Albo Carlos Cavalheiro (Londrina)

UNIQUENESS OF SOLUTIONS FOR SOME DEGENERATE NONLINEAR ELLIPTIC EQUATIONS

Abstract. We investigate the existence and uniqueness of solutions to the Dirichlet problem for a degenerate nonlinear elliptic equation
$-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x) D_{i} u(x)\right)+b(x) u(x)+\operatorname{div}(\Phi(u(x)))=g(x)-\sum_{j=1}^{n} f_{j}(x) \quad$ on Ω
in the setting of the space $H_{0}(\Omega)$.

1. Introduction. In this work we prove the existence of (weak) solutions in the space $H_{0}(\Omega)$ (see Definition 2.5) for the Dirichlet problem

$$
\left\{\begin{array}{l}
L u(x)+\operatorname{div}(\Phi(u(x)))=g(x)-\sum_{j=1}^{n} D_{j} f_{j}(x) \quad \text { on } \Omega \tag{P}\\
u(x)=0 \text { on } \partial \Omega
\end{array}\right.
$$

where L is the partial differential operator

$$
\begin{equation*}
L u(x)=-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x) D_{i} u(x)\right)+b(x) u(x) \tag{1.1}
\end{equation*}
$$

with $D_{j}=\partial / \partial x_{j}$, where Ω is a bounded open set in \mathbb{R}^{n} and we assume that Ω has a Lipschitz boundary $\partial \Omega$ with outward unit normal $\vec{\eta}(x)=$ $\left(\eta_{1}(x), \ldots, \eta_{n}(x)\right)$, the coefficients $a_{i j}$ are measurable, real valued functions, the coefficient matrix $\mathcal{A}=\left(a_{i j}(x)\right)$ is symmetric and satisfies the degenerate ellipticity condition

$$
\begin{equation*}
|\xi|^{2} \omega(x) \leq \sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \leq|\xi|^{2} v(x) \tag{1.2}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{n}$ and a.e. $x \in \Omega, \omega$ and v are weight functions and $\Phi: \mathbb{R} \rightarrow \mathbb{R}^{n}$.

By a weight, we shall mean a locally integrable function ω on \mathbb{R}^{n} such that $\omega(x)>0$ for a.e. $x \in \mathbb{R}^{n}$. Every weight ω gives rise to a measure on the measurable subsets of \mathbb{R}^{n} through integration. This measure will also be denoted by ω. Thus, $\omega(E)=\int_{E} \omega(x) d x$ for measurable sets $E \subset \mathbb{R}^{n}$.

In general, the Sobolev spaces $W^{k, p}(\Omega)$ without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. For degenerate partial differential equations, i.e., equations with various kinds of singularities in the coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [1]-[4] and [7]). The type of the weight depends on the equation.

A class of weights which is particularly well understood is the class of A_{p}-weights (or Muckenhoupt class), introduced by B. Muckenhoupt 11]. These classes have found many applications in harmonic analysis (see [14] and [15]). Another reason for studying A_{p}-weights is the fact that powers of the distance to submanifolds of \mathbb{R}^{n} often belong to A_{p} (see [9]). There are, in fact, many interesting examples of weights (see [7] for p-admissible weights).

Equations like (1.1) have been studied by many authors in the nondegenerate case (i.e. with $\omega(x)=v(x) \equiv 1$) (see e.g. [6], 8] and [12] and the references therein).

Let us briefly describe the content of the paper. In Section 2, we give necessary definitions and basic results. In Section 3, we prove the existence and uniqueness of weak solutions to problem (P).

The following theorem will be proved in Section 3 .
THEOREM 1.1. Let Ω be an open bounded set in \mathbb{R}^{n} with a Lipschitz boundary $\partial \Omega$ and let ω and v be two weights. Suppose that
(H1) $f_{j} / \omega \in L^{p}(\Omega, \omega)(j=1, \ldots, n)$ with $p>n r \geq 2$;
(H2) $g / v \in L^{q}(\Omega, v)$ with $1 / q=1 / p+1 / n r$;
(H3) $(v, \omega) \in A_{r}$ with $1<r<p^{\prime}<n r$ (where $1 / p+1 / p^{\prime}=1$);
(H4) $b(x) \geq 0$ for a.e. $x \in \Omega$ and $b / \omega \in L^{\infty}(\Omega)$;
(H5) $\Phi: \mathbb{R} \rightarrow \mathbb{R}^{n}\left(\Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right)\right)$, with $|\Phi(u)| / \omega \in L^{2}(\Omega, \omega)$ if $u \in H_{0}(\Omega)$ and the functions Φ_{j} are continuous $(j=1, \ldots, n)$.
Then problem (P) has a solution $u \in H_{0}(\Omega)$. Moreover, $u \in L^{\infty}(\Omega)$ with

$$
\begin{equation*}
\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|g / v\|_{L^{q}(\Omega, v)}+\sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p}(\Omega, \omega)}\right) \tag{1.3}
\end{equation*}
$$

where C is a constant independent of u, g, f_{j} and Φ_{j}. If moreover
(H6) $\left|\Phi_{j}\left(u_{1}(x)\right)-\Phi_{j}\left(u_{2}(x)\right)\right| \leq C_{0} v(x)\left|u_{1}(x)-u_{2}(x)\right|$ for all $u_{1}, u_{2} \in$ $H_{0}(\Omega)$, a.e. $x \in \Omega$ and C_{0} is a positive constant,
then problem (P) has a unique solution.

REmark 1.2. The estimate (1.3) is an important ingredient in the proof of the existence of a weak solution to problem (P). Under the assumption $\Phi_{j}=0(j=1, \ldots, n)$ and $\omega=v \equiv 1$ (non-degenerate case), 1.3) is the usual L^{∞}-estimate of Stampacchia (see [8]).

