
APPLICATIONES MATHEMATICAE
31,1 (2004), pp. 55–67

Mircea Sofonea (Perpignan)
Mohamed Ait Mansour (Limoges)

A CONVERGENCE RESULT FOR EVOLUTIONARY
VARIATIONAL INEQUALITIES AND

APPLICATIONS TO ANTIPLANE FRICTIONAL
CONTACT PROBLEMS

Abstract. We consider a class of evolutionary variational inequalities de-
pending on a parameter, the so-called viscosity. We recall existence and
uniqueness results, both in the viscous and inviscid case. Then we prove
that the solution of the inequality involving viscosity converges to the so-
lution of the corresponding inviscid problem as the viscosity converges to
zero. Finally, we apply these abstract results in the study of two antiplane
quasistatic frictional contact problems with viscoelastic and elastic materi-
als, respectively. For each of the problems we prove the existence of a unique
weak solution; we also provide convergence results, together with their me-
chanical interpretation.

1. Introduction. Let V be a real Hilbert space endowed with the inner
product (·, ·)V and the associated norm ‖ · ‖V , and let T > 0. Consider two
operators A : V → V and B : V → V , a functional j : V → R and a function
f : [0, T ]→ V . Everywhere in this paper a dot above a variable will represent
the derivative with respect to time. Let θ be a positive parameter, called
viscosity, and let u0 ∈ V . With these data we consider the following problem:

Problem Pθ. Find a function uθ : [0, T ]→ V such that

(1.1) θ(Au̇θ(t), v − u̇θ(t))V + (Buθ(t), v − u̇θ(t))V + j(v)− j(u̇θ(t))
≥ (f(t), v − u̇θ(t))V ∀v ∈ V, a.e. t ∈ (0, T ),

(1.2) u(0) = u0.
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Problems of this form arise in the study of variational models for fric-
tional contact with Kelvin–Voigt viscoelastic materials (see for instance
[3, 4]). There, u represents the displacement field, A and B are the viscosity
and elasticity operators, respectively, and the functional j is determined by
the type of contact and friction boundary conditions. The function f is re-
lated to the given body forces and surface tractions, and u0 represents the
initial displacement. Notice that usually the functional j in (1.1) is nondif-
ferentiable.

Two questions arise in the study of Problem Pθ. The first one concerns
the unique solvability of this problem and it was discussed in [3]. There, a
general existence and uniqueness result for a class of variational inequalities
which contains problem (1.1)–(1.2) as a special case was provided. Assume
now that Problem Pθ has a unique solution uθ. The second question concerns
the behavior of the solution as θ → 0. This problem is important from the
mechanical point of view since it concerns the behavior of the solution of a
frictional viscoelastic contact problem as the viscosity goes to zero. Clearly, if
we take θ = 0, the first term on the left hand side of (1.1) vanishes. Therefore
it is natural to consider the inviscid problem associated to (1.1)–(1.2), that
is:

Problem P . Find a function u : [0, T ]→ V such that

(1.3) (Bu(t), v − u̇(t))V + j(v)− j(u̇(t))

≥ (f(t), v − u̇(t))V ∀v ∈ V, a.e. t ∈ (0, T ),

(1.4) u(0) = u0.

Problems of this form arise in the study of quasistatic frictional models
with elastic materials (see for instance [4, 9]). Existence and uniqueness
results for abstract evolutionary inequalities of the form (1.3)–(1.4) can be
found in [1, 2, 9].

The aim of this paper is to study the behavior of the solution of Problem
Pθ as θ → 0 with emphasis on problems arising in Contact Mechanics and
more precisely on antiplane frictional contact problems. Various results on
quasistatic antiplane contact problems, including the existence of weak so-
lutions, were obtained in [5, 8, 11]. In [5] the material was assumed to have
a viscoelastic behavior while in [8] it was assumed to be linearly elastic;
in both these papers the contact was frictional and it was modelled by a
slip-dependent friction law. In [11] the material was assumed to be elastic
and the contact was frictionless but adhesive.

