
APPLICATIONES MATHEMATICAE34,1 (2007), pp. 29�38

Paweª Bªa»ej (Wroªaw)
ROBUST ESTIMATION OF THE SCALEAND WEIGHTED DISTRIBUTIONS

Abstrat. The onept of robustness given by Zieli«ski (1977) is onsid-ered in ases where violations of models are generated by weight funtions.Uniformly most bias-robust estimates of the sale parameter, based on orderstatistis, are obtained for some statistial models. Extensions of results ofZieli«ski (1983) and Bartoszewiz (1986) are given.1. Preliminaries. Let X and Y be random variables with absolutelyontinuous distributions F and G respetively and F (0) = G(0) = 0. Denoteby SF the support and by F−1(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1), thequantile (or reversed) funtion of F , and similarly for G.We reall some basi fats about stohasti orders. We say that a randomvariable X is smaller than Y in the stohasti order (F ≤st G) if F (x) ≥ G(x)for every x.We say that X is smaller than Y in the star order (F ≤∗ G) if G−1F (x)/xis non-dereasing on SF where G−1F denotes the omposition of G−1 and F.We say that X is smaller than Y in the onvex order (F ≤c G) if G−1F (x)is onvex on SF . It is well known that the onvex order implies the star order.A distribution F is said to be IFR (inreasing failure rate) if F ≤c Gwhere G is an exponential distribution. Let X1:n, . . . , Xn:n be order statistisin a sample X1, . . . , Xn from the distribution F and let Fi:n denote thedistribution of Xi:n, i = 1, . . . , n; Gi:n is de�ned similarly. It is well knownthat if F ≤st G then Fi:n ≤st Gi:n; also if F ≤c G (resp. F ≤∗ G) we obtain
Fi:n ≤c Gi:n (resp. Fi:n ≤∗ Gi:n) for any i.We will use the following lemma:2000 Mathematis Subjet Classi�ation: 60E15, 60E07, 62N05.Key words and phrases: weighted distribution, IFR, DFR, partial orders of distribu-tions.Researh supported by KBN Grant N20104631/3733.[29℄ © Instytut Matematyzny PAN, 2007



30 P. Bªa»ejLemma 1 (Barlow and Proshan, 1966). If F ≤∗ G then E[Xi:n]/E[Yi:n]is a non-dereasing funtion of i = 1, . . . , n.Let F be a distribution funtion, and w : R → R
+ suh that 0 <

E[w(X)] < ∞. Then
Fw(x) =

1

E[w(X)]

x\
0

w(z) dF (z)is the weighted distribution assoiated with F with weight funtion w. Theweighted distribution Fw has a density
fw(x) =

w(x)f(x)

E[w(X)]
.The idea of weighted distributions is due to Fisher (1934). Rao (1965) de-�ned weighted distributions with a general weight funtion w. Rao and Patil(1977) provided some statistial models leading to weighted distributions andapplied their results to the analysis of data relating to human population andeology. Patil and Ord (1976) de�ned some lasses of distributions whih areinvariant under weighting with weight funtions of type xα, α > 0. Bayarriand Berger (1998) and also Chung and Kim (2004) onsidered robustnessfor weighted distributions from the Bayesian point of view.Many authors, e.g. Jain et al. (1989) and Bartoszewiz and Skolimowska(2006), studied preservation of lasses of life distributions under weighting.The following result will be used.Lemma 2 (Jain et al., 1989). If F is IFR, and w is inreasing and on-ave, then Fw is IFR.2. Introdution. Zieli«ski (1977) proposed the following onept of ro-bustness. Let the original statistial model be M0 = (X ,A,P0) where (X ,A)is a given measurable spae and P0 is a given subset of the lass P of allprobability measures. Let π : P0 → 2P be a funtion alled a violation of M0whih has the property: P ∈ π(P ) for all P ∈ P0. De�ne P1 =

⋃

P∈P0
π(P ).Thus M1 = (X ,A,P1) is an extension of the model M0. Let T be a suitablestatisti with distribution P T (·) = P (T−1(·)) and ̺ be a real-valued funtionon P1. We have the following de�nitions.Definition 1 (Zieli«ski, 1977). The funtion rT : P0 → R

+ de�ned as
rT (P ) = sup{̺(QT ) : Q ∈ π(P )} − inf{̺(QT ) : Q ∈ π(P )}is alled the ̺-robustness of the statisti T in M1.Definition 2 (Zieli«ski, 1977). A statisti T 0 is uniformly most ̺-robustin a given lass T of statistis if

rT 0(P ) ≤ rT (P )for every P ∈ P0 and T ∈ T .