2. Definitions and basic results

Definition 2.1. Let ω be a locally integrable nonnegative function in \mathbb{R}^{n} and assume that $0<\omega(x)<\infty$ almost everywhere. We say that ω belongs to the Muckenhoupt class $A_{p}, 1<p<\infty$, or that ω is an A_{p}-weight, if there is a constant $C=C_{p, \omega}$ such that

$$
\left(\frac{1}{|B|} \int_{B} \omega(x) d x\right)\left(\frac{1}{|B|} \int_{B} \omega^{1 /(1-p)}(x) d x\right)^{p-1} \leq C_{p, \omega}
$$

for all balls $B \subset \mathbb{R}^{n}$, where $|\cdot|$ denotes the n-dimensional Lebesgue measure in \mathbb{R}^{n} (see [5], [7], [15] or [16] for more information about A_{p}-weights).

The union of all Muckenhoupt classes is denoted by

$$
A_{\infty}=\bigcup_{p>1} A_{p}
$$

The weight ω satisfies the doubling condition if there exists a positive constant C such that

$$
\omega(B(x, 2 r)) \leq C \omega(B(x, r))
$$

for every ball $B=B(x, r) \subset \mathbb{R}^{n}$, where $\omega(B)=\int_{B} \omega(x) d x$. If $\omega \in A_{p}$, then ω is doubling (see [7, Corollary 15.7]).

As an example the function $\omega(x)=|x|^{\alpha}, x \in \mathbb{R}^{n}$, is in A_{p} if and only if $-n<\alpha<n(p-1)$ (see [15, Corollary 4.4, Chapter IX]). If $\varphi \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ then $\omega(x)=e^{\alpha \varphi(x)} \in A_{2}$ for some $\alpha>0$ (see [14]).

Definition 2.2. Let ω be a weight, and let $\Omega \subset \mathbb{R}^{n}$ be open. For $0<$ $p<\infty$, we define $L^{p}(\Omega, \omega)$ as the set of measurable functions f on Ω such that

$$
\|f\|_{L^{p}(\Omega, \omega)}=\left(\int_{\Omega}|f(x)|^{p} \omega(x) d x\right)^{1 / p}<\infty
$$

REMARK 2.3. If $\omega \in A_{p}, 1<p<\infty$, then since $\omega^{-1 /(p-1)}$ is locally integrable, we have $L^{p}(\Omega, \omega) \subset L_{\text {loc }}^{1}(\Omega)$ for every open set Ω (see [16, Remark 1.2.4]). It thus makes sense to talk about weak derivatives of functions in $L^{p}(\Omega, \omega)$. We also know that the dual space of $L^{p}(\Omega, \omega)$ is $L^{p^{\prime}}\left(\Omega, \omega^{1-p^{\prime}}\right)$.

Definition 2.4. Let $\Omega \subset \mathbb{R}^{n}$ be open, $1<p<\infty$, and let ω be an A_{p}-weight, $1<p<\infty$. We define the weighted Sobolev space $W^{1, p}(\Omega, \omega)$ as the set of functions $u \in L^{p}(\Omega, \omega)$ with weak derivatives $D_{j} u \in L^{p}(\Omega, \omega)$
for $j=1, \ldots, n$. The norm of u in $W^{1, p}(\Omega, \omega)$ is defined by

$$
\begin{equation*}
\|u\|_{W^{1, p}(\Omega, \omega)}=\left(\int_{\Omega}|u(x)|^{p} \omega(x) d x+\sum_{j=1}^{n} \int_{\Omega}\left|D_{j} u(x)\right|^{p} \omega(x) d x\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

The space $W_{0}^{1, p}(\Omega, \omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{W_{0}^{1, p}(\Omega, \omega)}=\left(\sum_{j=1}^{n} \int_{\Omega}\left|D_{j} u(x)\right|^{p} \omega(x) d x\right)^{1 / p}
$$

The dual space of $W_{0}^{1, p}(\Omega, \omega)$ is $W^{-1, p^{\prime}}(\Omega, \omega)$ (see [3]), where

$$
W^{-1, p^{\prime}}(\Omega, \omega)
$$

$$
=\left\{T=f_{0}-\operatorname{div} f: f=\left(f_{1}, \ldots, f_{n}\right), f_{j} / \omega \in L^{p^{\prime}}(\Omega, \omega), j=0, \ldots, n\right\}
$$

It is evident that the weights ω which satisfy $0<c_{1} \leq \omega(x) \leq c_{2}$ for $x \in \Omega\left(c_{1}\right.$ and c_{2} positive constants) give nothing new (the space $W_{0}^{\overline{1, p}}(\Omega, \omega)$ is then identical with the classical Sobolev space $\left.W_{0}^{1, p}(\Omega)\right)$. Consequently, we shall be interested above all in weight functions ω which either vanish somewhere in $\bar{\Omega}$ or increase to infinity (or both). For more information about weighted Sobolev spaces see [7], [9], [15] and [16].

Definition 2.5. Let $\Omega \subset \mathbb{R}^{n}$ be open. The space $H(\Omega)$ is defined to be the completion of $C^{\infty}(\bar{\Omega})$ with respect to the norm

$$
\begin{equation*}
\|u\|_{H(\Omega)}=\left(\int_{\Omega} u^{2} v d x+\int_{\Omega}\langle\mathcal{A} \nabla u, \nabla u\rangle d x\right)^{1 / 2} \tag{2.2}
\end{equation*}
$$

where $\mathcal{A}=\left(a_{i j}(x)\right)$ is the coefficient matrix of the operator L defined in (1.1), $\langle\cdot, \cdot\rangle$ denotes the usual inner product in \mathbb{R}^{n}, and the symbol ∇ indicates the gradient. The space $H_{0}(\Omega)$ is defined to be the completion of $C_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\begin{equation*}
\|u\|_{H_{0}(\Omega)}=\left(\int_{\Omega}\langle\mathcal{A} \nabla u, \nabla u\rangle d x\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

The spaces $H(\Omega)$ and $H_{0}(\Omega)$ are Hilbert spaces. For more information about them see [2].

