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DISCRETE TIME OPTIMAL DIVIDEND PROBLEM WITH
CONSTANT PREMIUM AND EXPONENTIALLY

DISTRIBUTED CLAIMS

Abstract. An optimal dividend problem is studied consisting in maximi-
sation of expected discounted dividend payments until ruin time. A solution
of this problem for constant premium d and exponentially distributed claims
is presented. It is shown that an optimal policy is a barrier policy. Moreover,
an analytic way to solve this problem is sketched.

1. Introduction. We consider the surplus of an insurance company in
the form

(1.1) Xn+1 = Xn − Un + Yn+1,

with initial capital X0 = x. In the formula above, Xn denotes the assets
of the insurance company at the beginning of the nth period. The com-
pany collects premiums from customers and has to pay claims. The bal-
ance between premiums and claims may be negative and is modelled by
an i.i.d. sequence Yn+1. Denote the probability distribution of Yn+1 by ν
and by Y a generic random variable with this distribution. We assume that
E|Y | < ∞. The insurance company decides about the amount of dividend
payout Un which is viewed as a control variable. This decision is based
on available information. Denote by Fn the filtration generated by Xn, i.e.
Fn = σ(Xn), and let

⋃n
k=0Fk = Gn. Then we assume that the stochastic

process {Un : n = 1, 2, . . .} is adapted to Gn, and moreover 0 ≤ Un ≤ Xn for
all n ∈ N. The procedure is stopped at the time of ruin τ = inf{n : Xn < 0}.
Denote by Dn(Xn) the interval [0, Xn] if Xn ≥ 0, and let Dn(Xn) = {0} if
Xn < 0.
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Definition 1.1.

(i) Gn-measurable random variables Un ∈ Dn(Xn) are called decisions
at time n. We denote by Πn the set of all decisions at time n.

(ii) A sequence u = (f0, f1, . . . ) of decisions fi ∈ Πi is called an admis-
sible strategy.

(iii) We denote by Π the set Π1 ×Π2 × · · · .

For a fixed strategy {Un} define the value function to be the expected
value of discounted dividend payments until ruin. For a discount factor γ ∈
(0, 1) we have

V ({Un}, x) = E
[τ−1∑
n=0

γnUn

∣∣∣ X0 = x
]
.

The problem is to find an admissible strategy U∗n that maximises the above
functional and to characterise the value function defined as

(1.2) V (x) = sup
Un∈Π

V ({Un}, x) = sup
Un∈Π

E
[τ−1∑
n=0

γnUn

∣∣∣ X0 = x
]
.

The above model, first proposed by de Finetti [5], was intensively studied
in the 1960s. The most important results were obtained by Miyasawa [10],
Gerber [6], Shubik and Thompson [14], and Morill [11]. These results es-
sentially use the assumption that the random variables Yn+1 in (1.1) are
integer-valued. It seems that this discrete model is more complicated than
the similar one in continuous time. The main reason is that in the latter case
we can use Lévy processes to consider an equivalent problem. The problem
of finding an optimal dividend strategy has been studied extensively in the
Brownian motion setting [2, 15] and in the Cramér–Lundberg setting [3, 7].
The main problem consists in showing that optimal strategies are of barrier
form, i.e. there is a unique point a such that below a we do not pay a div-
idend while above a we pay a dividend equal to the difference between the
surplus and a. The problem was solved in the continuous time setting by
Loeffen [9]. A similar problem in which dividend pay-outs are restricted to
random discrete times was solved by Albrecher, Bauerle and Thonhauser [1].

In this paper optimality of barrier strategies in the case of exponential
claims is shown. Also the value function V (·) is constructed using elementary
methods.

2. Bellman equation. One can show heuristically that the value func-
tion V (·) is a solution to the Bellman equation

(2.1) V (x) = sup
0≤u≤x

{
u+ γ

∞�

−(x−u)

V (x− u+ y) ν(dy)
}
.
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We show that this equation has a unique solution and an optimal strategy
exists. For this purpose we observe that

V (x) = x+ sup
0≤u≤x

{
u− x+ γ

∞�

−(x−u)

V (x− u+ y) ν(dy)
}
.

