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CHARACTERIZING EXPERIMENTAL DESIGNSBY PROPERTIES OF THESTANDARD QUADRATIC FORMS OF OBSERVATIONS

Abstrat. For any orthogonal multi-way lassi�ation, the sums ofsquares appearing in the analysis of variane may be expressed by the stan-dard quadrati forms involving only squares of the marginal and total sumsof observations. In this ase the forms are independent and nonnegative def-inite. We haraterize all two-way lassi�ations preserving these propertiesfor some and for all of the standard quadrati forms.1. Bakground. Consider an experimental design with two-way lassi-�ation of observations. Let yijk be the kth observation in the (i, j)th ell,and let
y = (y111, . . . , y11n11

; . . . ; ytv1, . . . , ytvntv)
Tbe the vetor omposed of the observations. A statistial model of y is usuallyderived from the following framework:(1.1) yijk = µ + αi + βj + γij + eijk,

i = 1, . . . , t; j = 1, . . . , v; k = 1, . . . , nij , where µ, αi, βj and γij are deter-ministi real values, while eijk is a random quantity representing the exper-imental error. The following assumptions about the error are standard:(a) Vanishing expetation, i.e. E(eijk) = 0 for all i, j and k,(b) Homogeneity of varianes, say var(eijk) = σ2 for all i, j and k,() Vanishing ovarianes, i.e. cov(eijk, ei′j′k′) = 0 for (ijk) 6= (i′j′k′).For testing problems an additional assumption about the distribution of thevetor y is required. Usually it is assumed that eijk is normally distributed.2000 Mathematis Subjet Classi�ation: Primary 05B06, 62K10; Seondary 51E05,15A27.Key words and phrases: 2-way lassi�ation, standard quadrati forms, independene,nonnegative de�niteness, haraterization of designs.[39℄ © Instytut Matematyzny PAN, 2007



40 C. St�pniakConsequently, (1.1) leads to the following model:(1.2) yijk ∼ N (µ + αi + βj + γij , σ
2) and are independent.We mention that the quantities µ, αi, βj and γij are not parametersin the proper sense, beause they are not identi�able by distributions. Thestandard likelihood ratio tests for hypotheses onerning α's, β's and γ's arebased on the following quadrati forms of y:

SA = min
µ

∑

i,j,k

(yijk − µ)2 − min
µ,αi

∑

i,j,k

(yijk − µ − αi)
2,(1.3)

SB = min
µ

∑

i,j,k

(yijk − µ)2 − min
µ,βj

∑

i,j,k

(yijk − µ − βj)
2,(1.4)

SA,B = min
µ,αi,βj

∑

i,j,k

(yijk − µ − αi − βj)
2(1.5)

− min
µ,αi,βj

,γij

∑

i,j,k

(yijk − µ − αi − βj − γij)
2,

SE = min
µ,αi,βj

,γij

∑

i,j,k

(yijk − µ − αi − βj − γij)
2(1.6)

(f. She�é, 1959, or Lehmann, 1986). These quadratis represent the sumsof squares for α, β, interation α × β and error, respetively.It will be shown that the sums of squares (1.3), (1.4) and (1.6) redue,respetively, to the quadrati forms
QA(y) =

∑

i

y2

i.

ni.
−

y2

n
,(1.7)

QB(y) =
∑

j

y2

.j

n.j
−

y2

n
,(1.8)

QE(y) =
∑

i,j,k

y2

ijk −
∑

i,j

y2

ij

nij
,(1.9)

where yij =
∑

k yijk, yi. =
∑

j yij , y.j =
∑

i yij and y =
∑

i yi., but omput-ing the sum of squares SA,B may not be easy in general. Fortunately, as wewill show in the next setions, this omputation simpli�es onsiderably inthe ase of proportional frequenies in ells, i.e. when(1.10) nij =
ni.n.j

n
for i = 1, . . . , t; j = 1, . . . , v,where ni. =

∑

j nij , n.j =
∑

i nij and n =
∑

i,j nij .The ondition (1.10) may be written in the onise form rank(N) = 1,where N = (nij) is the inidene matrix. It will be shown that in this regular



Charaterizing experimental designs 41ase SA,B may be represented as the quadrati form(1.11) QA,B(y) =
∑

i,j

y2

ij

nij
−

∑

i

y2

i.

ni.
−

∑

j

y2

.j

n.j
+

y2

n
.