The paper is organized as follows. In Section 2 we state two existence
and uniqueness results for Problems Pθ and P , respectively (Theorems 2.1
and 2.2). In Section 3 we prove that the solution uθ of Problem Pθ converges
to the solution u of Problem P as θ → 0 (Theorem 3.1). In Section 4 we
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present mathematical models which describe the antiplane frictional contact
problem with elastic and viscoelastic materials. Finally, in Section 5 we
derive the variational formulation of the models and we apply the abstract
results of Sections 2 and 3 to obtain existence, uniqueness and convergence
results for antiplane problems (Theorem 5.1).

2. Existence and uniqueness results. We use the standard notation
for Lp(0, T ;V ) and Sobolev spaces W k,p(0, T ;V ), k ∈ N, 1 ≤ p ≤ ∞. We
also denote by C([0, T ];V ) the space of continuous functions from [0, T ] to
V , with norm

‖u‖C([0,T ];V ) = max
t∈[0,T ]

‖u(t)‖V .

We assume that A : V → V is a strongly monotone Lipschitz continuous
operator, i.e.,





(a) there exists m > 0 such that

(Au1 − Au2, u1 − u2)V ≥ m‖u1 − u2‖2V ∀u1, u2 ∈ V ;

(b) there exists M > 0 such that

‖Au1 − Au2‖V ≤M‖u1 − u2‖V ∀u1, u2 ∈ V.

(2.1)

The operator B : V → V is symmetric, continuous and positive definite,
that is,





(a) (Bu, v)V = (u,Bv)V ∀u, v ∈ V ;

(b) there exists M ′ > 0 such that ‖Bu‖V ≤M ′‖u‖V ∀u ∈ V ;

(c) there exists m′ > 0 such that (Bu, u)V ≥ m′‖u‖2V ∀u ∈ V.
(2.2)

Finally, about the data j, f and u0 we assume that:

j : V → R is convex and lower semicontinuous,(2.3)

f ∈W 1,2(0, T ;V ),(2.4)

u0 ∈ V,(2.5)

sup
v∈V
{(f(0), v)V − (Bu0, v)V − j(v)} <∞.(2.6)

The unique solvability of Problems Pθ and P is the content of the fol-
lowing results.

Theorem 2.1. Let (2.1)–(2.5) hold. Then there exists a unique solution
u ∈W 1,2(0, T ;V ) to problem (1.1)–(1.2).

Theorem 2.2. Let (2.2)–(2.6) hold. Then there exists a unique solution
u ∈W 1,2(0, T ;V ) to problem (1.3)–(1.4).
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Both theorems are versions of results which can be found in the liter-
ature and therefore we do not provide their proofs. Indeed, Theorem 2.1
represents a simplified version of a more general existence and uniqueness
result obtained in [3]. There, it was assumed that A satisfies (2.1), B is a
nonlinear Lipschitz continuous operator on V and the functional j depends
on the solution, i.e. j = j(u, v). The proof, based on arguments of ellip-
tic variational inequalities and fixed point theory, can also be found in [4,
pp. 230–234]. Theorem 2.2 is a version of a result proved in [1, p. 117] by
arguments of nonlinear evolution equations with maximal monotone opera-
tors; there, j was assumed to be a proper, convex and lower semicontinous
function on V with values in ]−∞,∞] and B was the identity operator
on V . A variant of Theorem 2.2 is given in [2, p. 158], where the proof is
based on a time-discretization method together with compactness and lower
semicontinuity arguments; in [2], j was assumed to be a convex, positively
homogeneous and Lipschitz continuous real-valued function. A version of
Theorem 2.2 in the case when j depends on the solution, i.e. j = j(u, v),
was established in [9]; the conditions imposed there on the nondifferentiable
functional j were formulated in terms of the directional derivative. Both in
[2] and [9] the operator B was assumed to satisfy condition (2.2).

3. A convergence result. We now study the behavior of the solution
uθ of Problem Pθ as θ → 0. The main result of this section is the following.

Theorem 3.1. Assume (2.1)–(2.6) hold and denote by uθ and u the
solutions of Problems Pθ and P , guaranteed by Theorems 2.1 and 2.2, re-
spectively. Then

(u̇θ) is a bounded sequence in L2(0, T ;V ) as θ → 0;(3.1)

uθ → u in C([0, T ], V ) as θ → 0.(3.2)

Proof. The equalities and inequalities below hold for almost all t ∈
(0, T ). We take v = u̇(t) in (1.1), v = u̇θ(t) in (1.3) and add the corre-
sponding inequalities to obtain

θ(Au̇θ(t), u̇(t)− u̇θ(t))V + (Buθ(t)−Bu, u̇(t)− u̇θ(t))V ≥ 0.