Replacing u by x− u we get

(2.2) V (x) = x+ sup
0≤u≤x

{
−u+ γ

∞�

−u
V (u+ y) ν(dy)

}
.

Define W (x) = V (x)− x. Then

(2.3) W (x) = sup
0≤u≤x

{
−u+ γ

∞�

−u
W (u+ y) ν(dy) + γ

∞�

−u
(u+ y) ν(dy)

}
.

We introduce an operator T as

(2.4) (TW )(x) = sup
0≤u≤x

{
−u+ γ

∞�

−u
W (u+ y) ν(dy) + γ

∞�

−u
(u+ y) ν(dy)

}
.

We will show that T is a contraction:

Theorem 2.1.

(i) The operator T given by (2.4) is a contraction on C([0,∞),R).
(ii) There is a unique continuous bounded solution W (·) to (2.3).
(iii) W (x) ≤ γEY +

1−γ .

Proof. To see that T acts on the space of bounded continuous functions,
note that the continuity of v(u) implies the continuity of sup0≤u≤x v(u).
Since

Tv(x) ≤ sup
0≤u≤x

{−u+ γ‖v‖+ γE(Y + u)+}

≤ sup
0≤u≤x

{−u(1− γ) + γ‖v‖+ γE|Y |}

≤ γ‖v‖+ γE|Y |,
we see that T : C([0,∞)) → C([0,∞)). Let f, g ∈ C([0,∞)). By (2.4) we
have

Tf(x)− Tg(x) ≤ sup
0≤u≤x

{
γ

∞�

−u
(f(u+ y)− g(u+ y)) ν(dy)

}
≤ γ‖f − g‖.

Applying the Banach fixed-point theorem we complete the proof of (ii).
For (iii) first observe that by (2.4),

T0(x) = sup
0≤u≤x

{
−u+ γ

∞�

−u
(u+ y) ν(dy)

}
= γEY +.
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This implies that
T 20(x) ≤ γ2EY + + γEY +.

Proceeding by induction, we see that

Tn0(x)
∞∑
n=1

≤ γnEY +.

Passing to the limit and using the fact that T is a contraction we obtain

W (x) ≤ γEY +

1− γ
.

Now we prove the existence of a maximiser:

Theorem 2.2. Let W (·) be the solution to (2.3) and let

f(u) = −u+ γ

∞�

−u
W (u+ y) ν(dy) + γ

∞�

−u
(u+ y) ν(dy).

Define

u(x) = inf{s ≥ 0 :W (x) = f(s)},
u(x) = sup{0 ≤ s ≤ x :W (x) = f(s)}.

Then u(x) is a l.s.c. maximiser of the RHS in (2.3) while u(x) is an u.s.c.
maximiser.

Proof. Fix x0 ≥ 0 and let xn be any sequence that converges to x0.
Assume that sn = u(xn) and a subsequence of sn converges to s. We have

W (xnk
) = f(snk

).

Taking into account that W (·) is continuous we can pass to the limit to get

W (x) = lim inf
k→∞

W (xnk
) = lim inf

k→∞
f(snk

) = f(s).

Moreover u(x) ≤ s. Since this holds for any limit of a convergent subsequence
of sn we see that u(x) is l.s.c. The proof of the upper semicontinuity of u(x)
is similar.

Remark 2.3. Assume that u(x) (resp. u(x)) is a l.s.c. (resp. u.s.c.) max-
imiser of (2.3). Then the function u?(x) := x−u(x) (resp. u?(x) := x−u(x))
is an u.s.c. (resp. l.s.c.) maximiser in (2.1). Consequently, u? is the largest
and u? is the smallest maximiser in (2.1).

We show that the solution of the Bellman equation is the value function
of the optimal dividend problem. We start with the following lemma.
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Lemma 2.4. If V (·) is a solution to the Bellman equation (2.1) and u?
is a measurable maximiser in (2.1) then
(2.5)

V (x) = E
[min(n,τ)−1∑

k=0

γku?(Xk)
∣∣∣X0 = x

]
+ γmin(n,τ)E[V (Xmin(n,τ)) |X0 = x].

Proof. The statement holds for n = 1. Indeed, letting V (x) = 0 for x < 0
we see that

V (x) = E[u?(X0) |X0 = x] + γE[V (Xmin(1,τ)) |X0 = x]

= u?(x) + γE[V (Xmin(1,τ)) |X0 = x].