Of ourse the expression (1.11) makes sense for arbitrary N with positiveentries, although it may no longer oinide with the sum of squares SA,B . Weshall refer to (1.11) as the standard quadrati form. The aim of this paperis to haraterize the experimental designs (i.e. matries N) for whih thequadrati form QA,B:(i) oinides with the orresponding sum of squares SA,B ,(ii) is nonnegative de�nite,(iii) is independent of the other quadrati forms QA, QB and QE .Throughout this paper we shall assume that the inidene matrix N = (nij)is omplete in the sense that(1.12) nij > 0 for all i = 1, . . . , t; j = 1, . . . , v,i.e. all ells in the two-way lassi�ation are non-empty.2. Sums of squares in a two-way lassi�ation with proportionalfrequenies. Most of the statistial literature on this subjet fouses onexperiments with equal frequenies (f. She�é, 1959, or Lehmann, 1986), oron general experiments with arbitrary frequenies in ells (see Searle, 1971).It is understandable that in the latter ase the formulae derived are ratherfar from being expliit. Some more omplete results onerning proportionalfrequenies an be found in Oktaba and Mikos (1970) in the ontext of modelswith restraints (weighted and nonweighted). They noted that the two kindsof restraints may lead to di�erent tests. To avoid this disadvantage, we shalluse a oordinate-free approah (f. Lehmann, 1986, Set. 7) based on theformulae (1.3)�(1.6).Let us rewrite model (1.2) in vetor-matrix form(2.1) y ∼ N (µ1n + Aα + Bβ + Cγ, σ2In),where y is the observation n-vetor, α = (α1, . . . , αt)
T , β = (β1, . . . , βv)

Tand γ = (γ11, . . . , γtv)
T are vetors of parameters, An×t = [a1, . . . ,at] and

Bn×v = [b1, . . . ,bv] are matries of zeros and ones satisfying the onditions(2.2) t
∑

i=1

ai =

v
∑

j=1

bj = 1n,while(2.3) Cn×tv = [c11, . . . , ctv]



42 C. St�pniakis the matrix with olumns cij = ai ∗ bj , i = 1, . . . , t; j = 1, . . . , v, where ∗denotes the Hadamard produt of vetors (see e.g. St�pniak, 1983).We shall proveTheorem 1. Given a omplete inidene matrix N = (nij) let yijk,
i = 1, . . . , t; j = 1, . . . , v; k = 1, . . . , nij , be observations represented by(1.1), SA, SB , SA,B and SE be the sums of squares de�ned by (1.3)�(1.6),and QA, QB, QE and QA,B be the quadrati forms of the observations de�nedby (1.7)�(1.9) and (1.11). Then SA = QA, SB = QB and SE = QE , while
SA,B = QA,B providing rank(N) = 1.The proof of this theorem is based on the following lemma:Lemma 1. Let a1, . . . ,at and b1, . . . ,bv be arbitrary n-vetors of zerosand ones satisfying the onditions (2.2), cij , i = 1, . . . , t; j = 1, . . . , v, bevetors de�ned by (2.3), N = (nij) be the omplete matrix de�ned by nij =
aT

i bj , with marginals ni. and n.j for i = 1, . . . , t; j = 1, . . . , v, and 1n, A,
B and C be the matries appearing in (2.1). Then the orthogonal projetoronto the olumn spae of [A,B] is given by

P =
t

∑

i=1

1

ni.
aia

T
i +

v
∑

j=1

1

n.j
bjb

T
j −

1

n
1n1

T
nproviding the ondition (1.10) holds.Proof. Let us rewrite P in the form(2.4) P = P1 + P2 + P3,where

P1 =
t

∑

i=1

1

ni.
aia

T
i −

1

n
1n1

T
n ,(2.5)

P2 =
v

∑

j=1

1

n.j
bjb

T
j −

1

n
1n1

T
n ,(2.6)

P3 =
1

n
1n1

T
n .(2.7)First we will show that(2.8) PiPj =

{

Pi if i = j,

0 otherwise.It is easy to verify that P2

i = Pi for i = 1, 2, 3 and P1P3 = P2P3 = 0.Moreover,
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P1P2 =

( t
∑

i=1

1

ni.
aia

T
i −

1

n
1n1

T
n

)( v
∑

j=1

1

n.j
bjb

T
j −

1

n
1n1

T
n

)

=
∑

i,j

nij

ni.n.j
aib

T
j −

1

n

∑

i

ai1
T
n −

1

n

∑

j

1nb
T
j +

1

n
1n1

T
n .Thus, by (1.10) and (2.2), we get

P1P2 =
1

n

∑

i

ai

(

∑

j

bT
j − 1T

n

)

−
1

n
1n

(

∑

j

bT
j − 1T

n

)

= 0.In this way we have proved (2.8), whih implies that P is idempotent.Now it remains to show that range(P) = range([a1, . . . ,at,b1, . . . ,bv]).Indeed, Px = 0 for any vetor x suh that aT
i x = bT

j x = 0 for all i and j.Moreover, by (2.2), rank([a1, . . . ,at,b1, . . . ,bv]) ≤ t+v−1, while rank(P) =
t + v − 1. This implies the desired ondition and ompletes the proof of thelemma.Proof of Theorem 1. In vetor-matrix notation the sums of squares (1.3)�(1.6) may be expressed as