REMARK 2.6. Using condition 1.2 we obtain

$$
\int_{\Omega}|\nabla u|^{2} \omega d x \leq \int_{\Omega}\langle\mathcal{A} \nabla u, \nabla u\rangle d x \leq \int_{\Omega}|\nabla u|^{2} v d x
$$

and $W_{0}^{1,2}(\Omega, v) \subset H_{0}(\Omega) \subset W_{0}^{1,2}(\Omega, \omega),\|\cdot\|_{W_{0}^{1,2}(\Omega, \omega)} \leq\|\cdot\|_{H_{0}(\Omega)} \leq$ $\|\cdot\|_{W_{0}^{1,2}(\Omega, v)}$.

Definition 2.7. We shall say that a pair of weights (v, ω) satisfies the condition $A_{r}, 1<r<\infty$, if there is a constant $C>0$ such that

$$
\left(\frac{1}{|B|} \int_{B} v(x) d x\right)\left(\frac{1}{|B|} \int_{B} \omega^{1 /(1-r)}(x) d x\right)^{r-1} \leq C
$$

for all balls $B \subset \mathbb{R}^{n}$. The smallest such C will be called the A_{r}-constant for the pair (v, ω).

REMARK 2.8. If $(v, \omega) \in A_{r}$ and $\omega \leq v$ then $v \in A_{r}$ and $\omega \in A_{r}$.
In this work we use the following six results.
Theorem 2.9 (The Weighted Sobolev Inequality). Let Ω be an open bounded set in $\mathbb{R}^{n}(n \geq 2)$ and $\omega \in A_{p}(1<p<\infty)$. There exist positive constants C_{Ω} and δ such that for all $u \in W_{0}^{1, p}(\Omega, \omega)$ and all θ satisfying $1 \leq \theta \leq n /(n-1)+\delta$,

$$
\begin{equation*}
\|u\|_{L^{p \theta}(\Omega, \omega)} \leq C_{\Omega}\|\nabla u\|_{L^{p}(\Omega, \omega)} . \tag{2.4}
\end{equation*}
$$

Proof. For $u \in C_{0}^{\infty}(\Omega)$ the inequality is proved in [3, Theorem 1.3]. To extend the estimate (2.4) to arbitrary $u \in W_{0}^{1, p}(\Omega, \omega)$, we let $\left\{u_{m}\right\}$ be a sequence of $C_{0}^{\infty}(\Omega)$ functions tending to u in $W_{0}^{1, p}(\Omega, \omega)$. Applying (2.4) to the differences $u_{m_{1}}-u_{m_{2}}$, we see that $\left\{u_{m}\right\}$ will be a Cauchy sequence in $L^{\theta p}(\Omega, \omega)$. Consequently, the limit functions u will lie in the desired spaces and satisfy 2.4 .

Theorem 2.10 (The Hardy Inequality; see [10, Theorem 15.8]). Let $1<$ $r<p_{1}<n r, 1 / p_{2}=1 / p_{1}-1 / n r$ and $(v, \omega) \in A_{r}$. Then there exists a constant $C_{\Omega}>0$ such that

$$
\left(\int_{\Omega}|u(x)|^{p_{2}} v d x\right)^{1 / p_{2}} \leq C_{\Omega}\left(\int_{\Omega}|\nabla u(x)|^{p_{1}} \omega d x\right)^{1 / p_{1}}
$$

for every $u \in C_{0}^{1}(\Omega)$.
The following lemma is due to Stampacchia (see [13, Lemme 4.1]).
Lemma 2.11. Let α, β, C be positive real constants, where $\beta>1$. Let $\phi:[0, \infty) \rightarrow \mathbb{R}_{+}$be a decreasing function such that

$$
\phi(h) \leq \frac{C}{(h-k)^{\alpha}}[\phi(k)]^{\beta} \quad \text { for all } h>k .
$$

Then $\phi(d)=0$, where $d^{\alpha}=C[\phi(0)]^{\beta-1} 2^{\alpha \beta /(\beta-1)}$.
Lemma 2.12 (see [7, Theorem 15.5]). If $\omega \in A_{p}$, then

$$
\left(\frac{|E|}{|B|}\right)^{p} \leq C_{p, \omega} \frac{\omega(E)}{\omega(B)}
$$

whenever B is a ball in \mathbb{R}^{n} and E is a measurable subset of B.

By Lemma 2.12, if $\omega(E)=0$ then $|E|=0$.
Lemma 2.13 (see [10, Lemma 15.5]). Let $(v, \omega) \in A_{r}$. Then $(v, \omega) \in A_{p}$ for every $p \in(r, \infty)$.

ThEOREM 2.14. If $\omega \in A_{2}$ then the embedding $W_{0}^{1,2}(\Omega, \omega) \hookrightarrow L^{2}(\Omega, \omega)$ is compact.

Proof. The proof follows the lines of the proof of [4, Theorem 4.6].
REMARK 2.15. (a) Since $p>n r \geq 2$ and $r<p^{\prime}<2$, if $\omega \in A_{r}$ then $\omega \in A_{p}$ and $\omega \in A_{2}$ (by Lemma 2.13 and Remark 2.8) and we also have $L^{p}(\Omega, \omega) \subset L^{2}(\Omega, \omega) \subset L^{p^{\prime}}(\Omega, \omega)($ since $\omega(\Omega)<\infty)$ and $\|\cdot\|_{L^{p^{\prime}}(\Omega, \omega)} \leq$ $C_{1}\|\cdot\|_{L^{2}(\Omega, \omega)} \leq C_{2}\|\cdot\|_{L^{p}(\Omega, \omega)}$.
(b) Since $1 / q=1 / p+1 / n r$ we have $1 / q^{\prime}=1 / p^{\prime}-1 / n r$. By (H3) we have $1<r<p^{\prime}<n r$ and using Theorem 2.10 and 1.2 we obtain

$$
\begin{aligned}
\|\varphi\|_{L^{q^{\prime}}(\Omega, v)} & \leq C_{\Omega}\|\nabla \varphi\|_{L^{p^{\prime}}(\Omega, \omega)} \leq C_{\Omega} C_{1}\|\nabla \varphi\|_{L^{2}(\Omega, \omega)} \\
& \leq C_{\Omega} C_{1}\left(\int_{\Omega}\langle\mathcal{A} \nabla \varphi, \nabla \varphi\rangle d x\right)^{1 / 2}=C_{3}\|\varphi\|_{H_{0}(\Omega)}
\end{aligned}
$$