Furthermore,
Xmin(1,τ) = (X0 + Y1 − u?(X0))χ{τ>1}.

Hence

V (x) = u?(x) + γE[V ((X0 + Y1 − u?(X0))χ{τ>1}) |X0 = x]

= u?(x) + γ

∞�

−(x−u?(x))

V (x+ y − u?(x)) ν(dy)

= sup
0≤u≤x

{
u+ γ

∞�

−(x−u)

V (x+ y − u) ν(dy)
}
.

Assume that the statement holds for some l = n. We shall now prove it for
l = n+ 1. We have

E
[min(n,τ−1)∑

k=0

γku?(Xk)
∣∣∣ X0 = x

]
+ γmin(n+1,τ)E[V (Xmin(n+1,τ)) |X0 = x]

= E
[min(n−1,τ−1)∑

k=0

γku?(Xk)
∣∣∣ X0=x

]
+ E[γmin(n,τ−1)u?(Xmin(n,τ−1)) |X0=x]

+ γmin(n+1,τ)E[V (Xmin(n+1,τ)) |X0 = x].

Therefore

V (x)− γmin(n,τ−1)E[V (Xmin(n,τ−1)) |X0 = x]

+ E[γmin(n,τ−1)u?(Xmin(n,τ−1)) |X0 = x]

+ γmin(n+1,τ)E[V (Xmin(n+1,τ)) |X0 = x]

= V (x)− γmin(n,τ−1)E[V (Xmin(n,τ−1)) |X0 = x]

+ γmin(n,τ−1)E[u?(Xmin(n,τ−1)) + γV (Xmin(n+1,τ)) |X0 = x]
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and

E[u?(Xmin(n,τ−1)) + γV (Xmin(n+1,τ)) |X0 = x]

= E
[
E[u?(Xmin(n,τ−1)) + γV (Xmin(n+1,τ)) |Xmin(n,τ−1)]

∣∣ X0 = x
]

= E
[
E[u?(Xmin(n,τ−1))

+ γV (Xmin(n,τ−1) − u?(Xmin(n,τ−1)) + Yn+1) |Xmin(n,τ−1)]
∣∣ X0 = x

]
= E[V (Xmin(n,τ−1)) |X0 = x].

Hence

V (x)− γmin(n,τ−1)E[V (Xmin(n,τ−1)) |X0 = x]

+ γmin(n,τ−1)E[u?(Xmin(n,τ−1)) + γV (Xmin(n+1,τ))
∣∣ X0 = x] = V (x),

which completes the proof.

Theorem 2.5. Let V (x) be a solution to (2.1). Then V (·) coincides with
the value function defined in (1.2). Furthermore the optimal strategy u ∈ Π
is a stationary strategy, i.e. there exists a measurable u? such that

u = (u?(X0), u
?(X1), u

?(X2), . . .),

where u? is a measurable selector for which we have equality in (2.1).

Proof. From Theorem 2.2 there exists a measurable u? that

V (x) = u? + γ

∞�

−(x−u?)

V (x− u? + y) ν(dy).

By Lemma 2.4 we have

V (x) = E
[min(n−1,τ−1)∑

k=0

γku?(Xk)
∣∣∣X0 = x

]
+ γnE[V (Xmin(n,τ−1)) |X0 = x].

SinceUmin(n,τ−1)≤Xmin(n,τ−1) and the conditional distribution ofXmin(n,τ−1)
is the same for all n ≥ 1 under the strategy Umin(n,τ−1) = Xmin(n,τ−1), we
see by Theorem 2.1(iii) that

V (Xmin(n,τ−1)) ≤ Xmin(n,τ−1) +
γEY +

1− γ
a.s.

It is easily seen that when the dividend is not paid then

Xmin(n,τ−1) = X0 + Y1 + Y2 + · · ·+ Ymin(n,τ−1) a.s.

This implies that

γnE[V (Xmin(n,τ−1)) |X0 = x] ≤ γn
(
x+min(n, τ − 1)EY + +

γEY +

1− γ

)
.
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Letting n tend to ∞ we see that

γn
(
x+min(n, τ − 1)EY +

γEY +

1− γ

)
→ 0.