This implies

θ(Au̇θ(t)− Au̇(t), u̇(t)− u̇θ(t))V + θ(Au̇(t), u̇(t)− u̇θ(t))V
+(Buθ(t)−Bu(t), u̇(t)− u̇θ(t))V ≥ 0

and, using (2.1), yields

(3.3) θm‖u̇θ(t)− u̇(t)‖2V + (Buθ(t)−Bu(t), u̇θ(t)− u̇(t))V
≤ θM‖u̇(t)‖V ‖u̇θ(t)− u̇(t)‖V + θ‖A0V ‖V ‖u̇θ(t)− u̇(t)‖V .

Here and below 0V will represent the zero element of the space V .
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Let s ∈ [0, T ] be given. We integrate (3.3) on [0, s] and use the properties
(2.2) of B as well as the initial conditions (1.2) and (1.4) to find

(3.4) θm

s�

0

‖u̇θ(t)− u̇(t)‖2V dt+
1
2

(Buθ(t)−Bu(t), uθ(t)− u(t))V

≤ θM
s�

0

‖u̇(t)‖V ‖u̇θ(t)− u̇(t)‖V dt+ θ

s�

0

‖A0V ‖V ‖u̇θ(t)− u̇(t)‖V dt.

We now apply the inequalities

‖u̇(t)‖V ‖u̇θ(t)− u̇(t)‖V ≤
M

2m
‖u̇(t)‖2V +

m

2M
‖u̇θ(t)− u̇(t)‖2V ,

‖A0V ‖V ‖u̇θ(t)− u̇(t)‖V ≤
M

2m
‖A0V ‖2V +

m

2M
‖u̇θ(t)− u̇(t)‖2V

in (3.4) to obtain

(3.5) θm

s�

0

‖u̇θ(t)− u̇(t)‖2V dt+
1
2

(Buθ(s)−Bu(s), uθ(s)− u(s))V

≤ θM2

2m

s�

0

‖u̇(t)‖2V dt

+
θMT

2m
‖A0V ‖2V +

θm

2

(
1 +

1
M

) s�

0

‖u̇θ(t)− u̇(t)‖2V dt.

Since (Buθ(s)−Bu(s), uθ(s)− u(s))V ≥ 0, from (3.5) we deduce that

θm

2

(
1− 1

M

) s�

0

‖u̇θ(t)− u̇(t)‖2V dt ≤
θM2

2m

s�

0

‖u̇(t)‖2V dt+
θMT

2m
‖A0V ‖2V .

We now take s = T to obtain
θm

2

(
1− 1

M

)
‖u̇θ − u̇‖2L2(0,T ;V ) ≤

θM2

2m
‖u̇‖2L2(0,T ;V ) +

θMT

2m
‖A0V ‖2V .

Since we can assume that M > 1, we find that

‖u̇θ − u̇‖L2(0,T ;V ) is bounded as θ → 0.(3.6)

The boundedness result (3.1) is now a consequence of (3.6).
We use again (3.5) and (2.2)(c) to find

m′

2
‖uθ(s)− u(s)‖2V ≤

θM2

2m

s�

0

‖u̇(t)‖2V dt+
θMT

2m
‖A0V ‖2V

+
θm

2

(
1 +

1
M

) s�

0

‖u̇θ(t)− u̇(t)‖2V dt,
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which implies that

m′

2
‖uθ(s)− u(s)‖2V ≤

θM2

2m
‖u̇‖2L2(0,T ;V ) +

θMT

2m
‖A0V ‖2V(3.7)

+
θm

2

(
1 +

1
M

)
‖u̇θ − u̇‖2L2(0,T ;V ).

The convergence result (3.2) is now a consequence of (3.6) and (3.7).