(c) Since $\omega \in A_{2}$, by Theorem 2.9 (with $\theta=1$) and 1.2 we obtain

$$
\|u\|_{L^{2}(\Omega, \omega)} \leq C_{\Omega}\|\nabla u\|_{L^{2}(\Omega, \omega)} \leq C_{\Omega}\|u\|_{H_{0}(\Omega)}
$$

Definition 2.16. We say that an element $u \in H_{0}(\Omega)$ is a (weak) solution of problem (P) if

$$
\begin{array}{r}
\int_{\Omega} a_{i j}(x) D_{i} u(x) D_{j} \varphi(x) d x+\int_{\Omega} b(x) u(x) \varphi(x) d x-\int_{\Omega} \Phi_{j}(u(x)) D_{j} \varphi(x) d x \tag{2.5}\\
=\int_{\Omega} g(x) \varphi(x) d x+\sum_{j=1}^{n} \int_{\Omega} f_{j}(x) D_{j} \varphi(x) d x
\end{array}
$$

for all $\varphi \in H_{0}(\Omega)$.
Remark 2.17. By 1.2 , (H1)-(H5), Theorem 2.9 (with $\theta=1$), and Remark 2.15(a), (b) we have

$$
\begin{equation*}
\left|\int_{\Omega} a_{i, j}(x) D_{i} u D_{j} \varphi d x\right| \leq\|u\|_{H_{0}(\Omega)}\|\varphi\|_{H_{0}(\Omega)} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left|\int_{\Omega} \Phi_{j}(u(x)) D_{j} \varphi d x\right| \leq\||\Phi(u)| / \omega\|_{L^{2}(\Omega, \omega)}\|\varphi\|_{H_{0}(\Omega)} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\left|\int_{\Omega} b(x) u \varphi d x\right| \leq C_{\Omega}^{2}\|b / \omega\|_{L^{\infty}(\Omega)}\|u\|_{H_{0}(\Omega)}\|\varphi\|_{H_{0}(\Omega)} \tag{iii}
\end{equation*}
$$

(iv) $\left|\int_{\Omega} g \varphi d x+\sum_{j=1}^{n} \int_{\Omega} f_{j} D_{j} \varphi d x\right| \leq \int_{\Omega} \frac{|g|}{v}|\varphi| v d x+\sum_{j=1}^{n} \int_{\Omega} \frac{\left|f_{j}\right|}{\omega}\left|D_{j} \varphi\right| \omega$

$$
\begin{aligned}
& \leq\|g / v\|_{L^{q}(\Omega, v)}\|\varphi\|_{L^{q^{\prime}}(\Omega, v)}+\sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p}(\Omega, \omega)}\|\nabla \varphi\|_{L^{p^{\prime}}(\Omega, \omega)} \\
& \leq\left(C_{\Omega} C_{1}\|g / v\|_{L^{q}(\Omega, v)}+C_{1} \sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p}(\Omega, \omega)}\right)\|\varphi\|_{H_{0}(\Omega)} \\
& \leq C_{4}\left(\|g / v\|_{L^{q}(\Omega, v)}+\sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p}(\Omega, \omega)}\right)\|\varphi\|_{H_{0}(\Omega)}
\end{aligned}
$$

where $C_{4}=\max \left\{C_{1}, C_{1} C_{\Omega}\right\}$.

3. Proof of Theorem 1.1

Step 1: Proof of (1.3). Assuming problem (P) has a solution $u \in H_{0}(\Omega)$, set $\Omega(k)=\{x \in \Omega:|u(x)|>k\}$ for $k \geq 0$. We choose for φ in (2.5) the function

$$
\begin{equation*}
\tilde{\varphi}=(u-k)^{+}+(u+k)^{-} \tag{3.1}
\end{equation*}
$$

where $(u-k)^{+}=\max \{u-k, 0\}$ and $(u+k)^{-}=\min \{u+k, 0\}$. The functions $(u-k)^{+},(u+k)^{-}$and $\tilde{\varphi}$ are in $H_{0}(\Omega)$, and

$$
D_{i}(u-k)^{+}=\chi_{\{u>k\}} D_{i} u \quad \text { and } \quad D_{i}(u+k)^{-}=\chi_{\{u<-k\}} D_{i} u
$$

where χ_{E} denotes the characteristic function of a measurable set $E \subset \mathbb{R}^{n}$. Moreover, if we set $\psi_{j}(s)=\int_{0}^{s} \Phi_{j}(t+k) d t$, by the divergence theorem we have

$$
\begin{align*}
\int_{\Omega} \Phi_{j}(u) D_{j}(u-k)^{+} d x & =\int_{\Omega} D_{j} \psi_{j}\left((u-k)^{+}\right) d x \tag{3.2}\\
& =\int_{\partial \Omega} \psi_{j}\left((u-k)^{+}\right) \eta_{j} d \sigma(x)=0
\end{align*}
$$

since $\psi_{j}(0)=0$ and $(u-k)^{+}=0$ on $\partial \Omega$. Analogously, we deduce that $\int_{\Omega} \Phi_{j}(u) D_{j}(u+k)^{-} d x=0$. Moreover, on $u>k>0, u$ is positive and on $u<-k<0, u$ is negative. So we have

$$
\begin{align*}
& \int_{\Omega} b(x) u(x) \tilde{\varphi}(x) d x \tag{3.3}\\
& \quad=\int_{\Omega} b(x) u(x)(u(x)-k)^{+} d x+\int_{\Omega} b(x) u(x)(u(x)+k)^{-} d x \geq 0 .
\end{align*}
$$

