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NEWTON-TYPE ITERATIVE METHODS FOR NONLINEAR

ILL-POSED HAMMERSTEIN-TYPE EQUATIONS

Abstract. We use a combination of modified Newton method and Tikho-
nov regularization to obtain a stable approximate solution for nonlinear ill-
posed Hammerstein-type operator equations KF (x) = y. It is assumed that
the available data is yδ with ‖y − yδ‖ ≤ δ, K : Z → Y is a bounded linear
operator and F : X → Z is a nonlinear operator where X,Y, Z are Hilbert
spaces. Two cases of F are considered: where F ′(x0)

−1 exists (F ′(x0) is the
Fréchet derivative of F at an initial guess x0) and where F is a monotone
operator. The parameter choice using an a priori and an adaptive choice
under a general source condition are of optimal order. The computational
results provided confirm the reliability and effectiveness of our method.

1. Introduction. This paper is devoted to nonlinear ill-posed Hammer-
stein-type operator equations. Recall that [13,14,16,17] an equation

(1.1) (KF )x = y

is called a nonlinear ill-posed Hammerstein-type operator equation. Here F :
D(F ) ⊆ X → Z, is a nonlinear operator, K : Z → Y is a bounded linear
operator and X,Z, Y are Hilbert spaces with corresponding inner product
〈· , ·〉X , 〈· , ·〉Z , 〈· , ·〉Y , and norm ‖ · ‖X , ‖ · ‖Z , ‖ · ‖Y respectively. A typical
example of a Hammerstein-type operator is the nonlinear integral operator

(Ax)(t) :=

1�

0

k(s, t)f(s, x(s)) ds

where k(· , ·) ∈ L2([0, 1]× [0, 1]), x ∈ L2[0, 1] and t ∈ [0, 1].
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The above integral operator A admits a representation of the form A =
KF where K : L2[0, 1] → L2[0, 1] is a linear integral operator with kernel
k(t, s) defined as

Kx(t) =

1�

0

k(t, s)x(s) ds

and F : D(F ) ⊆ L2[0, 1] → L2[0, 1] is a nonlinear superposition operator
(cf. [24]) defined as

(1.2) Fx(s) = f(s, x(s)).

The third author and his collaborators [13,14,16,17] studied ill-posed Ham-
merstein-type equations extensively under some assumptions on the Fréchet
derivative of F. Precisely, in [13, 17], it is assumed that F ′(x0)

−1 exists
and in [16] it is assumed that F ′(x)−1 exists for all x in a ball of radius r
around x0.

Note that if the function f in (1.2) is differentiable with respect to the
second variable and ∂2f(t, x(t)) ≥ κ1 for all x ∈ Br(x0) and t ∈ [0, 1], then
F ′(u)−1 exists and is a bounded operator for all u ∈ Br(x0) (see [17, Remark
2.1]); here ∂2f(t, s) represents the partial derivative of f with respect to the
second variable.

Throughout this paper it is assumed that the available data is yδ with

‖y − yδ‖Y ≤ δ,
and hence one has to consider the equation

(1.3) (KF )x = yδ

instead of (1.1). Observe that the solution x of (1.3) can be obtained by
solving

(1.4) Kz = yδ

for z and then solving the nonlinear problem

(1.5) F (x) = z.

In [16], to solve (1.5), George and Kunhanandan considered the sequence
defined iteratively by

xδn+1,α = xδn,α − F ′(xδn,α)−1(F (xδn,α)− zδα)

where xδ0,α := x0 and

(1.6) zδα = (K∗K + αI)−1K∗(yδ −KF (x0)) + F (x0),

and obtained local quadratic convergence.
Recall that a sequence (xn) in X with limxn = x∗ is said to be convergent

of order p > 1 if there exist positive reals c1, c2 such that for all n ∈ N
‖xn − x∗‖X ≤ c1e−c2p

n
.



Newton-type iterative methods 109

If the sequence (xn) has the property that ‖xn − x∗‖X ≤ c1q
n, 0 < q < 1,

then (xn) is said to be linearly convergent. For an extensive discussion of
convergence rate see Kelley [23].

In [17], George and Nair studied the modified Lavrent’ev regularization

zδα = (K + αI)−1(yδ −KF (x0))

to obtain an approximate solution of (1.4), and introduced modified New-
ton’s iteration

xδn,α = xδn−1,α − F ′(x0)−1(F (xδn−1,α)− F (x0)− zδα)

to solve (1.5) and obtained local linear convergence. In fact in [16] and [17],
a solution x̂ of (1.1) is called an x0-minimum norm solution if

(1.7) ‖F (x̂)−F (x0)‖Z := min{‖F (x)−F (x0)‖Z : KF (x) = y, x ∈ D(F )}.

We assume throughout that the solution x̂ satisfies (1.7). In [13, 14, 16, 17],
it is assumed that the ill-posedness of (1.1) is due to the nonclosedness of
the operator K. In this paper we consider two cases:

Case (1): F ′(x0)
−1 exists and is a bounded operator, i.e., (1.5) is regu-

lar.

Case (2): F is monotone [26, 31], Z = X is a real Hilbert space and
F ′(x0)

−1 does not exist, i.e., (1.5) is ill-posed.

The case when F is not monotone and F ′(x0)
−1 does not exist is the

subject matter of the forthcoming paper.