SA(y) = ‖y − P1ny‖
2 − ‖y − PAy‖2 = yT PAy −

1

n
yT1n1

T
ny = yTP1y,

SB(y) = ‖y − P1ny‖
2 − ‖y − PBy‖2 = yTPBy −

1

n
yT1n1

T
ny = yT P2y,

SA,B(y) = ‖y − Py‖2 − ‖y − PCy‖2 = yTPCy − yTPy,

SE(y) = ‖y − PCy‖2 = yT y − yTPCy,where PM denotes the orthogonal projetor onto the olumn spae of M,
C is de�ned by (2.3), while P, P1 and P2 are de�ned by (2.4)�(2.5) and (2.6).Now the theorem follows from Lemma 1.3. Charaterizing experimental designs by standard quadratiforms. Let y = (y111, . . . , y11n11

; . . . ; ytv1, . . . , ytvntv)
T be subjet to the nor-mal linear model N (µ1n + Aα +Bβ +Cγ, σ2In), and let QA, QB, QE and

QA,B be de�ned by (1.7)�(1.9) and (1.11). We are interested in properties ofthe quadrati form QA,B and its relations with the remaining quadratis.Theorem 2. The quadrati form QA,B is nonnegative de�nite if and onlyif the alloation of the observations in ells is proportional , i.e. rank(N) = 1.Proof. Assume that nij = ni.n.j/n for all i and j. Then
t

∑

i=1

v
∑

j=1

y2

ij

nij
−

t
∑

i=1

y2

i.

ni.
−

v
∑

j=1

y2

.j

n.j
+

y2

n
=

∑

i,j

nij

(

yij

nij
−

yi.

ni.
−

y.j

n.j
+

y

n

)2

,implying QA,B(y) ≥ 0 for all y.



44 C. St�pniakConversely, assume that QA,B(y) ≥ 0 for all y and set
yij =

{

nij if j = k,0 otherwise,where k is �xed but arbitrary. Then QA,B(y) redues to n2

.k/n−
∑

i n
2

.k/ni.,and onsequently, it may be presented in the form QA,B(y) = −nVar(X),where X is a random variable taking values xi = nik/ni. with probabilities
pi = ni./n for i = 1, . . . , t. Thus the ondition QA,B(y) ≥ 0 for all y implies(3.1) nik = cni., i = 1, . . . , t,for some c. On the other hand, by the de�nition n.k =

∑

i nik we get(3.2) c =
n.k

n
.Combining (3.1) and (3.2) we obtain nik = ni.n.k/n for i = 1, . . . , t. Thisompletes the proof of neessity, and hene the proof of Theorem 2.Now let us examine onditions for independene of the quadrati forms

QA, QB , QA,B and QE .Theorem 3. Let y = (y111, . . . , y11n11
; . . . ; ytv1, . . . , ytvntv)

T be subjetto the normal linear model N (µ1n +Aα+Bβ+Cγ, σ2In), and let QA, QB,
QE and QA,B be de�ned by (1.7)�(1.9) and (1.11), respetively. Then QEis always independent of the other quadrati forms. Moreover the followingonditions are equivalent :(a) rank(N) = 1,(b) QA is independent of QB,() QA is independent of QA,B,(d) QB is independent of QA,B.Proof. The �rst assertion follows immediately from the fat that in thesimple normal sample the sample mean is independent of the sample vari-ane.Next, by Craig's theorem (e.g. Mathai and Provost, 1992, p. 209 orHarville and Kempthorne, 1997) two quadrati forms yTM1y and yTM2yare independent if and only if M1M2 = 0. Reall that the matries of thequadratis QA, QB, and QA,B, may be represented in the form P1,P2 and
P0 − P1 − P2, where P1 and P2 are de�ned by (2.5) and (2.6), while

P0 =
∑

i,j

1

nij
cijc

T
ij −

1

n
1n1

T
n .(a)⇔(b). We observe that

P1P2 =

v
∑

j=1

( t
∑

i=1

nij

ni.n.j
ai −

1

n
1n

)

bT
j ,
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P1P2 =

v
∑

j=1

t
∑

i=1

(

nij

ni.n.j
−

1

n

)

aib
T
j .Thus we get the equivalene of (a) and (b).(a)⇔() and (a)⇔(d). Sine Pi is idempotent for i = 0, 1, 2, and P0Pi =

Pi for i = 1, 2, we get (P0 −P1 −P2)P1 = P2P1 and (P0 −P1 −P2)P2 =
P1P2. Now the desired results follow from the equivalene of (a) and (b).This ompletes the proof.Aknowledgements. Thanks are due to the referee for his areful read-ing and valuable omments whih led to improving the presentation of thiswork.
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