Using (3.1)-(3.3) and (1.2), we obtain

$$
\begin{aligned}
\int_{\Omega}|\nabla \tilde{\varphi}|^{2} \omega d x & \leq \int_{\Omega} a_{i j} D_{i} \tilde{\varphi} D_{j} \tilde{\varphi} d x \\
& \leq \int_{\Omega} a_{i j} D_{i} u D_{j} \tilde{\varphi} d x+\int_{\Omega} b u \tilde{\varphi} d x-\int_{\Omega} \Phi_{j}(u) D_{j} \tilde{\varphi} d x \\
& =\int_{\Omega} g \tilde{\varphi} d x+\sum_{j=1}^{n} \int_{\Omega} f_{j} D_{j} \tilde{\varphi} d x
\end{aligned}
$$

Hence, by the Hölder inequality, we obtain

$$
\begin{equation*}
\|\nabla \tilde{\varphi}\|_{L^{2}(\Omega, \omega)}^{2} \leq\left(\left\|\frac{g}{v}\right\|_{L^{q}(\Omega, v)}\|\tilde{\varphi}\|_{L^{q^{\prime}}(\Omega, v)}+\sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{p}(\Omega, \omega)}\|\nabla \tilde{\varphi}\|_{L^{p^{\prime}}(\Omega, \omega)}\right) \tag{3.4}
\end{equation*}
$$

Since $p>n r \geq 2$ and $1<r<p^{\prime}<2$, if $(v, \omega) \in A_{r}$ and $\omega \leq v$ then $\omega \in A_{r}$ (see Remark 2.8), $\omega \in A_{p}$ and $\omega \in A_{2}$ (see Lemma 2.13), and since $1 / q^{\prime}=1 / p^{\prime}-1 / n r$, by Theorem 2.10 we have

$$
\begin{equation*}
\|\tilde{\varphi}\|_{L^{q^{\prime}}(\Omega, v)} \leq C_{\Omega}\|\nabla \tilde{\varphi}\|_{L^{p^{\prime}}(\Omega, \omega)} \tag{3.5}
\end{equation*}
$$

Hence, by (3.4), we get

$$
\begin{equation*}
\|\nabla \tilde{\varphi}\|_{L^{2}(\Omega, \omega)}^{2} \leq C_{5}\left(\left\|\frac{g}{v}\right\|_{L^{q}(\Omega, v)}+\sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{p}(\Omega, \omega)}\right)\|\nabla \tilde{\varphi}\|_{L^{p^{\prime}}(\Omega, \omega)} \tag{3.6}
\end{equation*}
$$

Now let us remark that $\tilde{\varphi}=0$ outside $\Omega(k)$, so by Hölder's inequality we obtain

$$
\begin{align*}
\|\nabla \tilde{\varphi}\|_{L^{p^{\prime}}(\Omega, \omega)}^{p^{\prime}} & =\int_{\Omega}|\nabla \tilde{\varphi}|^{p^{\prime}} \omega d x=\int_{\Omega(k)}|\nabla \tilde{\varphi}|^{p^{\prime}} \omega d x \tag{3.7}\\
& \leq\left(\int_{\Omega(k)}|\nabla \tilde{\varphi}|^{2} \omega d x\right)^{p^{\prime} / 2}\left(\int_{\Omega(k)} \omega d x\right)^{\left(2-p^{\prime}\right) / 2} \\
& =\|\nabla \tilde{\varphi}\|_{L^{2}(\Omega, \omega)}^{p^{\prime}}[\omega(\Omega(k))]^{\left(2-p^{\prime}\right) / 2}
\end{align*}
$$

Hence, we obtain

$$
\begin{equation*}
\|\nabla \tilde{\varphi}\|_{L^{p^{\prime}}(\Omega, \omega)}^{2} \leq\|\nabla \tilde{\varphi}\|_{L^{2}(\Omega, \omega)}^{2}[\omega(\Omega(k))]^{\left(2-p^{\prime}\right) / p^{\prime}} \tag{3.8}
\end{equation*}
$$

From (3.6) and (3.8), we then deduce
(3.9) $\|\nabla \tilde{\varphi}\|_{L^{p^{\prime}}(\Omega, \omega)} \leq C_{5}\left(\left\|\frac{g}{v}\right\|_{L^{q}(\Omega, v)}+\sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{p}(\Omega, \omega)}\right)[\omega(\Omega(k))]^{\left(2-p^{\prime}\right) / p^{\prime}}$.

If $h>k$ then $\Omega(h) \subset \Omega(k), \tilde{\varphi}= \pm(|u|-k)$ on $\Omega(k)$ and $|\tilde{\varphi}| \geq h-k$ on
$\Omega(h)$ for $h>k$. We obtain (using $\omega \leq v$)

$$
\begin{align*}
(h-k)[\omega(\Omega(h))]^{1 / q^{\prime}} & \leq(h-k)[v(\Omega(h))]^{1 / q^{\prime}} \leq\left(\int_{\Omega(h)}|\tilde{\varphi}|^{q^{\prime}} v d x\right)^{1 / q^{\prime}} \tag{3.10}\\
& \leq\left(\int_{\Omega(k)}|\tilde{\varphi}|^{q^{\prime}} v d x\right)^{1 / q^{\prime}}=\|\tilde{\varphi}\|_{L^{q^{\prime}}(\Omega, v)}
\end{align*}
$$

Using (3.5) and (3.9) we get
(3.11) $\quad(h-k)[\omega(\Omega(h))]^{1 / q^{\prime}} \leq\|\tilde{\varphi}\|_{L^{q^{\prime}}(\Omega, v)} \leq C_{\Omega}\|\nabla \tilde{\varphi}\|_{L^{p^{\prime}}(\Omega, \omega)}$

$$
\leq C_{5} C_{\Omega}\left(\left\|\frac{g}{v}\right\|_{L^{q}(\Omega, v)}+\sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{p}(\Omega, \omega)}\right)[\omega(\Omega(k))]^{\left(2-p^{\prime}\right) / p^{\prime}}
$$

Hence

$$
\begin{align*}
\omega(\Omega(h)) \leq & {\left[C_{6} \frac{\|g / v\|_{L^{q}(\Omega, v)}+\sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p}(\Omega, \omega)}}{h-k}\right]^{q^{\prime}} } \tag{3.12}\\
& \times[\omega(\Omega(k))]^{\left(2-p^{\prime}\right) q^{\prime} / p^{\prime}} .
\end{align*}
$$