Robust estimation of the sale 31Zieli«ski (1983) and Bartoszewiz (1986) used the above de�nitions tosolve the problem of robustness of unbiased estimation of the sale parameterin some models.Example 1 (Bartoszewiz, 1986). Consider the statistial model
M0 = (R+,B+, {F (·; θ) : θ > 0}),where {F (·; θ) : θ > 0} is a lass of distributions with sale parameter θ (i.e.

F (x; θ) = F (x/θ)).For �xed ontinuous distributions H, K, where H(0) = K(0) = 0 and
H ≤st K, for every θ we de�ne πH,K(θ) to be any set of distributions G(·; θ)satisfying the following onditions:(i) H(·; θ) ≤st G(·; θ) ≤st K(·; θ) for every G(·; θ) ∈ πH,K(θ), where

H(x; θ) = H(x/θ), K(x; θ) = K(x/θ);(ii) H(·; θ), K(·; θ) ∈ πH,K(θ);(iii) πH,K(θ′) ∩ {F (·; θ) : θ > 0} = {F (·; θ′)} for every θ′ > 0.The set πH,K(θ) is alled a violation of M0 generated by stohasti order.Let T be the following lass of unbiased estimates of the sale parameter θbased on a sample X1, . . . , Xn:
T =

{

T =
n

∑

j=1

ajXj:n : aj ≥ 0, j = 1, . . . , n, Eθ[T ] = θ, θ > 0
}

,where Eθ[T ] is the expeted value of T if the underlying distribution is
F (·; θ). The problem is to �nd the uniformly bias-robust (under the aboveviolation) estimate of θ in the lass T . Bartoszewiz (1986), using Lemma 1,proved the following theorem.Theorem 1 (Bartoszewiz, 1986). Under the violation πH,K(θ) of themodel M0:(i) if H(·; θ) ≤∗ F (·; θ) ≤∗ K(·; θ) then X1:n/E1[X1:n] is the uniformlymost bias-robust estimate of θ in T ;(ii) if K(·; θ) ≤∗ F (·; θ) ≤∗ H(·; θ) then Xn:n/E1[Xn:n] is the uniformlymost bias-robust estimate of θ in T .In this paper we give an extension of Theorem 1. We onsider the viola-tion of the original model M0 whih is de�ned by a ertain lass of weightfuntions.3. Results. Let us onsider the statistial model

M0 = (R+,B+; {F (·; θ) : θ ∈ R
+}),where R

+ is the real positive half-line, B+ is the family of Borel subsetsof R
+ and {F (·; θ) : θ ∈ R

+} is a family of distributions with sale parameter
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θ ∈ R

+. This model is violated in suh a way that in fat for any θ we observethe weighted distributions Fw(·; θ) where w belongs to a suitable lass W offuntions.Next we de�ne the following lass of funtions. For �xed a < 0 and
b > 0, Wa,b is the lass of non-negative funtions whih satisfy the followingonditions:(i) w(x)/xb is non-inreasing,(ii) w(x)/xa is non-dereasing.It is obvious that the onstant funtions belong to Wa,b. Next we prove thefollowing theorem.Theorem 2. For every distribution F and w ∈ Wa,b we have

Fxa ≤st Fw ≤st Fxb .Proof. The proof is similar to the proof of Theorem 4.1 in Arnold (1980).We will prove only Fw ≤st Fxb . It su�es to show that(1) Fw(x) − Fxb(x) ≥ 0 for every x.We have
1

E[w(X)]

x\
0

w(z) dF (z) −
1

E[Xb]

x\
0

zb dF (z)

=
1

E[w(X)]

F (x)\
0

w(F−1(u)) du −
1

E[Xb]

F (x)\
0

(F−1(u))b du

=
1

E[w(X)]

F (x)\
0

[

w(F−1(u)) − (F−1(u))b E[w(X)]

E[Xb]

]

du.Sine the funtion w(F−1(u))/(F−1(u))b is non-inreasing in u and
1

E[w(X)]

1\
0

[

w(F−1(u)) − (F−1(u))b E[w(X)]

E[Xb]

]

du = 0,the integrand
w(F−1(u)) − (F−1(u))b E[w(X)]

E[Xb]is �rst positive then negative as u varies from 0 to 1. Thus (1) holds. Theproof of the inequality Fxa ≤st Fw is similar.Using {F (·; θ) : θ > 0} and Wa,b we an onstrut the following lass ofdistributions:
πa,b(θ) = {Fw(·; θ) : w ∈ Wa,b},



Robust estimation of the sale 33It is obvious that for every θ > 0 we have F (·; θ) ∈ πa,b(θ). Next we give thefollowing haraterization of the family {πa,b(θ) : θ > 0}.Theorem 3. Let {F (·; θ) : θ > 0} be the lass of distributions with saleparameter θ and f(·; θ) be a density of F (·; θ). If for any w ∈ Wa,b and θ 6= θ′the funtion w(·)f(·; θ′)/f(·; θ) is not in Wa,b, then(2) πa,b(θ
′) ∩ {F (·; θ) : θ > 0} = {F (·; θ′)}and(3) πa,b(θ

