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ON THE EXISTENCE OF POSITIVE SOLUTIONS
OF SECOND ORDER NEUTRAL DIFFERENCE EQUATIONS

Abstract. The neutral delay difference equations of second order with
positive and negative coefficients

(E) ∆2(xn + pnxn−τ ) + qnxn−σ − rnxn−λ = 0, n = 0, 1, 2, . . . ,

is studied, and a sufficient condition for the existence of a positive solution
of this equation is obtained.

1. Introduction. Recently, there has been a lot of research activity
concerning positive solutions of difference equations. See for example [4–6]
and the references cited therein. Difference equations appear as natural de-
scriptions of the observed evolution phenomena as well as in the study of
discretization methods for differential equations. The application of the the-
ory of difference equations is rapidly broadening to various fields such as nu-
merical analysis, control theory, finite mathematics, and computer science;
in particular, the connection between the theory of difference equations and
computer science has become more important in recent years, because of the
successful use of computers to solve difficult problems arising in practice.
Furthermore, chaos and fractals are at the center of attention nowadays,
and difference equations produce them [1–3].

The present paper deals with the neutral delay difference equations of
second order with positive and negative coefficients

(E) ∆2(xn + pnxn−τ ) + qnxn−σ − rnxn−λ = 0, n = 0, 1, 2, . . . ,

where τ is a positive integer; σ, λ are nonnegative integers; {pn} is a real
sequence; {qn}, {rn} are real positive sequences; ∆ is the forward difference

2000 Mathematics Subject Classification: Primary 39A10.
Key words and phrases: neutral delay difference equation, positive solution.

[5]



6 W.-X. Lin

operator defined by

∆xn = xn+1 − xn and ∆2 = ∆(∆).

Let µ = max{τ, σ, λ}. Then by a solution of (E), we mean a real sequence
{xn} which is defined for n ≥ −µ and satisfies equation (E) for n ≥ n0.
A solution {xn} of (E) is said to be eventually positive if xn > 0 for all
large n, and eventually negative if xn < 0 for all large n. A solution of (E)
is called nonoscillatory if it is eventually positive or negative. Otherwise it
is called oscillatory.

2. Main results

Theorem 1. Suppose that

lim
n→∞

pn = p ∈ (0, 1) ∪ (1,∞),(1)

∞∑

n=n0

nqn <∞,
∞∑

n=n0

nrn <∞.(2)

If there exists a sufficiently large positive integer n1 such that

(3) aqn − rn ≥ 0 for every n ≥ n1 and any a > 0,

then (E) has a nonoscillatory solution.

Proof. The proof will be divided into two cases, depending on the two
ranges of the parameter p.

Case 1: p ∈ (0, 1). By condition (1), we choose a number α such that
p < α < 1, and choose positive constants M1 and M2 such that

α−M2 < p <
α−M1

1 +M2

(this implies that M1 < M2). Let ε0 > 0 be such that

ε0 + α < 1,
α−M1

1 +M2
− M2

1 +M2
ε0 ≥ p,

so that α − p − pM2 − ε0M2 ≥ M1. By (1)–(3), there exists a sufficiently
large N ≥ max{n1, n0 + µ} such that

0 < p− ε0 < pn < p+ ε0 for n ≥ N,(4)
∞∑

s=N

s(qs + rs) < α− p,(5)

0 ≤
∞∑

s=N

s[M2qs −M1rs] ≤ p− α+M2,(6)
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∞∑

s=N

s(M1qs −M2rs) ≥ 0.(7)

Let BN denote the Banach space of all bounded real sequences x =
{xn}∞n=N−µ with the sup norm ‖x‖ = supn≥N−µ |xn|. Set

Ω = {x ∈ BN : M1 ≤ xn ≤M2, n ≥ N − µ}.
It is easy to see that Ω is a bounded, closed, and convex subset of BN .
Define a mapping T : Ω → BN as follows:

(Tx)n =





α− p− pnxn−τ + (n− 1)
∞∑

s=n−1

(qsxs−σ − rsxs−λ)

+
n−2∑

s=N

s(qsxs−σ − rsxs−λ), n ≥ N,

α+ p− pNxN−τ , N − µ ≤ n ≤ N.
Clearly, T is continuous. For every x ∈ Ω and n ≥ N , using (3) and (6) we
get

(Tx)n = α− p− pnxn−τ + (n− 1)
∞∑

s=n−1

(qsxs−σ − rsxs−λ)

+
n−2∑

s=N

s(qsxs−σ − rsxs−λ)

≤ α− p+ (n− 1)
∞∑

s=n−1

(M2qs −M1rs) +
n−2∑

s=N

s(M2qs −M1rs)

≤ α− p+
∞∑

s=N

s(M2qs −M1rs) ≤M2.

Furthermore, in view of (3) and (7) we have

(Tx)n= α− p− pnxn−τ + (n− 1)
∞∑

s=n−1

(qsxs−σ − rsxs−λ)

+
n−2∑

s=N

s(qsxs−σ − rsxs−λ)

≥ α− p− pnM2 + (n− 1)
∞∑

s=n−1

(M1qs −M2rs) +
n−2∑

s=N

s(M1qs −M2rs)

> α− p− pnM2 > α− p− pnM2 − ε0M2 ≥M1.