One of the advantages of (approximately) solving (1.4) and (1.5) to ob-
tain an approximate solution for (1.3) is that one can use any regularization
method [8, 22] for linear ill-posed equations for solving (1.4), and any it-
erative method [10, 12] for solving (1.5). In fact in this paper we consider
Tikhonov regularization [11,13,15,16,20] to approximately solve (1.4) and we
consider a modified two-step Newton method [1,6,7,9,21,25] to solve (1.5).
Note that the regularization parameter α is chosen according to the adap-
tive method considered by Pereverzev and Schock [28] for linear ill-posed
operator equations and the same parameter α is used to solve the nonlin-
ear operator equation (1.5), so the choice of the regularization parameter
does not depend on the nonlinear operator F ; this is another advantage over
treating (1.3) as a single nonlinear operator equation.

This paper is organized as follows. Preparatory results are given in Sec-
tion 2. Section 3 contains the proposed iterative method for Case (1) and
Case (2). Section 4 deals with the algorithm implementing the proposed
method. Numerical examples are given in Section 5. Finally the paper ends
with some conclusions in Section 6.
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2. Preparatory results. In this section we consider the Tikhonov reg-
ularized solution zδα defined in (1.6) and obtain a priori and a posteriori
error estimates for ‖F (x̂) − zδα‖Z . The following assumption is required to
obtain the error estimate.

Assumption 2.1. There exists a continuous, strictly increasing function
ϕ : (0, a]→ (0,∞) with a ≥ ‖K∗K‖Y→X satisfying

• limλ→0 ϕ(λ) = 0,

• sup
λ≥0

αϕ(λ)

λ+ α
≤ ϕ(α) for all λ ∈ (0, a], and

• there exists v ∈ X with ‖v‖X ≤ 1 such that

F (x̂)− F (x0) = ϕ(K∗K)v.

Theorem 2.2 (see [16, (4.3)]). Let zδα be as in (1.6) and suppose As-
sumption 2.1 holds. Then

(2.1) ‖F (x̂)− zδα‖Z ≤ ϕ(α) +
δ√
α
.

2.1. A priori choice of the parameter. Note that the bound ϕ(α) +
δ/
√
α in (2.1) is of optimal order for the choice α := αδ which satisfies

ϕ(αδ) = δ/
√
αδ. Let ψ(λ) := λ

√
ϕ−1(λ), 0 < λ ≤ ‖K‖2Y . Then δ =√

αδ ϕ(αδ) = ψ(ϕ(αδ)) and

αδ = ϕ−1(ψ−1(δ)).

So the relation (2.1) leads to ‖F (x̂)− zδα‖Z ≤ 2ψ−1(δ).

2.2. An adaptive choice of the parameter. In this paper, we pro-
pose choosing the parameter α according to the adaptive choice established
by Pereverzev and Shock [28] for ill-posed problems. We denote by DM the
set of possible values of the parameter α,

DM = {αi = α0µ
2i : i = 0, 1, . . . ,M}, µ > 1.

Then the adaptive choice of a numerical value k for the parameter α uses
the rule

(2.2) k := max{i : αi ∈ D+
M}

where D+
M = {αi ∈ DM : ‖zδαi − z

δ
αj‖Z ≤ 4δ/

√
αj , j = 0, 1, . . . , i− 1}. Let

(2.3) l := max{i : ϕ(αi) ≤ δ/
√
αi}.

We will use the following theorem from [16] for our error analysis.

Theorem 2.3 (cf. [16, Theorem 4.3]). Let l be as in (2.3), k be as in
(2.2) and zδαk be as in (1.6) with α = αk. Then l ≤ k and

‖F (x̂)− zδαk‖Z ≤
(

2 +
4µ

µ− 1

)
µψ−1(δ).
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3. Convergence analysis. Throughout this paper we assume that
the operator F has a uniformly bounded Fréchet derivative F ′(·) for all
x ∈ D(F ). In the earlier papers [16, 18, 19] the authors used the following
assumption:

Assumption 3.1 (cf. [30, Assumption 3]). There exists a constant
K0 ≥ 0 such that for every x, u ∈ Br(x0) ∪ Br(x̂) ⊆ D(F ) and v ∈ X
there exists an element Φ(x, u, v) ∈ X such that

[F ′(x)− F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖X ≤ K0‖v‖X‖x− u‖X .

The hypotheses of Assumption 3.1 may not hold or may be very time-
consuming or impossible to verify in general. In particular, just as for well-
posed nonlinear equations, the computation of the Lipschitz constant K0,
even if this constant exists, is very difficult. Moreover, there are classes of
operators for which Assumption 3.1 is not satisfied but the iterative method
converges.

In the present paper, we extend the applicability of the Newton-type
iterative method under less computational cost. We achieve this under the
following weaker assumption:

Assumption 3.2. Let x0 ∈ X. There exists a constant k0 such that for
every u ∈ Br(x0) ⊆ D(F ) and v ∈ X, there exists Φ0(x0, u, v) ∈ X satisfying

[F ′(x0)− F ′(u)]v = F ′(x0)Φ0(x0, u, v),

‖Φ(x0, u, v)‖X ≤ k0‖v‖X‖x0 − u‖X .

Note that

k0 ≤ K0

in general and K0/k0 can be arbitrarily large. The advantages of the new
approach are:

(1) Assumption 3.2 is weaker than Assumption 3.1.
(2) The computational cost of finding the constant k0 is less than that

for the constant K0, even when K0 = k0.
(3) The sufficient convergence criteria are weaker.
(4) The computable error bounds on the distances involved (includ-

ing k0) are less costly and more precise than the old ones (includ-
ing K0).

(5) The information on the location of the solution is more precise.
(6) The convergence domain of the iterative method is larger.

