KAROL DZIEDZIUL and BARBARA WOLNIK (Gdańsk)

NOTE ON UNIVERSAL ALGORITHMS FOR LEARNING THEORY

Abstract. We study the universal estimator for the regression problem in learning theory considered by Binev *et al.* This new approach allows us to improve their results.

1. Introduction. S. Cucker and S. Smale [1] determined the scope of learning theory. We present a general approach which corresponds to [2] and [3]. The problem is the following. Let $X = [0,1]^d$ and Y = [-A, A]. On the product space $Z = X \times Y$ there is an unknown probability Borel measure ρ . We shall assume that the marginal probability measure $\rho_X(S) = \rho(S \times Y)$ on X is a Borel measure. We have

$$d\varrho(x,y) = d\varrho(y|x)d\varrho_X(x).$$

We are given the data $\mathbf{z} \subset Z$ of m independent random observations $z_j = (x_j, y_j), j = 1, \ldots, m$, identically distributed according to ϱ . We are interested in estimating the *regression function*

$$f_{\varrho}(x) := \int_{Y} y \, d\varrho(y|x)$$

in $L^2(X, \varrho_X)$ norm which will be denoted by $\|\cdot\|$.

To do it let $\mathbf{M} = \{M_v\}_{v \in T}$ denote any family of measurable functions on X such that for all $v \in T$,

(1)
$$0 \le M_v(x) \le 1, \quad x \in X,$$

and

(2)
$$\sum_{v \in T} M_v(x) = 1, \quad x \in X.$$

2000 Mathematics Subject Classification: 68T05, 41A36, 41A45, 62G05. Key words and phrases: nonparametric regression, learning theory. An example is the family $\{\chi_I\}_{I \in T}$, where χ_I denotes the indicator function of I and $\{I : I \in T\}$ is any partition of X (in [2] the sets I are dyadic cubes). Another example is obtained if we consider a triangulation T of Xwith vertices $\{v\}_{v \in T}$ and the corresponding system of functions $\{M_v\}_{v \in T}$ which are continuous on X, linear on each component of this triangulation and

$$M_v(w) = \begin{cases} 1 & \text{for vertices } w = v, \\ 0 & \text{for } w \neq v. \end{cases}$$

It is not hard to check that the family $\{M_v\}_{v \in T}$ satisfies (1) and (2).

Now for a given family \mathbf{M} we define the operator

$$Q_{\mathbf{M}}f(x) = \sum_{v \in T} c_v(f) M_v(x),$$

where

$$c_v(f) = \frac{\alpha_v(f)}{\varrho_v}, \quad \alpha_v(f) = \int_X f M_v \, d\varrho_X, \quad \varrho_v = \int_X M_v \, d\varrho_X,$$

and the estimator

$$f_{\mathbf{z}}(x) = \sum_{v \in T} c_v(\mathbf{z}) M_v(x),$$

where

$$c_v(\mathbf{z}) = \frac{\alpha_v(\mathbf{z})}{\varrho_v(\mathbf{z})}, \quad \alpha_v(\mathbf{z}) = \frac{1}{m} \sum_{j=1}^m y_j M_v(x_j), \quad \varrho_v(\mathbf{z}) = \frac{1}{m} \sum_{j=1}^m M_v(x_j).$$

If $\rho_v = 0$ then we define $c_v = 0$, and if $\rho_v(\mathbf{z}) = 0$ then we put $c_v(\mathbf{z}) = 0$. Note also that $E\alpha_v(\mathbf{z}) = \alpha_v$ (here and subsequently, $\alpha_v := \alpha_v(f_{\rho}), c_v := c_v(f_{\rho})$) and $E\rho_v(\mathbf{z}) = \rho_v$. Moreover

$$\operatorname{Var}(yM_v(x)) \leq \int_Z y^2 M_v^2(x) \, d\varrho(x,y) \leq A^2 \int_X M_v^2(x) \, d\varrho_X(x),$$

hence

(3)
$$\operatorname{Var}(yM_v(x)) \le A^2 \int_X M_v(x) \, d\varrho_X(x) = A^2 \varrho_v,$$

(4)
$$\operatorname{Var}(M_v(x)) \le E(M_v(x))^2 \le E(M_v(x)) = \varrho_v.$$

Therefore by Bernstein's inequality we have, for any $\varepsilon > 0$,

(5)
$$\operatorname{Prob}\{|\alpha_v - \alpha_v(\mathbf{z})| \ge \varepsilon\} \le 2\exp\left(-\frac{3m\varepsilon^2}{6A^2\varrho_v + 4A\varepsilon}\right),$$

(6)
$$\operatorname{Prob}\{|\varrho_v - \varrho_v(\mathbf{z})| \ge \varepsilon\} \le 2 \exp\left(-\frac{3m\varepsilon^2}{6\varrho_v + 2\varepsilon}\right).$$

The main result of this paper is

Theorem 1.1. For any family \mathbf{M} ,

$$E \|Q_{\mathbf{M}} f_{\varrho} - f_{\mathbf{z}}\|^2 = O\left(\frac{N}{m}\right),$$

where N = |T|.

