega} \phi_{n}\left(u_{k}\right) \nabla v d x \\
& =\int_{\Omega} \varphi \nabla v d x-\int_{\Omega} \phi_{n}(u) \nabla v d x .
\end{align*}
$$

On the one hand, by 4.5 we have

$$
\begin{equation*}
\int_{\Omega} \phi_{n}\left(u_{k}\right) \nabla u_{k} d x \rightarrow \int_{\Omega} \phi_{n}(u) \nabla u d x \quad \text { as } k \rightarrow \infty \tag{4.7}
\end{equation*}
$$

Combining (4.3) and (4.6), we have

$$
\begin{align*}
\limsup _{k \rightarrow \infty}\left\langle B_{n}\left(u_{k}\right), u_{k}\right\rangle & =\limsup _{k \rightarrow \infty}\left\{\int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u_{k} d x-\int_{\Omega} \phi_{n}\left(u_{k}\right) \nabla u_{k} d x\right\} \tag{4.8}\\
& \leq \int_{\Omega} \varphi \nabla u d x-\int_{\Omega} \phi_{n}(u) \nabla u d x
\end{align*}
$$

Therefore

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u_{k} d x \leq \int_{\Omega} \varphi \nabla u d x \tag{4.9}
\end{equation*}
$$

On the other hand, thanks to 3.3 , we have

$$
\begin{equation*}
\int_{\Omega}\left(a\left(x, u_{k}, \nabla u_{k}\right)-a\left(x, u_{k}, \nabla u\right)\right)\left(\nabla u_{k}-\nabla u\right) d x>0 \tag{4.10}
\end{equation*}
$$

so

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u_{k} d x \geq & -\int_{\Omega} a\left(x, u_{k}, \nabla u\right) \nabla u d x \\
& +\int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u d x+\int_{\Omega} a\left(x, u_{k}, \nabla u\right) \nabla u_{k} d x
\end{aligned}
$$

and by 4.4, we get

$$
\liminf _{k \rightarrow \infty} \int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u_{k} d x \geq \int_{\Omega} \varphi \nabla u d x
$$

This implies, by using (4.9), that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u_{k} d x=\int_{\Omega} \varphi \nabla u d x \tag{4.11}
\end{equation*}
$$

By combining (4.6), 4.7) and (4.11), we find that $\left\langle B_{n} u_{k}, u_{k}\right\rangle$ converges to $\langle\chi, u\rangle$ as $k \rightarrow \infty$.

On the other hand, by (4.11) and the fact that $a\left(x, u_{k}, \nabla u\right)$ converges to $a(x, u, \nabla u)$ in $\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$ we deduce that

$$
\lim _{k \rightarrow \infty} \int_{\Omega}\left(a\left(x, u_{k}, \nabla u_{k}\right)-a\left(x, u_{k}, \nabla u\right)\right)\left(\nabla u_{k}-\nabla u\right) d x=0
$$

and by Lemma 3.1, u_{k} converges to u in $W_{0}^{1, p(\cdot)}(\Omega)$ and a.e. in Ω. We deduce that $a\left(x, u_{k}, \nabla u_{k}\right)$ converges to $a\left(x, u_{k}, \nabla u\right)$ in $\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$, and $\phi_{n}\left(u_{k}\right)$ converges to $\phi_{n}(u)$ in $\left(L^{p^{\prime}(\cdot)}(\Omega)\right)^{N}$. Hence $\chi=B_{n} u$, which completes the proof of Lemma 3.5.

Acknowledgements. The authors would like to thank the anonymous referees for their useful suggestions.

References

[1] E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal. 156 (2001), 121-140.
[2] Y. Akdim, E. Azroul and A. Benkirane, Existence of solution for quasilinear degenerated elliptic unilateral problems, Ann. Math. Blaise Pascal 10 (2003), 1-20.
[3] W. Allegretto, Form estimates for the $p(x)$-Laplacean, Proc. Amer. Math. Soc. 135 (2007), 2177-2185.
[4] S. Antontsev and S. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), 515-545.
[5] E. Azroul, H. Redwane and M. Rhoudaf, On some nonlinear degenerated obstacle problems involving noncontrollable lower order terms with right hand-side measure, Int. J. Math. Statist. 10 (2011), no. W11, 25-42.
[6] M.-B. Benboubker, E. Azroul and A. Barbara, Quasilinear elliptic problems with non standard growth, Electron. J. Differential Equations 2011, no. 62, 16 pp.
[7] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406.
[8] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), 424-446.
[9] X. Fan and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), 306-317.
[10] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J. 41 (1991), 592-618.
[11] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, Paris, 1969.
[12] M. Re̊žička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000.
[13] J. F. Rodrigues, M. Sanchón and J.-M. Urbano, The obstacle problem for nonlinear elliptic equations with variable growth and L^{1}, Monatsh. Math. 154 (2008), 303-322.
[14] M. Sanchón and J.-M. Urbano, Entropy solutions for the $p(x)$-Laplace equation, Trans. Amer. Math. Soc. 361 (2009), 6387-6405.
[15] V. V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 67-81 (in Russian).
C. Yazough, E. Azroul

Department of Mathematics
Faculty of Sciences Dhar El Mahraz
University of Fez
Laboratory LAMA
B.P. 1796 Atlas Fez, Morocco

E-mail: chihabyazough@gmail.com
azroul_elhoussine@yahoo.fr
H. Redwane

Faculté des Sciences Juridiques,
Économiques et Sociales
Université Hassan 1
B.P. 784, Settat, Morocco

E-mail: redwane_hicham@yahoo.fr

Received on 15.10.2012;
revised version on 31.1.2013

[^0]: 2010 Mathematics Subject Classification: Primary 47A15; Secondary 46A32, 47D20.
 Key words and phrases: variable exponents, entropy solution, unilateral problems.