These advantages are also important in computations since they provide
under less computational cost a wider choice of initial guesses for the itera-
tive method and the computation of fewer iterates to achieve a desired error
tolerance. Numerical examples for (1)–(6) are presented in Section 4.
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3.1. Iterative method for Case (1). In this subsection for an initial
guess x0 ∈ X, we consider the sequence vδn,αk , defined iteratively by

vδn,αk = vδn,αk − F
′(x0)

−1(F (vδn,αk)− zδαk)

where vδ0,αk = x0, to obtain an approximation xδαk of x such that F (x) = zδαk .
Let

yδn,αk = vδ2n−1,αk ,(3.1)

xδn+1,αk
= vδ2n,αk ,(3.2)

for n > 0. We will use the following notations:

M ≥ ‖F ′(x0)‖X→Z ,
β := ‖F ′(x0)−1‖Z→X ,

k0 <
1

4
min

{
1,

1

β

}
,

δ0 <

√
α0

4k0β
,

ρ :=
1

M

(
1

4k0β
− δ0√

α0

)
,

γρ := β

[
Mρ+

δ0√
α0

]
,

and

(3.3) eδn,αk := ‖yδn,αk − x
δ
n,αk
‖X , ∀n ≥ 0.

For convenience, we write xn, yn and en for xδn,αk , y
δ
n,αk

and eδn,αk respec-
tively.

Further we define

(3.4) q := k0r, r ∈ (r1, r2)

where

r1 =
1−

√
1− 4k0γρ

2k0
, r2 = min

{
1

k0
,
1 +

√
1− 4k0γρ

2k0

}
.

Note that r is well defined because γρ ≤ 1/(4k0). We will use the relation
e0 ≤ γρ, which can be seen as follows:

e0 = ‖y0 − x0‖X = ‖F ′(x0)−1(F (x0)− zδαk)‖X
≤ ‖F ′(x0)−1‖Z→X‖(F (x0)− zδαk)‖Z
≤ β‖F (x0)− zαk + zαk − z

δ
αk
‖Z

≤ β[‖F (x0)− F (x̂)‖Z + ‖zαk − z
δ
αk
‖Z ]

≤ β[Mρ+ δ/
√
α] ≤ β[Mρ+ δ0/

√
α0] = γρ.
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Theorem 3.3. Let en, q be as in (3.3), (3.4), and xn, yn be as in (3.2),
(3.1) with δ ∈ (0, δ0]. Then by Assumption 3.2 and Theorem 2.3, xn, yn ∈
Br(x0) and the following estimates hold for all n ≥ 0:

(a) ‖xn+1 − yn‖X ≤ q‖yn − xn‖X ,
(b) ‖yn+1 − xn+1‖X ≤ q2‖yn − xn‖X ,
(c) en ≤ q2nγρ.

Proof. Suppose xn, yn ∈ Br(x0). Then

xn+1 − yn = yn − xn − F ′(x0)−1(F (yn)− F (xn))

= F ′(x0)
−1[F ′(x0)(yn − xn)− (F (yn)− F (xn))]

= F ′(x0)
−1

1�

0

[F ′(x0)− F ′(xn + t(yn − xn))](yn − xn) dt,

and hence by Assumption 3.2, we have

‖xn+1 − yn‖X ≤ k0r‖yn − xn‖X ≤ q‖yn − xn‖X .

This proves (a).

To prove (b) we observe that

en+1 = ‖yn+1 − xn+1‖X = ‖xn+1 − yn − F ′(x0)−1(F (xn+1)− F (yn))‖X

=
∥∥∥F ′(x0)−1 1�

0

[F ′(x0)− F ′(yn + t(xn+1 − yn))] dt (xn+1 − yn)
∥∥∥
X

≤ k0r‖yn − xn+1‖X ≤ q2‖xn − yn‖X .

The last but one step follows from Assumption 3.2, and the last step follows
from (a). This completes the proof of (b), and (c) follows from (b).

Now we shall show by induction that xn, yn ∈ Br(x0). For n = 1,

x1 − y0 = y0 − x0 − F ′(x0)−1(F (y0)− F (x0))

= F ′(x0)
−1[F ′(x0)(y0 − x0)− (F (y0)− F (x0))]

= F ′(x0)
−1

1�

0

[F ′(x0)− F ′(x0 + t(y0 − x0))](y0 − x0) dt,

and hence by Assumption 3.2, we have

(3.5) ‖x1 − y0‖X ≤
k0
2
‖y0 − x0‖2X ≤ k0re0.

So by the triangle inequality and (3.5)

‖x1 − x0‖X ≤ ‖x1 − y0‖X + ‖y0 − x0‖X
≤ (1 + q)e0 ≤

e0
1− q

≤ γρ
1− q

≤ r,
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i.e., x1 ∈ Br(x0). Observe that

‖y1 − x1‖X = ‖x1 − y0 − F ′(x0)−1(F (x1)− F (y0))‖X
≤ k0r‖x1 − y0‖X ,

and hence by (3.5),

(3.6) ‖y1 − x1‖X ≤ q2e0.