Therefore

V (x) = E
[τ−1∑
k=0

γku?(Xk)
∣∣∣X0 = x

]
.

2.1. Properties of solution. We will prove several basic properties of
the value function V (·) of problem (1.2).

Proposition 2.6.

(i) The value function V (x) is bounded:

(2.6) x+
EY +γ

1− p+γ
≤ V (x) ≤ x+

EY +γ

1− γ
.

(ii) If x ≥ y ≥ 0 then

(2.7) V (x)− V (y) ≥ x− y.
(iii) For all x ≥ 0,

V (x)− u?(x) = V (x− u?(x))
and furthermore u?(x− u?(x)) = 0.

(iv) For all x ≥ 0,

u?(x− u?(x)) = 0,

u?(x− u?(x)) = 0,

where u? and u? are respectively the l.s.c. and u.s.c. maximisers of
(2.1) (see Remark 2.3).

Proof. We follow the considerations from [12].
(i) The upper bound in (i) follows directly from Theorem 2.1(i). Using the

strategy U0 = x and Ui = Y +
i until ruin we have P (τ = n+1) = (1−p+)pn+.

Then

V (x) ≥ x+ E
[ τ−1∑
n=1

γnY +
n

]
= (1− p+)

∞∑
n=1

pn+

n∑
k=1

γkE[Y |Y > 0]

= (1− p+)
∞∑
k=1

∞∑
n=k

pn+γ
kE[Y |Y > 0] =

∞∑
k=1

pk+γ
kE[Y |Y > 0]

=
E[Y |Y > 0]p+γ

1− p+γ
=

E[Y +]γ

1− p+γ
.

(ii) The desired inequality is equivalent to W (x) ≥W (y), which is obvi-
ous by the definition (2.3).
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(iii) Taking into account that 0 ≤ u?(x) ≤ x and setting y = x − u?(x)
in (2.7) we obtain

V (x) ≥ u?(x) + V (x− u?(x)).

To prove the opposite inequality we put x− u?(x) in (2.1) to find that

(2.8) V (x− u?(x))

= sup
0≤u≤x−u?(x)

{
u+ γ

∞�

−(x−u?(x)−u)

V (x− u?(x)− u+ y) ν(dy)
}
.

Hence

V (x− u?(x)) ≥ γ
∞�

−(x−u?(x))

V (x− u?(x) + y) ν(dy) = V (x)− u?(x).

Thus we obtain the desired equality, and the smallest u for which the supre-
mum in (2.8) is attained is 0.

(iv) The fact that u?(x − u?(x)) = 0 follows directly from (iii). Assume
now that u?(x− u?(x)) = k > 0. Then u?(x) = u?(x) + k, which contradicts
the maximality of u?.

Corollary 2.7. If P (Y > 0) = 0 then V (x) = x and the optimal
strategy has the form u?0(x) = x, u?n(x) = 0 for n ≥ 1 and x ≥ 0. If
P (Y ≤ 0) = 1 then

V (x) = x+
γEY +

1− γ
and u?n(x) = x for n ≥ 0 and x ≥ 0.

2.2. Properties of the optimal strategy

Lemma 2.8. Consider the l.s.c. maximiser u?(·) of (2.1) and let a =
sup{x ≥ 0 : u?(x) = 0}. Then a <∞ and

u?(x) = x− a for x ≥ a.

Proof. Assume that u?(x) = 0. Then using (2.1) and (2.6) we deduce
that

x+
EY +γ

1− p+γ
≤ V (x) = γ

∞�

−x
V (x+ y) ν(dy)

≤ γ
∞�

−x

(
x+ y +

EY +γ

1− γ

)
ν(dy) ≤ γx+ γEY + +

EY +γ2

1− γ
.

Therefore
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x(1− γ) ≤ γEY + +
EY +γ2

1− γ
− EY +γ

1− p+γ
=

EY +γ

1− γ
− EY +γ

1− p+γ

=
−EY +γ2p+ + EY +γ2

(1− p+γ)(1− γ)
,

and consequently

x ≤ (1− p+)E[Y +]γ2

(1− p+γ)(1− γ)2
.

Since u? is l.s.c. by the definition of a, we must have u?(a) = 0.