Since $p>n r \geq 2$ and $1 / q^{\prime}=1 / p^{\prime}-1 / n r$, we see that $\beta=\left(2-p^{\prime}\right) q^{\prime} / p^{\prime}=$ $(n r p-2 n r) /(n r p-n r-p)>(n r p-n r-p) /(n r p-n r-p)=1$ (since $p>n r \geq 2$ we have $n r p-n r-p>0)$. By Lemma 2.11 applied to $\phi(h)=$ $\omega(\Omega(h))$ we have $\phi(d)=\omega(\Omega(d))=0$ where

$$
d=C_{7}\left(\left\|\frac{g}{v}\right\|_{L^{q}(\Omega, v)}+\sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{p}(\Omega, \omega)}\right)[\varphi(0)]^{\beta-1} 2^{\beta /(\beta-1)} .
$$

(Note that $\phi(0)=\omega(\Omega(0)) \leq \omega(\Omega)<\infty$.) By Lemma 2.12, if $\omega(\Omega(d))=0$ then $|\Omega(d)|=0$. Therefore

$$
\|u\|_{L^{\infty}(\Omega)} \leq C_{8}\left(\left\|\frac{g}{v}\right\|_{L^{q}(\Omega, v)}+\sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{p}(\Omega, \omega)}\right)
$$

Step 2: Proof of existence of a solution. Let us denote

$$
M=C_{8}\left(\left\|\frac{g}{v}\right\|_{L^{q}(\Omega, v)}+\sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{p}(\Omega, \omega)}\right)
$$

and define, for all $j=1, \ldots, n(t \in \mathbb{R})$,

$$
\tilde{\Phi}_{j}(t)= \begin{cases}\Phi_{j}(-M) & \text { if } t<-M \\ \Phi_{j}(t) & \text { if }|t| \leq M \\ \Phi_{j}(M) & \text { if } t>M\end{cases}
$$

By (H5), the $\tilde{\Phi}_{j}$ are bounded. For each $\vartheta \in L^{2}(\Omega, \omega)$, there exists a unique
solution u to the problem

$$
\left\{\begin{array}{l}
u \in H_{0}(\Omega) \tag{P1}\\
\int_{\Omega} a_{i j} D_{i} u D_{j} \varphi d x+\int_{\Omega} b(x) u \varphi d x \\
\quad=\int_{\Omega} \tilde{\Phi}_{j}(\vartheta) D_{j} \varphi d x+\int_{\Omega} g \varphi d x+\sum_{j=1}^{n} \int_{\Omega} f_{j} D_{j} \varphi d x, \quad \forall \varphi \in H_{0}(\Omega)
\end{array}\right.
$$

In fact, we define $\mathcal{B}: H_{0}(\Omega) \times H_{0}(\Omega) \rightarrow \mathbb{R}$ and $\mathcal{T}: H_{0}(\Omega) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
\mathcal{B}(u, \varphi) & =\int_{\Omega} a_{i j} D_{i} u D_{j} \varphi d x+\int_{\Omega} b u \varphi d x \\
\mathcal{T}(\varphi) & =\int_{\Omega} \tilde{\Phi}_{j}(\vartheta) D_{j} \varphi d x+\int_{\Omega} g \varphi d x+\sum_{j=1}^{n} \int_{\Omega} f_{j} D_{j} \varphi d x
\end{aligned}
$$

Then \mathcal{B} is continuous (by $(1.2),(\mathrm{H} 4), \omega \in A_{2}$ and Theorem 2.9 with $\theta=1$):

$$
\begin{aligned}
|\mathcal{B}(u, \varphi)| & \leq \int_{\Omega}|\langle\mathcal{A} \nabla u, \nabla \varphi\rangle| d x+\int_{\Omega} \frac{b(x)}{\omega}|u||\varphi| \omega d x \\
& \leq\left(1+C_{\Omega}^{2}\|b / \omega\|_{L^{\infty}(\Omega)}\right)\|u\|_{H_{0}(\Omega)}\|\varphi\|_{H_{0}(\Omega)}
\end{aligned}
$$

and \mathcal{B} is coercive (using (H4)),

$$
\mathcal{B}(u, u)=\int_{\Omega} a_{i j}(x) D_{i} u D_{j} u d x+\int_{\Omega} b(x) u^{2} d x \geq \int_{\Omega}\langle\mathcal{A} \nabla u, \nabla u\rangle d x=\|u\|_{H_{0}(\Omega)}^{2}
$$

Moreover, since the $\tilde{\Phi}_{j}$ are bounded $\left(\left|\tilde{\Phi}_{j}\right| \leq \tilde{C}, j=1, \ldots, n\right), \mathcal{T}$ is continuous and

$$
|\mathcal{T}(\varphi)|
$$

$$
\leq\left(\tilde{C}\left(\int_{\Omega} \omega^{-1} d x\right)^{1 / 2}+C_{\Omega} C_{1}\left\|\frac{g}{v}\right\|_{L^{q}(\Omega, v)}+C_{1} \sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{p}(\Omega, \omega)}\right)\|\varphi\|_{H_{0}(\Omega)}
$$

Hence, by the Lax-Milgram theorem there is a unique solution $u \in H_{0}(\Omega)$ to $\mathcal{B}(u, \varphi)=\mathcal{T}(\varphi)$ for all $\varphi \in H_{0}(\Omega)$ (that is, u is the unique solution of problem (P1)).