Therefore by (3.4), (3.6) and the triangle inequality,

‖y1 − x0‖X ≤ ‖y1 − x1‖X + ‖x1 − x0‖X
≤ (1 + q + q2)e0

≤ e0
1− q

≤ γρ
1− q

≤ r,

i.e., y1 ∈ Br(x0). Suppose xm, ym ∈ Br(x0). Then

‖xm+1 − x0‖X ≤ ‖xm+1 − xm‖X + ‖xm − xm−1‖X + · · ·+ ‖x1 − x0‖X
≤ (q + 1)em + (q + 1)em−1 + · · ·+ (q + 1)e0

≤ (q + 1)(em + em−1 + · · ·+ e0)

≤ (q + 1)(q2m + q2(m−1) + · · ·+ 1)e0

≤ (q + 1)
1− q2m+1

1− q2
e0

≤ e0
1− q

≤ γρ
1− q

≤ r,

i.e., xm+1 ∈ Br(x0), and

‖ym+1 − x0‖X ≤ ‖ym+1 − xm+1‖X + ‖xm+1 − x0‖X
≤ q2em + (q + 1)em + (q + 1)em−1 + · · ·+ (q + 1)e0

≤ (q2 + q + 1)em + (q + 1)em−1 + · · ·+ (q + 1)e0

≤ (q2(m+1) + · · ·+ q3 + q2 + q + 1)e0

≤ e0
1− q

≤ γρ
1− q

≤ r,

i.e., ym+1 ∈ Br(x0). Thus by induction, xn, yn ∈ Br(x0). This completes the
proof of the theorem.

The main result of this section is the following theorem:

Theorem 3.4. Let xn and yn be as in (3.2) and (3.1), and suppose the
assumptions of Theorem 3.3 hold. Then (xn) is a Cauchy sequence in Br(x0)
and converges to xδαk ∈ Br(x0). Further F (xδαk) = zδαk and

‖xn − xδαk‖X ≤ Cq
2n where C =

γρ
1− q

.
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Proof. Using the relations (b) and (c) of Theorem 3.3, we obtain

‖xn+m − xn‖X ≤
m−1∑
i=0

‖xn+i+1 − xn+i‖X ≤
m−1∑
i=0

(1 + q)en+i

≤
m−1∑
i=0

(1 + q)q2(n+i)e0

= (1 + q)q2ne0 + (1 + q)q2(n+1)e0 + · · ·+ (1 + q)q2(n+m)e0

≤ (1 + q)q2n(1 + q2 + q2(2) + · · ·+ q2m)e0

≤ q2n 1− (q2)m+1

1− q
γρ ≤ Cq2n.

Thus xn is a Cauchy sequence in Br(x0), and hence it converges, say to
xδαk ∈ Br(x0). Observe that

‖F (xn)− zδαk‖Z = ‖F ′(x0)(xn − yn)‖Z ≤ ‖F ′(x0)‖X→Z‖(xn − yn)‖Z(3.7)

≤Men ≤Mq2nγρ.

Now by letting n→∞ in (3.7) we obtain F (xδαk) = zδαk . This completes the
proof.

Hereafter we assume that

‖x̂− x0‖X < ρ ≤ r.
Theorem 3.5. Suppose that Assumption 3.2 holds. Then

‖x̂− xδαk‖X ≤
β

1− k0r
‖F (x̂)− zδαk‖Z .

Proof. Note that k0r < 1, and by Assumption 3.2, we have

‖x̂− xδαk‖X ≤ ‖x̂− x
δ
αk

+ F ′(x0)
−1[F (xδαk)− F (x̂) + F (x̂)− zδαk ]‖X

≤ ‖F ′(x0)−1[F ′(x0)(x̂− xδαk) + F (xδαk)− F (x̂)]‖X
+ ‖F ′(x0)−1(F (x̂)− zδαk)‖X

≤ k0‖x0 − x̂− t(xδαk − x̂)‖X‖x̂− xδαk‖X + β‖F (x̂)− zδαk‖Z
≤ k0r‖x̂− xδαk‖Z + β‖F (x̂)− zδαk‖Z .

This completes the proof.

The following theorem is a consequence of Theorems 3.4 and 3.5.

Theorem 3.6. Let xn be as in (3.2), and suppose that the assumptions
of Theorems 3.4 and 3.5 hold. Then

‖x̂− xn‖X ≤ Cq2n +
β

1− k0r
‖F (x̂)− zδαk‖Z

where C is as in Theorem 3.4.
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Observe that from Section 2.2, l ≤ k and αδ ≤ αl+1 ≤ µαl, we have

δ
√
αk
≤ δ
√
αl
≤ µ δ
√
αδ

= µϕ(αδ) = µψ−1(δ).

This leads to the following theorem:

Theorem 3.7. Let xn be as in (3.2), and suppose that the assumptions
of Theorems 2.3, 3.4 and 3.5 hold. Let

nk := min{n : q2n ≤ δ/
√
αk}.

Then

‖x̂− xnk‖X = O(ψ−1(δ)).

3.2. Iterative method for Case (2). F is a monotone operator (i.e.,
〈F (x)−F (y), x− y〉 ≥ 0 for all x, y ∈ D(F )), Z = X is a real Hilbert space
and F ′(x0)

−1 does not exist. Thus the ill-posedness of (1.1) in this case is
due to the ill-posedness of F as well as the nonclosedness of the range of the
linear operator K. The following assumptions are needed in addition to the
earlier assumptions for our convergence analysis.

Assumption 3.8. There exists a continuous, strictly increasing function
ϕ1 : (0, b]→ (0,∞) with b ≥ ‖F ′(x0)‖X→X satisfying

• limλ→0 ϕ1(λ) = 0,

• sup
λ≥0

αϕ1(λ)

λ+ α
≤ ϕ1(α) for all λ ∈ (0, b],

• there exists v ∈ X with ‖v‖X ≤ 1 (cf. [26]) such that

x0 − x̂ = ϕ1(F
′(x0))v.