Thus, we proved that TΩ ⊆ Ω.
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Now, for x1, x2 ∈ Ω and n ≥ N we have

|(Tx1)n − (Tx2)n|

≤ pn|x1
n−τ − x2

n−τ |+ (n− 1)
∞∑

s=n−1

qs|x1
n−σ − x2

n−σ|

+ (n− 1)
∞∑

s=n−1

rs|x1
s−λ − x2

s−λ|

+
n−2∑

s=N

sqs|x1
n−σ − x2

n−σ|+
n−2∑

s=N

srs|x1
n−λ − x2

n−λ|

≤ pn‖x1 − x2‖+ ‖x1 − x2‖
[ ∞∑

s=n−1

s(qs + rs) +
n−2∑

s=N

s(qs + rs)
]

< ‖x1 − x2‖
{
p+ ε0 +

∞∑

s=N

s(qs + rs)
}
.

This immediately implies that

‖Tx1 − Tx2‖ ≤ q1‖x1 − x2‖,
where

q1 = p+ ε0 +
∞∑

s=N

s(qs − rs) < p+ ε0 + α− p = ε0 + α < 1.

Hence, T is a contraction mapping. By the contraction principle, T has a
unique fixed point x, which is obviously a positive solution of (E). This
completes the proof in Case 1.

Case 2: p ∈ (1,∞). We choose a number α such that 1 < α < p, and
choose positive constants N1 and N2 such that 1 < N2 < α(1 − N1) < α.
Take ε0 > 0 such that

ε0 < p− 1, ε0 <
p(p− α)(1−N1)
(1−N1)α+ 2p

, ε0 ≤
N1p

2p(N2 − 1) +N1
.

By (1)–(3), there exists a sufficiently large N ≥ max{n1, n0 + µ} such that

0 < p− ε0 < pn < p+ ε0 for n ≥ N,(8)
∞∑

s=N

s(qs + rs) < p− ε0 − 1,(9)

0 ≤
∞∑

s=N

s[N2qs −N1rs] ≤ pN2 − p,(10)
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(11)
∞∑

s=N

s(N1qs −N2rs) ≥ 0.

Let BN denote the same Banach space as in Case 1 and set

Ω = {x ∈ BN : N1 ≤ xn ≤ N2, n ≥ N − µ}.
It is easy to see that Ω is a bounded, closed, and convex subset of BN .
Define a mapping T : Ω → BN as follows:

(Tx)n =





p− ε0

pn+τ
− xn+τ

pn+τ
+
n− 1 + τ

pn+τ

∞∑

s=n−1+τ

(qsxs−σ − rsxs−λ)

+
1

pn+τ

n−2+τ∑

s=N

s(qsxs−σ − rsxs−λ), n ≥ N,

(Tx)N , N − µ ≤ n ≤ N.
Clearly, T is continuous. For every x ∈ Ω and n ≥ N , using (3), (8) and
(10) we get

(Tx)n ≤ 1− N1

p+ ε0
+

1
p− ε0

∞∑

s=n−1+τ

s(qsN2 − rsN1)

+
1

p− ε0

n−2+τ∑

s=N

s(qsN2 − rsN1)

= 1− N1

p+ ε0
+

1
p− ε0

∞∑

s=N

s(qsN2 − rsN1)

≤ 1− N1

p+ ε0
+
pN2 − p
p− ε0

= N2 +
ε0[(p+ ε0)(N2 − 1) +N1]−N1p

(p− ε0)(p+ ε0)

≤ N2 +
ε0[2p(N2 − 1) +N1]−N1p

(p− ε0)(p+ ε0)
≤ N2.

Furthermore, in view of (3), (8) and (11) we have

(Tx)n ≥
p− ε0

p+ ε0
− N2

p− ε0
≥ p− ε0

p+ ε0
− α(N1 − 1)

p− ε0

= N1 +
p(1−N1)(p− α)− [(1−N1)α+ 2p]ε0 + (N1 + 1)ε2

0

p2 − ε2
0

≥ N1 +
p(1−N1)(p− α)− [(1−N1)α+ 2p]ε0

p2 − ε2
0

≥ N1.

Thus, we proved that TΩ ⊆ Ω.
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Now, for x1, x2 ∈ Ω and n ≥ N we have

|(Tx1)n − (Tx2)n|

≤ 1
pn+τ

|x1
n−τ − x2

n−τ |+
1

pn+τ

∞∑

s=n−1+τ

sqs|x1
n−σ − x2

n−σ|

+
1

pn+τ

∞∑

s=n−1+τ

srs|x1
s−λ − x2

s−λ|+
1

pn+τ

n−2+τ∑

s=N

sqs|x1
n−σ − x2

n−σ|

+
1

pn+τ

n−2+τ∑

s=N

srs|x1
n−λ − x2

n−λ|

≤ 1
p− ε0

‖x1−x2‖+‖x1−x2‖ 1
p− ε0

[ ∞∑

s=n−1+τ

s(qs + rs) +
n−2+τ∑

s=N

s(qs + rs)
]

= ‖x1 − x2‖
{

1
p− ε0

[
1 +

∞∑

s=N

s(qs + rs)
]}
.

This immediately implies that

‖Tx1 − Tx2‖ ≤ q1‖x1 − x2‖,
where

q1 =
1

p− ε0

[
1 +

∞∑

s=N

s(qs + rs)
]
<

1 + p− ε0 − 1
p− ε0

= 1.

Hence, T is a contraction mapping. The contraction principle shows that
T has a unique fixed point x, which is obviously a positive solution of (E).
This completes the proof in Case 2.

The proof of the theorem is complete.
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