Therefore let us consider the mapping $T: L^{2}(\Omega, \omega) \rightarrow L^{2}(\Omega, \omega)$, defined for $\vartheta \in L^{2}(\Omega, \omega)$ by $T(\vartheta)=u$ where u is the solution of problem (P1). By taking $\varphi=u$ in (P1), we obtain

$$
\begin{aligned}
\int_{\Omega} a_{i j}(x) D_{i} u D_{j} u d x+\int_{\Omega} & b(x) u^{2} d x \\
& =\int_{\Omega} \tilde{\Phi}_{j}(\vartheta) D_{j} u d x+\int_{\Omega} g u d x+\sum_{j=1}^{n} \int_{\Omega} f_{j} D_{j} u d x
\end{aligned}
$$

Using (1.2) and (H4) we have

$$
\begin{equation*}
\|u\|_{H_{0}(\Omega)}^{2}=\int_{\Omega}\langle\mathcal{A} \nabla u, \nabla u\rangle d x \leq \int_{\Omega} a_{i j} D_{i} u D_{j} u d x+\int_{\Omega} b u^{2} d x \tag{3.13}
\end{equation*}
$$

and using the fact that the $\tilde{\Phi}_{j}$ are bounded (i.e., $\left.\left|\tilde{\Phi}_{j}\right| \leq \tilde{C}\right), \omega \in A_{2}\left(\omega^{-1} \in\right.$ $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$), we obtain

$$
\begin{aligned}
& \text { 14) } \quad\left|\int_{\Omega} \tilde{\Phi}_{j}(\vartheta) D_{i} u d x+\int_{\Omega} g u d x+\sum_{j=1}^{n} \int_{\Omega} f_{j} D_{j} u d x\right| \\
& \leq\left(\tilde{C}\left(\int_{\Omega} \omega^{-1} d x\right)^{1 / 2}+C_{\Omega} C_{1}\left\|\frac{g}{v}\right\|_{L^{q}(\Omega, v)}+C_{1} \sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{p}(\Omega, \omega)}\right)\|u\|_{H_{0}(\Omega)} .
\end{aligned}
$$

By (3.13) and (3.14) we obtain

$$
\begin{align*}
\|u\|_{H_{0}(\Omega)} & \leq\left(\tilde{C}\left(\int_{\Omega} \omega^{-1} d x\right)^{1 / 2}+C_{\Omega} C_{1}\left\|\frac{g}{v}\right\|_{L^{q}(\Omega, v)}+C_{1} \sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{p}(\Omega, \omega)}\right) \tag{3.15}\\
& =C_{9}
\end{align*}
$$

where C_{9} is a constant which does not depend on $\vartheta \in L^{2}(\Omega, \omega)$.
By combining this with Remark 2.15(c), we get

$$
\begin{equation*}
\|T(\vartheta)\|_{L^{2}(\Omega, \omega)}=\|u\|_{L^{2}(\Omega, \omega)} \leq C_{\Omega}\|u\|_{H_{0}(\Omega)} \leq C_{\Omega} C_{9}=C_{10} \tag{3.16}
\end{equation*}
$$

Let us denote by $B=B\left(0, C_{10}\right)$ the ball in $L^{2}(\Omega, \omega)$ of center 0 and radius C_{10}. From (3.16) (and Remark $\left.2.15(\mathrm{c})\right)$) we have $T(B) \subset B$. Since $W_{0}^{1,2}(\Omega, \omega)$ is compactly embedded in $L^{2}(\Omega, \omega)$ (by Theorem 2.14 and $H_{0}(\Omega) \subset W_{0}^{1,2}(\Omega, \omega)$, it follows that $T(B)$ is precompact in B.

To prove that T is continuous, let $\left\{\vartheta_{m}\right\}$ be a sequence in $L^{2}(\Omega, \omega)$ such that $\vartheta_{m} \rightarrow \vartheta$. By (3.16) and Theorem 2.14 , it is enough to show that $T(\vartheta)$ is the only limit point of the sequence $T\left(\vartheta_{m}\right)$. Let us assume that a subsequence $T\left(\vartheta_{m_{k}}\right)$ tends to u as $k \rightarrow \infty$. One can extract a subsequence (still denoted by $\vartheta_{m_{k}}$) such that

$$
\begin{array}{ll}
\vartheta_{m_{k}} \rightarrow v & \omega \text {-a.e. in } \Omega, \tag{3.17}\\
u_{m_{k}}=T\left(\vartheta_{m_{k}}\right) \rightharpoonup u & \text { in } H_{0}(\Omega) .
\end{array}
$$

By (3.17) and the Lebesgue dominated convergence theorem we have $\tilde{\Phi}_{j}\left(\vartheta_{m_{k}}\right) \rightarrow \tilde{\Phi}_{j}(\vartheta)$ in $L^{2}(\Omega, \omega)$. Now, passing to the limit in

$$
\begin{aligned}
\int_{\Omega} a_{i j} D_{i} u_{m_{k}} D_{i} \varphi d x+ & \int_{\Omega} b u_{m_{k}} \varphi d x \\
& =\int_{\Omega} \tilde{\Phi}_{j}\left(\vartheta_{m_{k}}\right) D_{j} \varphi d x+\int_{\Omega} g \varphi d x+\sum_{j=1}^{n} \int_{\Omega} f_{j} D_{j} \varphi d x
\end{aligned}
$$

we deduce from (3.17) that

$$
\begin{aligned}
& \int_{\Omega} a_{i j} D_{i} u D_{i} \varphi d x+\int_{\Omega} b u \varphi d x \\
&=\int_{\Omega} \tilde{\Phi}_{j}(\vartheta) D_{j} \varphi d x+\int_{\Omega} g \varphi d x+\sum_{j=1}^{n} \int_{\Omega} f_{j} D_{j} \varphi d x
\end{aligned}
$$

for all $\varphi \in H_{0}(\Omega)$.
Hence, $u=T(\vartheta)$ and T is continuous. Therefore, by the Schauder fixed point theorem (see [5, Theorem 10.1]), T has a fixed point $u \in B$. Such a fixed point is a solution to problem (P) with $\tilde{\Phi}_{j}$ instead of Φ_{j}; but from Step 1 we have $\|u\|_{L^{\infty}(\Omega)} \leq M$ and thus $\tilde{\Phi}_{j}(u)=\Phi_{j}(u)$.