Assumption 3.9. For each x ∈ Br̃(x0) there exists a bounded linear
operator G(x, x0) (see [29]) such that

F ′(x) = F ′(x0)G(x, x0)

with ‖G(x, x0)‖X→X ≤ k2.

The iterative method for this case is

ṽδn,αk = ṽδn,αk −R(x0)
−1
[
F (ṽδn,αk)− zδαk +

αk
c

(ṽδn,αk − x0)
]

where ṽδ0,αk := x0 is the initial guess and R(x0) := F ′(x0) + (αk/c)I, with
c ≤ αk. Let

ỹδn,αk = ṽδ2n−1,αk ,(3.8)

x̃δn+1,αk
= ṽδ2n,αk ,(3.9)

for n > 0.
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First we prove that x̃n,αk converges to the zero xδc,αk of

(3.10) F (x) +
αk
c

(x− x0) = zδαk ,

and then we prove that xδc,αk is an approximation for x̂.

Let

(3.11) ẽδn,αk := ‖ỹδn,αk − x̃
δ
n,αk
‖X , ∀n ≥ 0.

For the sake of simplicity, we use the notation x̃n, ỹn and ẽn for x̃δn,αk ,

ỹδn,αk and ẽδn,αk respectively.

Hereafter we assume that ‖x̂− x0‖X < ρ ≤ r̃ where

ρ <
1

M

(
1− δ0√

α0

)
with δ0 <

√
α0. Let

γ̃ρ := Mρ+
δ0√
α0
,

and define

(3.12) q1 = k0r̃, r̃ ∈ (r̃1, r̃2),

where

r̃1 =
1−

√
1− 4k0γ̃ρ

2k0
, r̃2 = min

{
1

k0
,
1 +

√
1− 4k0γ̃ρ

2k0

}
.

Theorem 3.10. Let ẽn and q1 be as in (3.11) and (3.12), x̃n and ỹn be
as in (3.9) and (3.8) with δ ∈ (0, δ0], and suppose Assumption 3.2 holds.
Then, for all n ≥ 0:

(a) ‖x̃n − ỹn−1‖X ≤ q1‖ỹn−1 − x̃n−1‖X ,
(b) ‖ỹn − x̃n‖X ≤ q21‖ỹn−1 − x̃n−1‖X ,
(c) ẽn ≤ q2n1 γ̃ρ.

Proof. Suppose x̃n, ỹn ∈ Br̃(x0). Then

x̃n − ỹn−1 = ỹn−1 − x̃n−1

−R(x0)
−1
(
F (ỹn−1)− F (x̃n−1) +

αk
c

(ỹn−1 − x̃n−1)
)

= R(x0)
−1
[
R(x0)(ỹn−1 − x̃n−1)

− (F (ỹn−1)− F (x̃n−1))−
αk
c

(ỹn−1 − x̃n−1)
]

= R(x0)
−1

1�

0

[F ′(x0)− (F (ỹn−1)− F (x̃n−1))](ỹn−1 − x̃n−1) dt.
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Now since ‖R(x0)
−1F ′(x0)‖X→X ≤ 1, (a) follows as in Theorem 3.3. Again

observe that

ẽn ≤
∥∥∥∥x̃n − ỹn−1 −R(x0)

−1
(
F (x̃n)− zδαk +

αk
c

(x̃n − x0)
)∥∥∥∥

X

+

∥∥∥∥R(x0)
−1
(
F (ỹn−1)− zδαk +

αk
c

(ỹn−1 − x0)
)∥∥∥∥

X

≤
∥∥∥∥R(x0)

−1
[
R(x0)(x̃n − ỹn−1)− (F (x̃n)− F (ỹn−1))−

αk
c

(x̃n − ỹn−1)
]∥∥∥∥
X

≤
∥∥∥R(x0)

−1
1�

0

[F ′(x0)− (F (x̃n)− F (ỹn−1))] dt (x̃n − ỹn−1)
∥∥∥
X
.

So the remaining part of the proof is analogous to the proof of Theorem 3.3.

Theorem 3.11. Let ỹn and x̃n be as in (3.8) and (3.9), and suppose
the assumptions of Theorem 3.10 hold. Then (x̃n) is a Cauchy sequence in
Br̃(x0) and converges to xδc,αk ∈ Br̃(x0). Further

F (xδc,αk) +
αk
c

(xδc,αk − x0) = zδαk

and

‖x̃n − xδc,αk‖X ≤ C̃q
2n
1 where C̃ =

γ̃ρ
1− q1

.

Proof. Analogously to the proof of Theorem 3.4, one can prove that x̃n is
a Cauchy sequence in Br̃(x0), and hence it converges, say to xδc,αk ∈ Br̃(x0)
and

(3.13)

∥∥∥∥F (x̃n)− zδαk +
αk
c

(x̃n − x0)
∥∥∥∥
X

= ‖R(x0)(x̃n − ỹn)‖X

≤ ‖R(x0)‖X→X‖(x̃n − ỹn)‖X ≤ (‖F ′(x0)‖X→X + αk/c)ẽn

≤ (‖F ′(x0)‖X→X + αk/c)q
2n
1 ẽ0 ≤ (‖F ′(x0)‖X→X + αk/c)q

2n
1 γ̃ρ.

Now by letting n → ∞ in (3.13) we obtain F (xδc,αk) + (αk/c)(x
δ
c,αk
− x0)

= zδαk . This completes the proof.