′) ∩ πa,b(θ) = ∅.Proof. For w(x) ≡ 1 we obtain f(·; θ′)/f(·; θ) /∈ Wa,b, whih yields (2).To prove (3) suppose there exist w1, w2 suh that θ 6= θ′ and Fw1
(x; θ) =

Fw2
(x; θ′) for every x. Then

Fw1
(x; θ′) =

1

E[w1(X)]

x\
0

w1(z)f(z; θ′) dz

=
1

E[w1(X)]

x\
0

w1(z)
f(z; θ′)

f(z; θ)
f(z; θ) dz.Thus w2(z) = w1(z)f(z; θ′)/f(z; θ) ∈ Wa,b.Let T ∈ T . Denote by Ew;θ[T ] the expeted value of T if the underlyingdistribution is Fw(·; θ). Obviously Eθ[T ] denotes the expeted value of T if

w(x) = const.Let
rT (θ) = sup

Fw(·;θ)∈πa,b(θ)
Ew;θ[T ] − inf

Fw(·;θ)∈πa,b(θ)
Ew;θ[T ]be the osillation of the bias of T over πa,b(θ). This funtion is a measure ofrobustness of the estimate T with respet to the bias violation. Our problemis to �nd T 0 suh that rT 0(θ) ≤ rT (θ) for every θ and T ∈ T .It is well known that if F ≤st G then E[Xi:n] ≤ E[Yi:n] for any i. Thusfrom Theorem 2 we obtain(4) inf

Fw(·;θ)∈πa,b(θ)
Ew;θ[T ] = Exa;θ[T ], sup

Fw(·;θ)∈πa,b(θ)
Ew;θ[T ] = Exb;θ[T ].Similarly to Zieli«ski (1983), the problem of �nding T 0 is redued to mini-mizing

n
∑

j=1

aj(Exb;θ[Xj:n] − Exa;θ[Xj:n]) for every θunder the unbiasedness ondition
n

∑

j=1

ajEθ[Xj:n] = θ, θ > 0,



34 P. Bªa»ejwhih is equivalent to
n

∑

j=1

ajE1[Xj:n] = 1.

For every T ∈ T from (4) we have
rT (θ) =

n
∑

j=1

aj(Exb;θ[Xj:n] − Exa;θ[Xj:n]) ≥ min
1≤j≤n

Exb;θ[Xj:n] − Exa;θ[Xj:n]

E1[Xj:n]
.

Thus from the fat Fxα(x; θ) = Fxα(x/θ; 1), α > 0, we obtain
T 0 =

Xj:n

E1[Xj:n]
for some j = 1, . . . , n.Remark 1. It is not to hard to see that a similar result an be obtainedif the weight funtion depends on the sale parameter θ, i.e. wθ(x) = w(x/θ).4. Robust estimation of the sale parameter in the weighted ex-ponential model. Let the original model be M0 = (R+,B+, {F (·; θ) : θ>0})where F (·; θ) is an exponential distribution funtion with sale parameter θ.We give an extension of M0 under weighting. De�ne

πa,b(θ) = {Fw(·; θ) : w ∈ Wa,b}, where −1 < a < 0, b > 0.Thus we obtain
M1 = (R+,B+, {πa,b(θ) : θ > 0}).It is well known that in this ase Fxα(·, θ) is the gamma distribution withshape parameter α + 1. A trivial veri�ation shows that πa,b satis�es ondi-tions (2) and (3). Thus, we an formulate the following theorem.Theorem 4. Under the violation πa,b of the model M0, the uniformlymost bias-robust estimate of the sale parameter in the lass T is

T 0 =
Xn:n

1 + 1
2 + · · · + 1

n

.Proof. This follows immediately from Theorem 1 in Bartoszewiz (1986).We hek at one that
Fxa(·; θ) ≤st F (·; θ) ≤st Fxb(·; θ)by Theorem 2. It is well known that
Fxb(·; θ) ≤∗ F (·; θ) ≤∗ Fxa(·; θ)and it su�es to use Lemma 1.It is easy to see that the above model is an extension of the model on-sidered by Bartoszewiz (1986).