The new idea of the proof presented below allows us to improve the result from [2] (in Corollary 2.2 of [2] the above expectation is bounded by $O((N/m) \log N)$).

Proof. By (1), (2) and the convexity of the square functions we have

$$E \|Q_{\mathbf{M}} f_{\varrho} - f_{\mathbf{z}}\|^2 \leq \int_{X} \sum_{v \in T} E |c_v - c_v(\mathbf{z})|^2 M_v(x) \, d\varrho_X(x)$$
$$= \sum_{v \in T} E |c_v - c_v(\mathbf{z})|^2 \varrho_v.$$

Note that if $\rho_v = 0$ then $E\rho_v(\mathbf{z}) = 0$, hence $\rho_v(\mathbf{z}) = 0 \rho^m$ -a.e. Consequently,

$$E \|Q_{\mathbf{M}} f_{\varrho} - f_{\mathbf{z}}\|^2 \leq \sum_{v \in T, \, \varrho_v > 0} E |c_v - c_v(\mathbf{z})|^2 \varrho_v.$$

Fix v such that $\rho_v > 0$. We can write

$$E|c_v - c_v(\mathbf{z})|^2 = \int_{\varrho_v(\mathbf{z}) > 0} |c_v - c_v(\mathbf{z})|^2 + \int_{\varrho_v(\mathbf{z}) = 0} |c_v|^2.$$

Note that if $\rho_v(\mathbf{z}) = 0 \ \rho^m$ -a.e. then $M_v(x_j) = 0$ for all j, hence $\alpha_v(\mathbf{z}) = 0 \ \rho^m$ -a.e. Thus

$$E|c_v - c_v(\mathbf{z})|^2 = \int_{\varrho_v(\mathbf{z})>0} |c_v - c_v(\mathbf{z})|^2 + \int_{\varrho_v(\mathbf{z})=0} \left|\frac{\alpha_v - \alpha_v(\mathbf{z})}{\varrho_v}\right|^2.$$

For $b \neq 0$ and $t \neq 0$ we use the simple inequality

(7)
$$\left|\frac{a}{b} - \frac{s}{t}\right| \le \frac{1}{|b|} |a - s| + \frac{|s|}{|bt|} |t - b|$$

to get

(8)
$$\left|\frac{a}{b} - \frac{s}{t}\right|^2 \le 2 \frac{|a-s|^2}{b^2} + 2 \frac{1}{b^2} \frac{s^2}{t^2} |t-b|^2,$$

which in particular gives

$$\left|\frac{a_v}{\varrho_v} - \frac{a_v(\mathbf{z})}{\varrho_v(\mathbf{z})}\right|^2 \le 2 \frac{|a_v - a_v(\mathbf{z})|^2}{\varrho_v^2} + 2\left(\frac{a_v(\mathbf{z})}{\varrho_v(\mathbf{z})}\right)^2 \frac{|\varrho_v - \varrho_v(\mathbf{z})|^2}{\varrho_v^2}$$

For $\rho_v(\mathbf{z}) > 0$ we have

$$\frac{\alpha_v(\mathbf{z})^2}{\varrho_v(\mathbf{z})^2} \le A^2,$$

thus

$$E|c_v - c_v(\mathbf{z})|^2 \le \frac{3}{m\varrho_v^2}\operatorname{Var}(yM_v(x)) + \frac{2A^2}{m\varrho_v^2}\operatorname{Var}(M_v(x)).$$

Consequently,

$$E \|Q_T f_{\varrho} - f_{\mathbf{z}}\|^2 \le C \sum_{v \in T} \frac{1}{m \varrho_v^2} \left(\operatorname{Var}(y M_v(x)) + \operatorname{Var}(M_v(x)) \right) \varrho_v.$$

By (3) and (4) we get

$$E \|Q_T f_{\varrho} - f_{\mathbf{z}}\|^2 \le O\left(\sum_{v \in T} \frac{1}{m}\right) = O\left(\frac{N}{m}\right),$$

and this finishes the proof.