Assume that k2 <
1−k0r̃
1−c and for simplicity that ϕ1(α) ≤ ϕ(α) for α > 0.

Theorem 3.12. Suppose xδc,αk is the solution of (3.10) and Assumptions
3.2, 3.8 and 3.9 hold. Then

‖x̂− xδc,αk‖X = O(ψ−1(δ)).
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Proof. Note that c(F (xδc,αk)− zδαk) + αk(x
δ
c,αk
− x0) = 0, so

(F ′(x0) + αkI)(xδc,αk − x̂)

= (F ′(x0) + αkI)(xδc,αk − x̂)− c(F (xδc,αk)− zδαk)− αk(xδcα − x0)
= αk(x0 − x̂) + F ′(x0)(x

δ
c,αk
− x̂)− c[F (xδc,αk)− zδαk ]

= αk(x0 − x̂) + F ′(x0)(x
δ
c,αk
− x̂)− c[F (xδc,αk)− F (x̂) + F (x̂)− zδαk ]

= αk(x0 − x̂)− c(F (x̂)− zδαk) + F ′(x0)(x
δ
c,αk
− x̂)− c[F (xδc,αk)− F (x̂)].

Thus

(3.14) ‖xδc,αk − x̂‖X
≤ ‖αk(F ′(x0 + αkI)−1(x0 − x̂)‖X

+ ‖(F ′(x0) + αkI)−1c(F (x̂)− zδαk)‖X
+ ‖(F ′(x0) + αkI)−1[F ′(x0)(x

δ
c,αk
− x̂)− c(F (xδc,αk)− F (x̂))]‖X

≤ ‖αk(F ′(x0) + αkI)−1(x0 − x̂)‖X + ‖F (x̂)− zδαk‖X

+
∥∥∥(F ′(x0) + αkI)−1

1�

0

[F ′(x0)− cF ′(x̂+ t(xδc,αk − x̂))](xδc,αk − x̂) dt
∥∥∥
X

=: ‖αk(F ′(x0) + αkI)−1(x0 − x̂)‖X + ‖F (x̂)− zδαk‖X + Γ.

So by Assumption 3.9, we obtain

Γ ≤
∥∥∥(F ′(x0) + αkI)−1

1�

0

[F ′(x0)− F ′(x̂+ t(xδc,αk − x̂))](xδc,αk − x̂) dt
∥∥∥
X

(3.15)

+ (1−c)
∥∥∥(F ′(x0) + αI)−1F ′(x0)

1�

0

G(x̂+ t(xδc,αk − x̂), x0)(x
δ
c,αk
− x̂) dt

∥∥∥
X

≤ k0r̃‖xδc,αk− x̂‖X + (1− c)k2‖xδc,αk− x̂‖X ,

and hence by (3.14) and (3.15), we have

‖xδc,αk − x̂‖X ≤
‖αk(F ′(x0) + αkI)−1(x0 − x̂)‖X + ‖F (x̂)− zδαk‖X

1− (1− c)k2 − k0r̃

≤
ϕ1(αk) +

(
2 + 4µ

µ−1
)
µψ−1(δ)

1− (1− c)k2 − k0r̃
= O(ψ−1(δ)).

This completes the proof of the theorem.

The following theorem is a consequence of Theorems 3.11 and 3.12.
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Theorem 3.13. Let x̃n be as in (3.9), and suppose that the assumptions
of Theorems 3.11 and 3.12 hold. Then

‖x̂− x̃n‖X ≤ C̃q2n1 +O(ψ−1(δ))

where C̃ is as in Theorem 3.11.

Theorem 3.14. Let x̃n be as in (3.9), and suppose that the assumptions
of Theorems 2.3, 3.11 and 3.12 hold. Let

nk := min{n : q2n1 ≤ δ/
√
αk}.

Then

‖x̂− x̃nk‖X = O(ψ−1(δ)).

Remark 3.15. Let us denote by r̄1, γ̄ρ, q̄, δ̄0 the parameters using K0

instead of k0 for Case 1 (and similarly for Case 2). Then we have

r1 ≤ r̄1, δ̄0 ≤ δ0, γ̄ρ ≤ γρ, q ≤ q̄.

Moreover, strict inequalities hold in the preceding estimates if k0 < K0.
Let h0 = 4k0γρ and h = 4K0γ̄ρ. We can certainly choose γρ sufficiently
close to γ̄ρ. Then we have h ≤ 1 ⇒ h0 ≤ 1 but not necessarily vice versa
unless k0 = K0 and γρ = γ̄ρ. Finally, h0/h → 0 as k0/K0 → 0. The last
estimate shows by how many times our new approach using k0 can expand
the applicability of the old approach using K0 for these methods. Hence, all
the above justifies the claims made in the introduction of the paper. Finally
we note that the results obtained here are useful even if Assumption 3.1
is satisfied but the sufficient convergence condition h ≤ 1 is not satisfied
but h0 ≤ 1 is satisfied. Indeed, we can proceed with the iterative method
described in Case (1) (or Case (2)) until a finite step N such that h ≤ 1
with xδN+1,αN

as a starting point for faster methods such as (1.6). Such an
approach has already been employed in [2], [5] and [4] where the modified
Newton’s method is used as a predictor for Newton’s method.

4. Algorithm. Note that for i, j ∈ {0, 1, . . . ,M},

zδαi − z
δ
αj = (αj − αi)(K∗K + αjI)−1(K∗K + αiI)−1[K∗(yδ −KF (x0))].