The derived inequalities mean that if the capital is large enough the
dividend should be paid.

Remark 2.9. Let Yn be i.i.d. integer-valued random variables. Suppose
additionally that n, c0, . . . , cn, d1, . . . , dn ∈ N are such that dk− ck−1 ≥ 2 for
all k = 1, . . . , n and 0 ≤ c0 < d1 ≤ c1 < d2 ≤ · · · < dn ≤ cn. The strategy

u?(x) =


0 if 0 ≤ x ≤ c0,
x− ck if ck < x < dk+1,
0 if dk ≤ x ≤ ck,
x− cn if x ≥ cn,

which we will call a barrier strategy, is an optimal strategy. The proof can
be found in [4].

The case when the random variable is not integer-valued is much more
subtle. Now we restrict our attention to random variables with an analytic
probability distribution function. This is not very restrictive since a lot of
distributions considered in applications have this regularity (see e.g. [13]).
The most important examples are the normal distribution or Erlang distri-
butions. We have

Theorem 2.10. Suppose that the Yn are i.i.d. random variables with
probability density function g(x) which is analytic in some neighbourhood U
of the real line. Then every optimal strategy is a barrier strategy.

Proof. We use tools from complex analysis. For more details see e.g.
[13]. From Lemma 2.8 we will deduce that for any probability distribution
with finite first moment there exists the last barrier of the strategy u?. It is
sufficient to show that for x < a we have

u?(x) =


0 if x ≤ c0,
x− ck if ck < x < dk+1,
0 if dk ≤ x ≤ ck.

k = 0, 1, . . . , n.
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If Y has a probability distribution function g(y) then (2.2) takes the form

V (x) = x+ sup
0≤u≤x

{
−u+ γ

∞�

−u
V (u+ y)g(y) dy

}
.

Define

(2.9) f(z) = −z + γ

∞�

0

V (y)g(y − z) dy.

Then V (x) = x+ sup0≤z≤x f(z). If f is decreasing on R then u(x) = 0 and
the conclusion holds. If f is increasing, then u(x) = x. It is easy to observe
that the conclusion holds when f has finitely many extremes. Now suppose
there is no partition of [0, a] into finitely many intervals in each of which f
is monotone. From the continuity of the derivative we infer the existence of
a sequence cn with limit point c such that

(2.10) f ′(cn) = 0.

Suppose that z ∈ U . Then (2.9) is an analytic function, since the integral is
uniformly convergent. Then its derivative

f ′(z) = −1− γ
∞�

0

V (y)g′(y − z) dy

is also holomorphic. From the uniqueness theorem for analytic functions and
from (2.10) we deduce that for z ∈ U ,

∞�

0

V (y)g′(y − z) dy = −1

γ
.

Differentiating the above with respect to z we obtain
∞�

0

V (y)g′′(y − z) dy = 0.

We can rewrite this as
V (y) ? g′′(y) = 0.

From the Titchmarch Theorem (see for example [17] for more details) we
conclude that g′′(z) = 0 implies g(z) is not a probability distribution. This
contradiction guarantees the existence of finitely many roots of the derivative
and the barrier form of u?(x) as stated in the theorem.

3. Exponential distribution. Now we consider the case when the
claims are exponentially distributed and fix the premium d paid at the end
of each period. Then Y (1.1) has probability density function

g(x) = λeλ(x−d)χ{x<d}.
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Obviously we have

EY = d− 1

λ
.

Of course we should have λd− 1 ≥ 0. Then equation (2.1) can be written as

(3.1) V (x) = x+ sup
0≤u≤x

{
−u+ γ

d+u�

0

V (y)λeλ(y−d−u) dy

}
.

Define

(3.2) f(u) = −u+ γ

d+u�

0

V (y)λeλ(y−d−u) dy.

We have

Lemma 3.1. limu→∞ f(u) = −∞.

Proof. Under the bounds (2.6) we obtain

f(u) = −u+ γ

d+u�

0

V (y)λeλ(y−d−u) dy

≤ −u+ γ

d+u�

0

(
y +

γEY +

1− γ

)
λeλ(y−d−u) dy.