4. A model of antiplane frictional contact problems. The ab-
stract results of Theorems 2.1, 2.2 and 3.1 are useful in the study of a wide
class of problems arising in Contact Mechanics. To provide an example, we
present a model of antiplane contact problems involving viscoelastic and
elastic materials. Everywhere below we use bold face symbols to denote vec-
tors and tensors. Moreover, we use “·” for the inner product in the spaces
R2 and R3, and | · | for the Euclidean norm.

We consider a body B identified with a region in R3 it occupies in a fixed
and undistorted reference configuration. We assume that B is a cylinder with
generators parallel to the x3-axis with a cross-section which is a regular
region Ω in the x1, x2-plane, Ox1x2x3 being a Cartesian coordinate system.
The cylinder is assumed to be sufficiently long so that the end effects in
the axial direction are negligible. Thus, B = Ω × (−∞,∞). Let ∂Ω = Γ .
We assume that Γ is divided into three disjoint measurable parts Γ1, Γ2
and Γ3 such that the one-dimensional measure of Γ1, denoted by measΓ1,
is strictly positive. Let T > 0 and let [0, T ] be the time interval of interest.
The cylinder is clamped on Γ1 × (−∞,∞) and is in contact with a rigid
foundation on Γ3 × (−∞,∞) during the process. Moreover, the cylinder is
subjected to time dependent volume forces of density f 0 on B and to time
dependent surface tractions of density f 2 on Γ2 × (−∞,∞).

We assume that

f0 = (0, 0, f0) with f0 = f0(x1, x2, t) : Ω × [0, T ]→ R,(4.1)

f2 = (0, 0, f2) with f2 = f2(x1, x2, t) : Γ2 × [0, T ]→ R.(4.2)

The body forces (4.1) and the surface tractions (4.2) are expected to give
rise to a deformation of the cylinder whose displacement, denoted by u, is
independent of x3 and has the form

u = (0, 0, u) with u = u(x1, x2, t) : Ω × [0, T ]→ R.(4.3)

Such kind of deformation is called an antiplane shear ; see for instance [7, 6]
for details.

Let ε(u) = (εij(u)) be the infinitesimal strain tensor, that is,

εij(u) =
1
2

(ui,j + uj,i),(4.4)
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where the indices i and j run from 1 to 3 and the index that follows a comma
indicates a partial derivative with respect to the corresponding component
of the spatial variable. Let also σ = (σij) denote the stress field. We assume
that the material is modelled by the following linear viscoelastic constitutive
law with short memory:

σ = 2θε(u̇) + λ(tr ε(u))I + 2µε(u),(4.5)

where θ > 0 is the coefficient of viscosity, λ, µ > 0 are the Lamé coefficients,
tr ε(u) = εii(u), and I is the unit tensor in R3. Here and below, to simplify
the notation, we do not indicate the dependence of various functions on x1,
x2 or t. Moreover, the convention summation upon repeated indices is used.

It follows from (4.3)–(4.5) that

σ11 = σ12 = σ21 = σ22 = σ33 = 0,

σ3i = σi3 = θu̇,i + µu,i ∀i = 1, 2.
(4.6)

Neglecting the inertial term in the equation of motion we obtain the
quasistatic approximation for the process. Thus, by (4.6), the equation of
equilibrium reduces to the scalar equation

θ∆u̇+ µ∆u+ f0 = 0 in Ω × (0, T ).

As the cylinder is clamped on Γ1 × (−∞,∞)× (0, T ), the displacement
field vanishes there. Therefore, (4.3) implies that

u = 0 on Γ1 × (0, T ).

Let ν denote the unit normal on Γ × (−∞,∞). We have

ν = (ν1, ν2, 0) with νi = νi(x1, x2) : Γ → R, i = 1, 2.(4.7)

For a vector v we denote by vν and vτ its normal and tangential components
on the boundary, given by

vν = v · ν, vτ = v − vνν.(4.8)

For a given stress field σ we also denote by σν and στ its normal and
tangential components on the boundary, that is,

σν = (σν) · ν, στ = σν − σνν.(4.9)

From (4.3), (4.6), (4.7) and (4.9) we deduce that the Cauchy stress vector
is given by

σν = (0, 0, θ∂ν u̇+ µ∂νu).(4.10)