The algorithm for implementing the iterative methods considered in Sec-
tion 3 involves the following steps:

• α0 = δ2;
• αi = µ2iα0, µ > 1;
• solve (K∗K + αiI)wi = K∗(yδ −KF (x0)) for wi;
• solve (K∗K + αjI)zij = (αj − αi)wi for zij , j < i;
• if ‖zij‖X > 4/µj , then take k = i− 1;
• otherwise, repeat with i+ 1 in place of i;
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• choose nk = min{n : q2n ≤ δ/
√
αk} in Case (1) and nk = min{n :

q2n1 ≤ δ/
√
αk} in Case (2);

• solve xnk using the iteration (3.2) or x̃nk using the iteration (3.9).

5. Numerical examples. We present five numerical examples in this
section. First, we consider two examples to illustrate the algorithm consid-
ered in the above sections. We apply the algorithm by choosing a sequence
(VN ) of finite-dimensional subspaces of X with dimVN = N+1. Precisely VN
is the space of linear splines in a uniform grid of N + 1 points in [0, 1]. Then
we present two examples where Assumption 3.2 is satisfied but Assumption
3.1 is not. In the last example we show that k0/K0 can be arbitrarily small.

Example 5.1. In this example for Case (1), we consider the operator
KF : D(KF ) ⊆ L2(0, 1)→ L2(0, 1) with K : L2(0, 1)→ L2(0, 1) defined by

K(x)(t) =

1�

0

k(t, s)x(s) ds

where

k(t, s) =

{
(1− t)s, 0 ≤ s ≤ t ≤ 1,

(1− s)t, 0 ≤ t ≤ s ≤ 1,

and

F : D(F ) ⊆ L2(0, 1)→ L2(0, 1)

defined by F (u) := u3. Then the Fréchet derivative of F is given by F ′(u)w
= 3(u)2w.

In our computation, we take

y(t) =
837t

6160
− t2

16
− t11

110
− 3t5

80
− 3t8

112
and yδ = y + δ.

Then the exact solution is

x̂(t) = 0.5 + t3.

We use

x0(t) = 0.5 + t3 − 3

56
(t− t8)

as our initial guess.

We choose α0 = (1.3)2δ2, µ = 1.2, δ = 0.0667, the Lipschitz constant k0
equals approximately 0.23 and r = 1, so that q = k0r = 0.23. The iterations
and corresponding error estimates are given in Table 1. The plots of the
exact solution and the approximate solution obtained are given in Figures 1
and 2. The last column of Table 1 shows that the error ‖xnk − x̂‖X is of
order O(δ1/2).
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Table 1

N k αk ‖xnk − x̂‖X
‖xnk

−x̂‖X
δ1/2

16 4 0.0231 0.5376 2.0791

32 4 0.0230 0.5301 2.0523

64 4 0.0229 0.5257 2.0359

128 4 0.0229 0.5234 2.0270

256 4 0.0229 0.5222 2.0224

512 4 0.0229 0.5216 2.0200

1024 4 0.0229 0.5213 2.0188
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Fig. 1. Curves of the exact and approximate solutions

Example 5.2. In this example for Case (2), we consider the operator
KF : D(KF ) ⊆ L2(0, 1)→ L2(0, 1) with K : L2(0, 1)→ L2(0, 1) defined by

K(x)(t) =

1�

0

k(t, s)x(s) ds

and F : D(F ) ⊆ L2(0, 1)→ L2(0, 1) defined by

F (u) :=

1�

0

k(t, s)u3(s) ds,

where

k(t, s) =

{
(1− t)s, 0 ≤ s ≤ t ≤ 1,

(1− s)t, 0 ≤ t ≤ s ≤ 1.

Then for all x(t), y(t) with x(t) > y(t) (see [30, Section 4.3]),

〈F (x)− F (y), x− y〉 =

1�

0

[ 1�
0

k(t, s)(x3 − y3)(s) ds
]
(x− y)(t) dt ≥ 0.
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Fig. 2. Curves of the exact and approximate solutions

Thus the operator F is monotone. Its Fréchet derivative is given by

F ′(u)w = 3

1�

0

k(t, s)u(s)2w(s) ds.

So for any u ∈ Br(x0), where x0(s) ≥ k3 > 0 for all s ∈ (0, 1), we have

F ′(u)w = F ′(x0)G(u, x0)w,

where G(u, x0) = (u/x0)
2.

In our computation, we take

y(t) =
1

110

(
t13

156
− t3

6
+

25t

156

)
and yδ = y + δ.

Then the exact solution is

x̂(t) = t3.

We use

x0(t) = t3 +
3

56
(t− t8)



124 M. E. Shobha et al.

as our initial guess, so that the function x0− x̂ satisfies the source condition

x0 − x̂ =
3

56
(t− t8) = F ′(x0)

(
t6

x0(t)2

)
= ϕ1(F

′(x0))

(
t6

x0(t)2

)
where ϕ1(λ) = λ. Thus we expect to have an accuracy of order at least
O(δ1/2).

We choose α0 = (1.3)δ, δ = 0.0667 =: c, the Lipschitz constant k0 equals
approximately 0.21 as in [30] and r̃ = 1, so that q1 = k0r̃ = 0.21. The results
of the computation are presented in Table 2. The plots of the exact solution
and the approximate solution obtained are given in Figures 3 and 4.