Integrating by parts we have

f(u) ≤ −u+ γ

(
EY +γ(1− eλ(−(d+u)))

1− γ
+
λ(d+ u) + eλ(−(d+u)) − 1

λ

)
= −u(1− γ) + C1e

−u + C2 → −∞.
Passing to the limit is possible since the constants C1 and C2 do not depend
of u.

Lemma 3.2. If f is non-increasing in some neighbourhood of 0, then f
has a global maximum at 0.

Proof. From (3.2), f(u) is differentiable on R+ and

f ′(u) = −1 + γλV (d+ u)− γλ2
d+u�

0

V (y)eλ(y−d−u) dy.

From our assumption we know that f ′(0) ≤ 0. Therefore

f ′(0) = −1 + γλV (d)− γλ2
d�

0

V (y)eλ(y−d) dy(3.3)

= −1 + γλV (d)− λV (0) ≤ 0.
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From the property (2.7) we also know that

d ≤ V (d)− V (0).

Consequently,

0 ≥ −1 + λ(γV (d)− V (0)) ≥ −1 + λ(γ(d+ V (0))− V (0)).

Hence

(3.4) V (0) ≥
γd− 1

λ

1− γ
.

Assume now that there exists p > 0 where f has a global maximum. Then
for x in some left neighbourhood of p we get

V (x) = γ

d+x�

0

V (y)λeλ(y−d−x) dy.

Differentiating the above with respect to x we obtain

V ′(x) + λV (x) = γλV (x+ d).

Making the neighbourhood of p small enough, we have x+ d > p and

V ′(x) + λV (x) = λγ(x+ d+ V (p)− p).
On the other hand, for x ≥ p,

V (x) = x+ V (p)− p.
Taking into account that the function V (x) is differentiable at p we have
V ′(p) = 1 and

V (p) =
γd− 1

λ

1− γ
.

By (3.4) we obtain

V (0) ≥
γd− 1

λ

1− γ
= V (p),

which is a contradiction, since V (x) is strictly increasing.

Lemma 3.3. If f ′(0) ≤ 0 then the optimal strategy u?(x) = x − u(x) is
trivial, i.e. u?(x) = x.

Proof. From (3.1) we conclude that

V (x) = x+ sup
0≤u≤x

f(u) = x+ f(0).

This implies that u(x) = 0 for all x ≥ 0, hence u?(x) = x.
In this way we have proven that f ′(0) ≤ 0 implies that f(0) > f(u) for

all u ≥ 0.

Lemma 3.4. If f ′(0) > 0 then there exists a point p such that f increases
in [0, p] and has a global maximum at p.
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Proof. From Lemma 3.2 we conclude that f is increasing on (0, p) and
has a local maximum at p. Therefore f ′(p) = 0. Taking into account (3.1)
we have

V (x) = γ

d+x�

0

V (y)λeλ(y−d−x) dy for x ≤ p.

In particular

V (p) = γ

d+p�

0

V (y)λeλ(y−d−p) dy.

Differentiating (3.2) we get

f ′(u) = −1 + γλV (d+ u)− γλ2
d+u�

0

V (y)eλ(y−d−u) dy.

From the fact that f ′(p) = 0 we see that

f ′(p) = 0 = −1 + γλV (d+ p)− γλ2
d+p�

0

V (y)eλ(y−d−p) dy

= −1 + γλV (d+ p)− λV (p).

Since V (d+ p) ≥ d+ V (p) we obtain

(3.5) V (p) ≥
γd− 1

λ

1− γ
.

Assume that there exists p1 > p at which f has a global maximum. For any
x in some left neighbourhood of p1 we have, by (3.1),

V (x) = γ

d+x�

0

V (y)λeλ(y−d−x) dy.

Differentiating the above, we obtain

V ′(x) + λV (x) = λγV (x+ d).

Since V ′(p1) = 1 and V (x+d) = V (p1)+x+d−p1 for x+d > p1 we obtain
a contradiction, which completes the proof of the theorem.

Corollary 3.5. If f ′(0) > 0 then the optimal strategy is a barrier strat-
egy.

Proof. In fact, Theorem 3.4 implies that f is increasing on [0, p] and has
a global maximum at p. Hence

u(x) =

{
x for x ∈ (0, p],
p for x > p.



26 D. Socha

Recalling that u?(x) = x− u(x) we get

u?(x) =

{
0 for x ∈ (0, p],
x− p for x > p.