Note that if we take $N = m^{1/(1+2s)}$ for fixed s > 0 then

(9)
$$E \|Q_{\mathbf{M}} f_{\varrho} - f_{\mathbf{z}}\|^2 = O\left(\frac{1}{m}\right)^{2s/(1+2s)}$$

To unify the linear and nonlinear approach in estimation let us introduce the sets \mathcal{A}^s similar to the definition given in [2]. We have $f \in \mathcal{A}^s$, s > 0 (in fact it makes sense to consider $0 < s \leq 2$) if $f \in L^2(\varrho_X)$ and there is C such that for all N there is a family $\mathbf{M} = \{M_v\}_{v \in T}$ with properties (1) and (2) such that N = |T| and

(10)
$$||f - Q_{\mathbf{M}}f|| \le CN^{-s}.$$

By Theorem 1.2, (9) and (10), and since

$$E \|f_{\varrho} - f_{\mathbf{z}}\|^2 \le 2E \|f_{\varrho} - Q_{\mathbf{M}}f_{\varrho}\|^2 + 2E \|Q_{\mathbf{M}}f_{\varrho} - f_{\mathbf{z}}\|^2,$$

we get the optimal rate of estimation (see [4]). This approach improves the rate of estimation in [2].

THEOREM 1.2. Let $f_{\varrho} \in \mathcal{A}^s$ and let **M** be the family from the definition of the space \mathcal{A}^s such that $N = |T| = [m^{1/(1+2s)}]$. Then

$$E \|f_{\varrho} - f_{\mathbf{z}}\|^2 = O\left(\frac{1}{m}\right)^{2s/(1+2s)}$$

Finally, we will give a general version of Theorem 2.1 in [2]. Our proof is analogous but partially simplified, so we present it for the sake of completeness. We improve the constant in estimation.

THEOREM 1.3. For any family **M** and any $\eta > 0$,

(11)
$$\operatorname{Prob}\{\|Q_{\mathbf{M}}f_{\varrho} - f_{\mathbf{z}}\| > \eta\} \le 4Ne^{-cm\eta^2/N},$$

where N := |T| and c depends only on A.

Proof. By the convexity of the square function we have

(12)
$$\|Q_{\mathbf{M}}f_{\varrho} - f_{\mathbf{z}}\|^{2} \leq \int_{X} \sum_{v \in T} |c_{v} - c_{v}(\mathbf{z})|^{2} M_{v}(x) \, d\varrho_{X}(x)$$
$$= \sum_{v \in T} |c_{v} - c_{v}(\mathbf{z})|^{2} \varrho_{v}.$$

50

This gives

$$\begin{aligned} \operatorname{Prob}\{\|Q_{\mathbf{M}}f_{\varrho} - f_{\mathbf{z}}\| > \eta\} &\leq \operatorname{Prob}\left\{\sum_{v \in T} |c_v - c_v(\mathbf{z})|^2 \varrho_v > \eta^2\right\} \\ &\leq \sum_{v \in T} \operatorname{Prob}\left\{|c_v - c_v(\mathbf{z})| > \frac{\eta}{\sqrt{N\varrho_v}}\right\}.\end{aligned}$$

Note that

$$\operatorname{Prob}\left\{|c_v - c_v(\mathbf{z})| > \frac{\eta}{\sqrt{N\varrho_v}}\right\} = 0$$

provided $\rho_v \leq \eta^2/4A^2N$. To see this it is enough to transform this assumption to the form $\eta/\sqrt{N\rho_v} \geq 2A$ and recall that $|c_v|$ and $|c_v(\mathbf{z})|$ are less than A.

Therefore we can write

$$\operatorname{Prob}\{\|Q_{\mathbf{M}}f_{\varrho} - f_{\mathbf{z}}\| > \eta\} \leq \sum_{v: \varrho_v > \eta^2/4A^2N} \operatorname{Prob}\left\{|c_v - c_v(\mathbf{z})| > \frac{\eta}{\sqrt{N\varrho_v}}\right\}.$$