Table 2

N k αk ‖x̃nk − x̂‖X
‖x̃nk

−x̂‖X
δ1/2

8 4 0.0494 0.1881 0.7200

16 4 0.0477 0.1432 0.5531

32 4 0.0473 0.1036 0.4010

64 4 0.0472 0.0726 0.2812

128 4 0.0471 0.0491 0.1900

256 4 0.0471 0.0306 0.1187

512 4 0.0471 0.0140 0.0543

1024 4 0.0471 0.0133 0.0515
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Fig. 3. Curves of the exact and approximate solutions

In the next two cases, we present examples for nonlinear equations where
Assumption 3.2 is satisfied but Assumption 3.1 is not.
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Fig. 4. Curves of the exact and approximate solutions

Example 5.3. Let X = Y = R, D = [0,∞), x0 = 1 and define a
function F on D by

(5.1) F (x) =
x1+1/i

1 + 1/i
+ c1x+ c2,

where c1, c2 are real parameters and i > 2 an integer. Then F ′(x) = x1/i+c1
is not Lipschitz on D. Hence, Assumption 3.1 is not satisfied. However the
central Lipschitz condition (Assumption 3.2) holds for k0 = 1.

Indeed, we have

‖F ′(x)− F ′(x0)‖X = |x1/i − x1/i0 | =
|x− x0|

x
(i−1)/i
0 + · · ·+ x(i−1)/i

,

so
‖F ′(x)− F ′(x0)‖X ≤ k0|x− x0|.

Example 5.4. We consider the integral equations

(5.2) u(s) = f(s) + λ

b�

a

G(s, t)u(t)1+1/n dt, n ∈ N.

Here, f is a given continuous function satisfying f(s) > 0 for s ∈ [a, b], λ is
a real number, and the kernel G is continuous and positive in [a, b]× [a, b].
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For example, when G(s, t) is the Green kernel, the corresponding integral
equation is equivalent to the boundary value problem

u′′ = λu1+1/n, u(a) = f(a), u(b) = f(b).

Such problems have been considered in [1–5].
Equations (5.2) generalize equations of the form

(5.3) u(s) =

b�

a

G(s, t)u(t)n dt

studied in [1–5]. Instead of (5.2) we can try to solve the equation F (u) = 0
where

F : Ω ⊆ C[a, b]→ C[a, b], Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]}
and

F (u)(s) = u(s)− f(s)− λ
b�

a

G(s, t)u(t)1+1/n dt.

The norm we consider is the max-norm.
The derivative F ′ is given by

F ′(u)v(s) = v(s)− λ
(

1 +
1

n

) b�

a

G(s, t)u(t)1/nv(t) dt, v ∈ Ω.

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition
in Ω. Let us consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0.
Then F ′(y)v(s) = v(s) and

‖F ′(x)− F ′(y)‖C[a,b]→C[a,b] = |λ|
(

1 +
1

n

) b�

a

x(t)1/n dt.

If F ′ were a Lipschitz function, then

‖F ′(x)− F ′(y)‖C[a,b]→C[a,b] ≤ L1‖x− y‖C[a,b],

or, equivalently, the inequality

(5.4)

1�

0

x(t)1/n dt ≤ L2 max
x∈[0,1]

x(s)

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider,
for example, the functions

xj(t) = t/j, j ≥ 1, t ∈ [0, 1].

If these are substituted into (5.4), we have

1

j1/n(1 + 1/n)
≤ L2

j
⇔ j1−1/n ≤ L2(1 + 1/n), ∀j ≥ 1.

This inequality is not true when j →∞.
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Therefore, condition (5.4) is not satisfied in this case. Hence Assump-
tion 3.1 is not satisfied. However, Assumption 3.2 holds. To show this, let

x0(t) = f(t), γ = min
s∈[a,b]

f(s), α > 0.

Then for v ∈ Ω,

‖[F ′(x)− F ′(x0)]v‖C[a,b]

= |λ|
(

1 +
1

n

)
max
s∈[a,b]

∣∣∣ b�
a

G(s, t)(x(t)1/n − f(t)1/n)v(t) dt
∣∣∣

≤ |λ|
(

1 +
1

n

)
max
s∈[a,b]

Gn(s, t)

where

Gn(s, t) =
G(s, t)|x(t)− f(t)|

x(t)(n−1)/n + x(t)(n−2)/nf(t)1/n + · · ·+ f(t)(n−1)/n
‖v‖C[a,b].

Hence,

‖[F ′(x)− F ′(x0)]v‖C[a,b] =
|λ|(1 + 1/n)

γ(n−1)/n
max
s∈[a,b]

b�

a

G(s, t) dt ‖x− x0‖C[a,b]

≤ k0‖x− x0‖C[a,b],

where

k0 =
|λ|(1 + 1/n)

γ(n−1)/n
N

and

N = max
s∈[a,b]

b�

a

G(s, t) dt.

Then Assumption 3.2 holds for sufficiently small λ.

Example 5.5. Define a scalar function F by

F (x) = d0x+ d1 + d2 sin ed3x, x0 = 0,

where di, i = 0, 1, 2, 3, are given parameters. Then it can easily be seen that
for d3 large and d2 sufficiently small, k0/K0 can be arbitrarily small.

6. Conclusion. We presented an iterative method which is a combina-
tion of a modified Newton method and Tikhonov regularization to obtain an
approximate solution for a nonlinear ill-posed Hammerstein-type operator
equation KF (x) = y, with the available noisy data yδ in place of the exact
data y. In fact we considered two cases, where F ′(x0)

−1 exists and where
F is monotone but F ′(x0)

−1 does not exist. In both cases, the derived er-
ror estimates using an a priori and balancing principle are of optimal order
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with respect to the general source condition. The results of computational
experiments confirm the reliability of our approach.
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