Corollary 3.6. If the expected value of Y is non-positive, then the
trivial strategy is an optimal strategy.

Proof. Suppose that this is not true. Then there exists a point p > 0 at
which

V (p) =
γd− 1

λ

1− γ
.

But then

V (p) <
d− 1

λ

1− γ
=

EY
1− γ

≤ 0.

This contradicts the fact that V (x) is positive.

The results we have derived so far involve conditions on f ′(0). It is not
clear, however, whether or not the condition f ′(0) > 0 is ever fulfilled. We
have

Lemma 3.7. If

γ >
1

(λd− 1)e−λd + 1

then the optimal strategy is a barrier strategy.

Proof. It suffices to show that f ′(0) > 0 for sufficiently large γ. As in
(3.3), we have

(3.6) f ′(0) = −1+γλV (d)−λV (0) = −1+λγ(V (d)−V (0))−λ(1−γ)V (0).

To estimate the above expression from below, we first estimate V (0). From
(3.1) we have

(3.7) V (0) = γλ

d�

0

V (y)eλ(y−d)dy ≤ γV (d)(1− e−λd).

Applying this inequality to (3.6) gives

f ′(0) ≥ −1 + λγ(V (d)− V (0))− λ(1− γ)γV (d)(1− e−λd)
= −1 + λγ(V (d)− V (0))− (1− γ)λγ(V (d)− V (0))(1− e−λd)
− (1− γ)λγV (0)(1− e−λd).

Iterating (3.7), we obtain

f ′(0) ≥ −1 + γλ(V (d)− V (0))− (1− γ)λ(V (d)− V (0))

n∑
k=1

γk(1− e−λd)k

− (1− γ)γnV (0)(1− e−λd)n.
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Letting n→∞ yields

f ′(0) ≥ −1 + γλ(V (d)− V (0))− (1− γ)λ(V (d)− V (0))

∞∑
k=1

γk(1− e−λd)k

= −1 + γλ(V (d)− V (0))− (1− γ)λ(V (d)− V (0))
γ(1− e−λd)

1− γ(1− e−λd)

= −1 + (V (d)− V (0))γλ

(
1− (1− γ)(1− e−λd)

1− γ(1− e−λd)

)
= −1 + (V (d)− V (0))γλ

e−λd

1− γ(1− e−λd)

≥ −1 + dγλ
e−λd

1− γ(1− e−λd)
.

After simple algebraic transformations, we obtain

γ >
1

(λd− 1)e−λd + 1
⇒ f ′(0) > 0.

Recalling that EY > 0⇔ λd− 1 > 0 we obtain
1

(λd− 1)e−λd + 1
= a < 1.

From this we finally obtain f ′(0) > 0.

Taking into account these results we can state our main theorem.

Theorem 3.8. The optimal strategy for the optimal dividend problem
with constant premium and exponentially distributed claims is a barrier strat-
egy, i.e. there exists p > 0 such that for all x ≥ 0 we have

u?(x) = max(x− p, 0),

and u?(x) is a maximiser of (2.1).

An interesting issue appears when we are dealing with the estimation of
the optimal barrier p. The following result holds:

Proposition 3.9. Let V (x) be a solution to (3.1) and p an optimal
barrier. Then

γ − 1 + γe−λd

λ(1− γ)
≤ p ≤

γd− 1
λ

1− γ
− γ(λd− 1 + e−λd)

λ(1− γ(1− e−λd))
.

Proof. Using the inequality (3.5) we obtain

γd− 1
λ

1− γ
= V (p) ≤ p+ γ(λd− 1 + e−λd)

λ(1− γ)
.
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This implies that
γ − 1 + γe−λd

λ(1− γ)
≤ p.

To prove the opposite inequality we use the lower bound in (2.6) to ob-
tain

γd− 1
λ

1− γ
= V (p) ≥ p+ γ(λd− 1 + e−λd)

λ(1− γ(1− e−λd))
.

We finally conclude that

p ≤
γd− 1

λ

1− γ
− γ(λd− 1 + e−λd)

λ(1− γ(1− e−λd))
.