To estimate the last sum, note that if

$$|\alpha_v(\mathbf{z}) - \alpha_v| \le \frac{\varrho_v \eta}{4\sqrt{N\varrho_v}}$$

and

$$|\varrho_v(\mathbf{z}) - \varrho_v| \le \frac{\varrho_v \eta}{4A\sqrt{N\varrho_v}}$$

then (we know that $\varrho_v > \eta^2/4A^2N$)

$$|\varrho_v(\mathbf{z}) - \varrho_v| \le \frac{\varrho_v \eta}{4A\sqrt{N\frac{\eta^2}{4A^2N}}} = \frac{1}{2} \, \varrho_v$$

(this gives in particular $|\varrho_v(\mathbf{z})| \ge \frac{1}{2}\varrho_v$), and using (7) we get

$$\begin{aligned} |c_{v}(\mathbf{z}) - c_{v}| &= \left| \frac{\alpha_{v}(\mathbf{z})}{\varrho_{v}(\mathbf{z})} - \frac{\alpha_{v}}{\varrho_{v}} \right| \\ &\leq \frac{1}{|\varrho_{v}(\mathbf{z})|} \left| \alpha_{v}(\mathbf{z}) - \alpha_{v} \right| + \frac{|\alpha_{v}|}{|\varrho_{v}(\mathbf{z})|\varrho_{v}} \left| \varrho_{v}(\mathbf{z}) - \varrho_{v} \right| \\ &\leq \frac{1}{\frac{1}{2}\varrho_{v}} \cdot \frac{\varrho_{v}\eta}{4\sqrt{N\varrho_{v}}} + \frac{A}{\frac{1}{2}\varrho_{v}} \cdot \frac{\varrho_{v}\eta}{4A\sqrt{N\varrho_{v}}} = \frac{\eta}{\sqrt{N\varrho_{v}}}. \end{aligned}$$

Therefore

$$\operatorname{Prob}\left\{ |c_v - c_v(\mathbf{z})| > \frac{\eta}{\sqrt{N\varrho_v}} \right\}$$
$$\leq \operatorname{Prob}\left\{ |\alpha_v(\mathbf{z}) - \alpha_v| > \frac{\varrho_v \eta}{4\sqrt{N\varrho_v}} \right\} + \operatorname{Prob}\left\{ |\varrho_v(\mathbf{z}) - \varrho_v| > \frac{\varrho_v \eta}{4A\sqrt{N\varrho_v}} \right\}.$$

If we first use (5), (6) and then the fact that $\eta/\sqrt{N\varrho_v} \leq 2A$, we finally get

 $\operatorname{Prob}\{\|Q_{\mathbf{M}}f_{\rho} - f_{\mathbf{z}}\| > \eta\}$

$$\leq \sum_{\substack{v: \varrho_v > \eta^2/4A^2N}} \left(2\exp\left(-\frac{3m\eta^2}{16N\left(6A^2 + A\frac{\eta}{\sqrt{N\varrho_v}}\right)}\right) + 2\exp\left(-\frac{3m\eta^2}{16A^2N\left(6 + \frac{1}{2A} \cdot \frac{\eta}{\sqrt{N\varrho_v}}\right)}\right)\right)$$
$$\leq \sum_{\substack{v: \varrho_v > \eta^2/4A^2N}} 2\left(\exp\left(-\frac{3}{128} \cdot \frac{m\eta^2}{NA^2}\right) + \exp\left(-\frac{3}{112} \cdot \frac{m\eta^2}{NA^2}\right)\right)$$
$$\leq 4N\exp\left(-\frac{3}{128A^2} \cdot \frac{m\eta^2}{N}\right),$$

which completes the proof of (11) with $c = 3/128A^2$.

References

- S. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 39 (2001), 1–49.
- [2] P. Binev, A. Cohen, W. Dahmen, R. DeVore and V. Temlyakov, Universal algorithms for learning theory. Part I: piecewise constant functions, J. Machine Learning Res. 6 (2005), 1297–1321.
- [3] —, —, —, —, —, Universal algorithms for learning theory. Part II: piecewise constant functions, preprint.
- [4] R. DeVore, G. Kerkyacharian, D. Picard and V. Temlyakov, Approximation methods for supervised learning, Found. Comput. Math. 1 (2006), 3–58.

Karol DziedziulBarbara WolnikFaculty of Applied MathematicsInstitute of MathematicsGdańsk University of TechnologyGdańsk UniversityNarutowicza 11/12Wita Stwosza 5780-952 Gdańsk, Poland80-952 Gdańsk, PolandE-mail: kdz@mifgate.pg.gda.plE-mail: Barbara.Wolnik@math.univ.gda.pl

Received on 16.10.2006; revised version on 15.2.2007 (1839)