STEP 3: Uniqueness. If u_{1} and u_{2} are two solutions to problem (P), then

$$
\begin{aligned}
\int_{\Omega} a_{i j} D_{i} u_{l} D_{j} \varphi d x+\int_{\Omega} b u_{l} \varphi d x & -\int_{\Omega}\left\langle\Phi\left(u_{l}\right), \nabla \varphi\right\rangle d x \\
& =\int_{\Omega} g \varphi d x+\sum_{j=1}^{n} \int_{\Omega} f_{j} D_{j} \varphi d x \quad(l=1,2)
\end{aligned}
$$

for all $\varphi \in H_{0}(\Omega)$. We obtain

$$
\begin{aligned}
\int_{\Omega} a_{i j}\left\langle\nabla u_{1}-\nabla u_{2}, \nabla \varphi\right\rangle d x+\int_{\Omega} b\left(u_{1}-\right. & \left.u_{2}\right) \varphi d x \\
& -\int_{\Omega}\left\langle\Phi\left(u_{1}\right)-\Phi\left(u_{2}\right), \nabla \varphi\right\rangle d x=0
\end{aligned}
$$

for all $\varphi \in H_{0}(\Omega)$. Then, since $L=-\sum_{i, j=1}^{n} D_{j}\left(a_{i j} D_{i}\right)+b$, using integration by parts we obtain

$$
\begin{equation*}
\int_{\Omega}\left[\left(u_{1}-u_{2}\right) L \varphi-\left\langle\Phi\left(u_{1}\right)-\Phi\left(u_{2}\right), \nabla \varphi\right\rangle\right] d x=0 \tag{3.18}
\end{equation*}
$$

We set

$$
G_{j}= \begin{cases}\frac{\Phi_{j}\left(u_{1}\right)-\Phi_{j}\left(u_{2}\right)}{u_{1}-u_{2}} & \text { if } u_{1} \neq u_{2} \\ 0 & \text { if } u_{1}=u_{2}\end{cases}
$$

By (H6) we have $G_{j} / v \in L^{\infty}(\Omega)(j=1, \ldots, n)$. By (3.18) we obtain

$$
\begin{equation*}
\int_{\Omega}\left(u_{1}-u_{2}\right)\left(L \varphi-G_{j} D_{j} \varphi\right) d x=0, \quad \forall \varphi \in H_{0}(\Omega) \tag{3.19}
\end{equation*}
$$

But, similarly to problem (P1), there exists a unique $\varphi \in H_{0}(\Omega)$ satisfying the equations $L \varphi-G_{j} D_{j} \varphi=\left(u_{1}-u_{2}\right) v$, and for such a $\varphi, 3.19$ becomes

$$
\int_{\Omega}\left(u_{1}-u_{2}\right)^{2} v d x=0
$$

Therefore $u_{1}=u_{2}$.

Example. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$. Consider the weights

$$
\omega(x, y)=\lambda_{1}\left(x^{2}+y^{2}\right)^{-1 / 2}, \quad v(x, y)=\lambda_{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \quad\left(0<\lambda_{1}<\lambda_{2}\right)
$$

$$
\left((v, \omega) \in A_{r}, r=5 / 4, p^{\prime}=3 / 2, p=3, q=15 / 11\right), \text { and the functions }
$$

$$
\Phi: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \Phi(t)=(\cos (t), \sin (t))
$$

$$
g(x, y)=\frac{\arctan \left(1 /\left(x^{2}+y^{2}\right)\right)}{\left(x^{2}+y^{2}\right)^{1 / 2}}, \quad b(x, y)=e^{-\left(x^{2}+y^{2}\right)}
$$

$$
f_{1}(x, y)=\frac{\cos \left(1 /\left(x^{2}+y^{2}\right)\right)}{\left(x^{2}+y^{2}\right)^{1 / 3}}, \quad f_{2}(x, y)=\frac{\sin \left(1 /\left(x^{2}+y^{2}\right)\right)}{\left(x^{2}+y^{2}\right)^{1 / 3}}
$$

Consider the partial differential operator

$$
\begin{aligned}
L u(x, y)= & -\frac{\partial}{\partial x}\left(\lambda_{1}\left(x^{2}+y^{2}\right)^{-1 / 2} \frac{\partial u}{\partial x}\right)-\frac{\partial}{\partial y}\left(\lambda_{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \frac{\partial u}{\partial y}\right) \\
& +b(x, y) u
\end{aligned}
$$

By Theorem 1.1, the problem

$$
\left\{\begin{array}{l}
L u(x, y)+\operatorname{div}(\Phi(u(x, y)))=g(x, y)-\frac{\partial f_{1}}{\partial x}-\frac{\partial f_{2}}{\partial y} \quad \text { on } \Omega \\
u(x)=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

has a unique solution $u \in H_{0}(\Omega)$.

References

[1] A. C. Cavalheiro, An existence theorem of solutions for the Dirichlet problem of some degenerate semilinear elliptic equations, Comm. Appl. Nonlinear Anal. 17 (2010), 101-111.
[2] S. Chanillo and R. L. Wheeden, Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. Partial Differential Equations 11 (1986), 1111-1134.
[3] E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116.
[4] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa 14 (1987), 527-568.
[5] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985.
[6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977.
[7] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, 1993.
[8] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980.
[9] A. Kufner, Weighted Sobolev Spaces, Wiley, 1985.
[10] A. Kufner and B. Opic, Hardy-type Inequalities, Pitman Res. Notes in Math. Ser. 219, Longman Sci. \& Tech., Harlow, 1990.
[11] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[12] A. Porretta, Uniqueness of solutions for some nonlinear Dirichlet problems, Nonlinear Differential Equations Appl. 11 (2004), 407-430.
[13] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Sém. Math. Sup. 16, Presses Univ. de Montréal, Montréal, 1966.
[14] E. Stein, Harmonic Analysis, Princeton Univ. Press, 1993.
[15] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986.
[16] B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Math. 1736, Springer, 2000.

Albo Carlos Cavalheiro
Department of Mathematics
State University of Londrina
Londrina, PR, Brazil, 86057-970
E-mail: accava@gmail.com

Received on 24.9.2013;
revised version on 9.5.2014