Here and below we use the notation ∂νu = u,1ν1 + u,2ν2. Together with the
traction boundary condition σν = f 2 on Γ2 × (0, T ), it follows from (4.2)
and (4.10) that

θ∂ν u̇+ µ∂νu = f2 on Γ2 × (0, T ).
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We now describe the contact condition on Γ3×(−∞,∞). First, from (4.3)
and (4.8) we infer that uν = 0, which shows that the contact is bilateral,
that is, it is kept during all the process. Using now (4.3), (4.8)–(4.10) we
conclude that

uτ = (0, 0, u), στ = (0, 0, θ∂ν u̇+ µ∂νu).(4.11)

We assume that when slip arises, then the tangential shear is proportional
to the pth power of the tangential speed, that is,

u̇τ 6= 0 ⇒ −στ = κ|u̇τ |p−1u̇τ on Γ3 × (0, T ).(4.12)

Such a frictional boundary condition arises when the contact surface is lubri-
cated with a thin layer of a non-Newtonian fluid and was already considered
in [10, 12]. Here κ : Γ3 → R+ is a positive function, u̇τ represents the tan-
gential velocity on the contact boundary and 0 < p ≤ 1. Using now (4.11)
it is straightforward to see that the condition (4.12) implies

u̇ 6= 0 ⇒ θ∂ν u̇+ µ∂νu = −κ|u̇τ |p−1u̇τ on Γ3 × (0, T ).

Finally, we prescribe the initial displacement,

u(0) = u0 in Ω,

where u0 is a given function on Ω.
We collect the above equations and conditions to obtain the classical

formulation of the antiplane problem for viscoelastic materials in frictional
contact with a foundation. The subscript θ indicating the dependence of the
solution on the coefficient of viscosity, the formulation is the following.

Problem Pθ. Find a displacement field uθ : Ω × [0, T ]→ R such that

θ∆u̇θ + µ∆uθ + f0 = 0 in Ω × (0, T ),(4.13)

uθ = 0 on Γ1 × (0, T ),(4.14)

θ∂ν u̇θ + µ∂νuθ = f2 on Γ2 × (0, T ),(4.15)

u̇θ 6= 0 ⇒ θ∂ν u̇θ + µ∂νuθ = −κ|u̇θτ |p−1u̇θτ on Γ3 × (0, T ),(4.16)

uθ(0) = u0 in Ω.(4.17)

Notice that once the displacement field uθ which solves Problem Pθ is
known, the associated stress tensor, denoted by σθ = (σθij), can be calculated
using formulas (4.6) in which u is replaced by uθ. We obtain

σθ11 = σθ12 = σθ21 = σθ22 = σθ33 = 0,

σθ3i = σθi3 = θu̇θ,i + µuθ,i ∀i = 1, 2.
(4.18)

The inviscid problem is obtained for θ = 0 and can be formulated as
follows.
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Problem P. Find a displacement field u : Ω × [0, T ]→ R such that

µ∆u+ f0 = 0 in Ω × (0, T ),(4.19)

u = 0 on Γ1 × (0, T ),(4.20)

µ∂νu = f2 on Γ2 × (0, T ),(4.21)

u̇ 6= 0 ⇒ µ∂νu = −µ|u̇τ |p−1u̇τ on Γ3 × (0, T ),(4.22)

u(0) = u0 in Ω.(4.23)

Clearly, problem P represents the variational formulation of the an-
tiplane frictional contact problem for linear elastic materials, i.e. the problem
obtained when (4.5) is replaced by the elastic constitutive law

σ = λ(tr(ε(u)))I + 2µε(u).

Notice that in this case, taking θ = 0 in (4.6), we obtain

σ11 = σ12 = σ21 = σ22 = σ33 = 0,

σ3i = σi3 = µu,i ∀i = 1, 2.
(4.24)

The mathematical analysis of the antiplane contact problems Pθ and P
will be provided in the next section.

5. Existence, uniqueness and convergence results. We now derive
the variational formulation of Problems Pθ and P. We show that these
formulations are of the form (1.1)–(1.2), (1.3)–(1.4), respectively, and then
we apply the abstract results of Theorems 2.1, 2.2 and 3.1.