Now we briefly sketch the procedure of finding a solution of the optimal
dividend problem with exponential claims. Without loss of generality, we can
assume that f ′(0) > 0 where f(u) is given by (3.2). Recalling the proof of
Lemma 3.4 we obtain

V ′(x) + λV (x) = λγV (x+ d) for x < p.

We can use Proposition 3.9 to determine the value of p.
First assume that p < d. Then

V ′(x) + λV (x) = λγ(V (p) + x+ d− p), x < p.

This is a non-homogeneous linear equation which can be easily solved by
standard methods. As a result, we have

V (x) =
γ (−pλ+ λV (p) + dλ+ λx− 1)

λ
+ Ce−λx.

For x > p we obviously have V (x) = V (p) + x− p. Taking into account the
continuity and differentiability of V (x) at p we obtain

C =
(γ − 1)epλ

λ
, V (p) =

γdλ− 1

(1− γ)λ
.

Hence

(3.8)

V (x) =


γ(γ + λ(d+ (γ − 1)p)− 2)

(1− γ)λ
+xγ−

(
1− γ
λ

)
eλp−λx for x∈(0, p],

x− p+ γdλ− 1

(1− γ)λ
for x > p.

In order to determine the threshold p, we rewrite (3.1) for x < p:
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V (x) = γ

d+x�

0

V (y)λeλ(y−d−x) dy

= γ

p�

0

V (y)λeλ(y−d−x) dy + γ

d+x�

p

V (y)λeλ(y−d−x) dy.

Calculating these integrals and recalling (3.8) we find that the right hand
side above is equal to

γx+
γ(γ + λ(d+ (γ − 1)p)− 2)

(1− γ)λ

+ eλ(p−x)
(
(γ − 1)γ(λp− 2)

λ
e−λd + e−λ(p+d)

γ2(dλ+ γ(λp+ 2)− λp− 3)

(γ − 1)λ

)
.

The coefficient of eλ(p−x) in the above formula should be equal to the co-
efficient in the same expression in (3.8). Continuing these calculations we
finally obtain

(γ − 1)2 + γ(γ − 1)2
(
−e−dλ

)
(λp− 2)

γ2(2γ + λ(d+ (γ − 1)p)− 3)
= eλ(−d−p).

Let us now consider the case when p > d. Then

(3.9) V ′(x) + λV (x) = λγV (x+ d).

For x ∈ (p− d, p) we have

(3.10) V ′(x) + λV (x) = λγV (x+ d) = λγ(V (p) + x+ d− p).
Finally, for x > p− d we see that

V (x) = V (p) + x− p.
Solving the first equation (3.10) we conclude that for x ∈ (p− d, p),

V (x) =
γ(−pλ+ λV (p) + dλ+ λx− 1)

λ
+ Ce−λx.

Knowing the solution in this interval, we will focus on (3.9). Note that solv-
ing it requires knowledge of the solution V (x) for x ∈ (d, p). Assume for
simplicity that p− d < d. Then (3.9) reads

V ′(x) + λV (x) = λγ

[
γ (−pλ+ λV (p) + dλ+ λ(x+ d)− 1)

λ
+ Ce−λ(x+d)

]
.

For x ∈ [0, p− d) we have

V (x) = −2γ2

λ
+ Cγλxeλ(−(d+x)) +Deλ(−x) + 2γ2d− γ2p+ γ2V (p) + γ2x.

In order to find the constants C, D and V (p) we use the differentiability of
V (x) at p and d− p. Then, in order to find p we proceed as in the previous
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case. The procedure of finding p > 2d is as follows. We have

V ′(x) + λV (x) =


λγV (x+ d) for x ∈ (0, p− 2d],
λγV (x+ d) for x ∈ (p− 2d, p− d],
λγ(x+ d+ V (p)− p) for x ∈ (p− d, p].

We solve the equation in (p−d, p], and then in (p−2d, pd]. Thus the equation
is solved in (0, p− 2d]. In the general case, the procedure is as follows:

V ′(x)+λV (x)=


λγV (x+ d) for x ∈ (0, p− nd],
λγV (x+ d) for x ∈ (p− id, p− (i− 1)d], i = n, . . . , 1,
λγ(x+ d+ V (p)− p) for x ∈ (p− d, p],

Obviously the procedure terminates since p <∞ (Lemma 2.8).
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