Robust estimation of the sale 355. Robust estimation of the sale parameter in the weighteduniform model5.1. Uniform model. Let the original model be M0 = (R+,B+, {F (·; θ) :
θ > 0}) where F (·; θ) is the uniform distribution on (0, θ). We give an ex-tension of M0 under weighting. De�ne

πa,b(θ) = {Fw(·; θ) : w ∈ Wa,b}, −1 < a < 0, b > 0.Thus we have
M1 = (R+,B+, {πa,b(θ) : θ > 0}).We an formulate the following theorem.Theorem 5. Under the violation πa,b of M0, the uniformly most bias-robust estimate of the sale parameter in the lass T is

T 0 = (n + 1)Xn:n/n.Proof. The proof is similar to the proof of Theorem 1.As previously, this model is an extension of the model onsidered inBartoszewiz (1986). Next we give an extension of the uniform model.5.2. Uniform model with monotone weight funtion. Now we will on-sider more general situations than the one onsidered in Setion 5.1.Let the original model be M0 = (R+,B+, {F (·; θ) : θ > 0}) where F (·; θ)is the uniform distribution on (0, θ). Let us de�ne the following set of distri-butions:
πW(θ) = {Fw(·; θ) : w ∈ W}where W is the lass of positive, monotone weight funtions. We obtain anextension of M0:

M1 = (R+,B+, {πW(θ) : θ > 0}).It is obvious that in this ase weighted distributions have monotone densitieson [0, θ] and if w is non-dereasing then(5) Fw(·; θ) ≤c F (·; θ) and F (·; θ) ≤st Fw(·; θ) for every θ,and similarly if w is non-inreasing then(6) F (·; θ) ≤c Fw(·; θ) and Fw(·; θ) ≤st F (·; θ) for every θ.Let W ′ be the lass of funtions w whih are non-dereasing, and W ′′ thelass of funtions w whih are non-inreasing. We hek at one that
inf

Fw(·;θ)∈πW (θ)
Ew;θ[T ] = inf

Fw(·;θ)∈π
W′′ (θ)

Ew;θ[T ],

sup
Fw(·;θ)∈πW (θ)

Ew;θ[T ] = sup
Fw(·;θ)∈π

W′ (θ)
Ew;θ[T ]for any T ∈ T . We an formulate the following lemma.



36 P. Bªa»ejLemma 3. For any w′ ∈ W ′, w′′ ∈ W ′′ and T ∈ T we have
Ew′;θ[T ] − Ew′′;θ[T ] ≥

Ew′;θ[Xn:n] − Ew′′;θ[Xn:n]

E1[Xn:n]
.Proof. It is easy to see from Theorem 1 that for any w′,w′′ and T ∈ Twe have

Ew′;θ[T ] − Ew′′;θ[T ] ≥ min
1≤i≤n

Ew′;θ[Xi:n] − Ew′′;θ[Xi:n]

E1[Xi:n]
.Thus from (5), (6) and Lemma 1 we infer that

Xn:n

E1[Xn:n]minimizes Ew′;θ[T ] − Ew′′;θ[T ] for every T ∈ T and every θ.Now we an formulate the following theorem.Theorem 6. Under the violation πW of the model M0, the uniformlymost bias-robust estimate of the sale parameter in the lass T is
T 0 = (n + 1)Xn:n/n.Proof. This follows from Lemma 3.

6. Estimation of the sale parameter in the weighted expo-nential model with monotone failure rate. Let the original model be
M0 = (R+,B+, {F (·; θ) : θ > 0}) where F (·; θ) is an exponential distributionfuntion with sale parameter θ. Let W be the lass of funtions w whihare inreasing and onave. Assume also that w(x) ≡ 1 belongs to W andfor every w ∈ W we have

lim
x→∞

w(x)e−λx = 0, 0 < λ < 1.De�ne
πW(θ) = {Fw(·; θ) : w ∈ W}.Clearly πW(θ) satis�es onditions (2) and (3).Consider the extension of M0 under weighting

M1 = (R+,B+, {πW(θ) : θ > 0}).The problem is to �nd T 0 ∈ T , the uniformly most bias-robust estimate ofthe sale parameter under the violation πW . Clearly we have(7) F (·; θ) ≤st Fw(·; θ), w ∈ W ,



Robust estimation of the sale 37beause w is inreasing. Thus we hek at one that(8) inf
w∈W

Ew;θ[T ] = Eθ[T ]for any T ∈ T .By de�nition of IFR distribution and Lemma 2,
Fw(·; θ) ≤c F (·; θ) for any w ∈ W and every θ.We an formulate the following lemma similar to Lemma 3, and a theoremsimilar to Theorem 6.Lemma 4. For any w ∈ W and T ∈ T we have

Ew;θ[T ] − Eθ[T ] ≥
Ew;θ[Xn:n] − Eθ[Xn:n]

E1[Xn:n]
.Theorem 7. Under the violation πW of the model M0 the uniformlymost bias-robust estimate of the sale parameter is

T 0 =
Xn:n

1 + 1
2 + · · · + 1

n

.Proof. This follows from (7), (8) and Lemma 4.
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