To this end, in this section we shall specify the space V as follows:

V = {v ∈ H1(Ω) | v = 0 on Γ1}.
Here and below we write v for the trace γv of v on Γ . Moreover, we use ∇
for the gradient operator on Ω, i.e. ∇v = (v,1, v,2).

On V we consider the inner product of the Sobolev space H1(Ω), that
is,

(u, v)V =
�

Ω

uv dx+
�

Ω

∇u · ∇v dx ∀u, v ∈ V,

and let ‖ · ‖V be the associated norm, i.e.

‖v‖2V =
�

Ω

|v|2 dx+
�

Ω

|∇v|2 dx ∀v ∈ V.(5.1)

Notice that V is a closed subspace of H1(Ω) and therefore (V, ‖ · ‖V ) is a
real Hilbert space.

In the study of the mechanical problems Pθ and P, we assume that the
forces and tractions have the regularity

f0 ∈W 1,2(0, T ;L2(Ω)), f2 ∈W 1,2(0, T ;L2(Γ2)),(5.2)
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the function κ satisfies

κ ∈ L∞(Γ3), κ(x) ≥ 0 a.e. x ∈ Γ3,(5.3)

and the initial data satisfies
u0 ∈ V.(5.4)

In the study of Problem P we also assume that

(5.5) µ
�

Ω

∇u0 · ∇v dx+
1

p+ 1

�

Γ3

κ|v|p+1 da

≥
�

Ω

f0(0)v dx+
�

Γ2

f2(0)v da ∀v ∈ V.

Notice that inequality (5.5) represents a compatibility condition on the ini-
tial and boundary data which, physically, guarantees that the initial state
of the elastic body is an equilibrium one.

Using Green’s formula and the inequality

|a|p−1a(b− a) ≤ 1
p+ 1

|b|p+1 − 1
p+ 1

|a|p+1 ∀a, b ∈ R, a 6= 0,

it is straightforward to derive the following variational formulation of Prob-
lem Pθ.

Problem PVθ . Find a displacement field uθ : [0, T ]→ V such that

(5.6) θ
�

Ω

∇uθ(t) · (∇v −∇u̇θ(t)) dx+ µ
�

Ω

∇uθ(t) · (∇v −∇u̇θ(t)) dx

+
1

p+ 1

�

Γ3

κ|v|p+1 da− 1
p+ 1

�

Γ3

κ|u̇θ(t)|p+1 da

≥
�

Ω

f0(t)(v − u̇θ(t)) dx+
�

Γ2

f2(t)(v − u̇θ(t)) da

∀v ∈ V, a.e. t ∈ (0, T ),
(5.7) uθ(0) = u0.

Alternatively, the variational formulation of Problem P is the following.

Problem PV . Find a displacement field u : [0, T ]→ V such that

(5.8) µ
�

Ω

∇u(t) · (∇v −∇u̇(t)) dx

+
1

p+ 1

�

Γ3

κ|v|p+1 da− 1
p+ 1

�

Γ3

κ|u̇(t)|p+1 da

≥
�

Ω

f0(t)(v − u̇(t)) dx+
�

Γ2

f2(t)(v − u̇(t)) da

∀v ∈ V, a.e. t ∈ (0, T ),
(5.9) u(0) = u0.
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Our main result in this section is the following.

Theorem 5.1.

(a) Under the assumptions (5.2)–(5.4) there exists a unique solution uθ ∈
W 1,2(0, T ;V ) to problem PVθ .

(b) Under the assumptions (5.2)–(5.5) there exists a unique solution u ∈
W 1,2(0, T ;V ) to problem PV .

(c) Let (5.2)–(5.5) hold , denote by uθ and u the solutions obtained above,
and let σθij and σij be the components of the corresponding stress
fields given by (4.18) and (4.24), respectively. Then

uθ → u in C([0, T ];V ) as θ → 0,(5.10)

σθij → σij in L2(0, T ;L2(Ω)) as θ → 0, for all i, j = 1, 2, 3.(5.11)

Proof. (a) We use Riesz’s representation theorem to define the operators
A, B : V → V , the functional j : V → R+ and the function f : [0, T ] → V
by the following equalities:

(Au, v)V =
�

Γ3

∇u · ∇v da ∀u, v ∈ V,(5.12)

(Bu, v)V = µ
�

Γ3

∇u · ∇v da ∀u, v ∈ V,(5.13)

j(v) =
1

p+ 1

�

Γ3

κ|v|p+1 da ∀v ∈ V,(5.14)

(f(t), v)V =
�

Ω

f0(t)v dx+
�

Γ2

f2(t)v da ∀v ∈ V, t ∈ [0, T ].(5.15)

Since measΓ1 > 0, the Friedrichs–Poincaré inequality holds, that is,
there exists a positive constant CP (which depends only on Ω and Γ1) such
that

‖u‖2V ≤ CP
�

Ω

|∇u|2 dx ∀u ∈ V.(5.16)

Using (5.1) and (5.16) it is easy to see that the operators A and B
satisfy conditions (2.1) and (2.2). Clearly the functional j defined by (5.15)
is convex. Moreover, by Sobolev’s trace theorem we deduce that there exists
C0 > 0 (depending only on Ω and Γ ) such that

( �

Γ

|v|2 da
)1/2

≤ C0‖v‖V ∀v ∈ V.

Therefore (5.3) implies that j is continuous and hence it satisfies condition
(2.3). Also, from (5.2) it follows that f satisfies condition (2.4) and, in view
of (5.4), it follows that (2.5) also holds. The existence of a unique solution



66 M. Sofonea and M. A. Mansour

uθ ∈W 1,2(0, T ;V ) of Problem PVθ is now a consequence of Theorem 2.1 and
equalities (5.12)–(5.15).

(b) It follows from (5.13)–(5.15) and (5.5) that

(Bu0, v)V + j(v) ≥ (f(0), v)V ∀v ∈ V,
and therefore condition (2.6) is satisfied. The existence of a unique solution
u ∈W 1,2(0, T ;V ) of Problem PV is now a consequence of Theorem 2.2 and
equalities (5.12)–(5.15).

(c) The convergence result (5.10) follows from the second part of Theo-
rem 3.1 (see (3.2)). Next, we recall that from (4.18) and (4.24) we have to
prove (5.11) only for i = 1, 2 and j = 3. Let i ∈ {1, 2}. Then

σθ3i = σθi3 = θu̇θ,i + µuθ,i, σ3i = σi3 = µu,i,

and since uθ, u ∈ W 1,2(0, T ;V ), it follows that σθi3 ∈ L2(0, T ;L2(Ω)) and
σi3 ∈W 1,2(0, T ;L2(Ω)). Moreover,

‖σθi3(t)− σi3(t)‖2L2(Ω) = θ
�

Ω

|u̇θ,i(t)|2 dx+ µ
�

Ω

|uθ,i(t)− u,i(t)|2 dx

≤ θ
�

Ω

|∇u̇(t)|2 dx+ µ
�

Ω

|∇uθ(t)−∇u(t)|2 dx a.e. t ∈ (0, T ).

By (5.1) we obtain

T�

0

‖σθi3(t)− σi3(t)‖2L2(Ω) dt ≤ θ
T�

0

‖u̇θ‖2V dt+ µ

T�

0

‖uθ(t)− u(t)‖2V dt.

We use again (3.1) and (3.2) to deduce that

T�

0

‖σθi3(t)− σi3(t)‖2L2(Ω) dt→ 0 as θ → 0,

which shows (5.11) for i = 1, 2 and j = 3, concluding the proof.

We now provide a mechanical interpretation of Theorem 5.1.
An element uθ which solves Problem PVθ is called a weak solution of the

viscoelastic problem Pθ, while u solving Problem PV is a weak solution of
the elastic problem P. We conclude by Theorem 5.1(a,b) that the antiplane
contact problems Pθ and P have unique weak solutions. Also, from Theo-
rem 5.1(c) we conclude that the weak solution to the antiplane elastic prob-
lem with friction may be approached by the weak solution to the antiplane
viscoelastic problem with friction as the viscosity is small enough. Besides
the mathematical interest of this result, it is of importance from the mechan-
ical point of view, as it indicates that elasticity with friction may be consid-
ered as a limit case of viscoelasticity with friction as the viscosity decreases.
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