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SEMILINEAR ELLIPTIC PROBLEMSIN UNBOUNDED DOMAINS

Abstrat. We investigate the existene of positive solutions and their on-tinuous dependene on funtional parameters for a semilinear Dirihlet prob-lem. We disuss the ase when the domain is unbounded and the nonlinearityis smooth and onvex on a ertain interval only.1. Introdution. In this paper we are dealing with the following bound-ary value problem for seond order PDE of ellipti type:(1.1) {
−∆x(y) = Fx(y, x(y)) for a.e. y ∈ Ω,

x ∈ W 1,2
0 (Ω, R),for Ω being an unbounded domain in R

n with boundary ∂Ω and Fx denotingthe derivative of F with respet to x. We are looking for a nonnegative andnontrivial weak solution x ∈ W 1,2
0 (Ω, R) of this problem suh that ∆x(·)belongs to L2(Ω, R).There are numerous papers onerning similar equations for a boundeddomain Ω (see, among others, [1℄�[5℄). In the vast existing literature we analso �nd results on radial solutions for our problem in an exterior domain(see [9℄, [10℄, [17℄�[19℄). More preisely, [17℄ was devoted to both radial andnonradial ases for an exterior domain with sublinear nonlinearities. In the�rst part of [17℄, the authors presented the results for the radial ase. Thenthey obtained sub- and supersolutions of (1.1) as radial solutions of a problemassoiated to (1.1). Finally, they derived the existene of positive nonradialsolutions for (1.1) using the sub- and supersolution methods based on thetheory due to Noussair ([11℄) for Ω being the exterior of a ball.2000 Mathematis Subjet Classi�ation: 35J60, 35B30, 35B35.Key words and phrases: ellipti Dirihlet problem, weak solution, maximum priniple,�xed point, dependene of solutions on parameters.[345℄



346 A. OrpelHere we do not impose any symmetry ondition on Ω, and we overboth sub- and superlinear ases. Similar boundary value problems on un-bounded domains have been disussed e.g. in [11℄�[14℄. In [12℄�[14℄ (for sys-tems of equations) the authors investigated a semilinear ellipti problem ofthe form(1.2) {
Lu = λf(y, u) for y ∈ Ω,

u(y) = 0 for y ∈ ∂Ω,where L is a uniformly ellipti operator in Ω, n > 2, λ > 0 and Ω is a smoothunbounded domain in R
n. They obtained the existene and nonexisteneresults for (1.2) provided that, among other things, f is loally Lipshitzontinuous on (Ω∪∂Ω)× [0,∞) and f(x, t) < 0 for all x ∈ Ω and su�ientlylarge t. Here we onsider the ase when the nonlinearity is inreasing andsmooth with respet to the seond variable on a ertain interval Ĩ only. Sothere is no information onerning its behavior and smoothness outside Ĩ.2. The existene results. We propose an approah based on the fol-lowing assumptions:(Ω) Ω is an unbounded domain in R

n with a loally Lipshitz boundary
∂Ω.(G1) There exist M, M0 ∈ W 1,2(Ω, R)∩L∞(Ω, R) suh that 0 < M0(y) <
M(y) for a.e. y ∈ Ω, M0|∂Ω, M |∂Ω ≥ 0, ∆M0(·) ∈ L2(Ω, R) ∩
L∞(Ω, R) and for eah bounded set Ω′ ⊂ Ω,(2.1) −Fx(y, M(y)) ≥ ∆M0(y) a.e. in Ω′.(G2) F (y, ·) ∈ C1(Ĩ) and is onvex in Ĩ for a.e. y ∈ Ω, F (·, x) is mea-surable in Ω for all x ∈ Ĩ, where Ĩ is a ertain neighborhood of
I := [0, a], with a := ess supy∈Ω M(y).(G3) Fx(y, ·) is nonnegative in I for a.e. y ∈ Ω, Fx(·, a) ∈ L2(Ω, R) ∩
L∞(Ω, R);(G4) \
Ω

Fx(y, 0) dy 6= 0,
∣∣∣
\
Ω

F (y, 0) dy
∣∣∣ < ∞.Let us de�ne

X := {x ∈ W 1,2
0 (Ω, R) : 0 ≤ x(y) ≤ M(y) a.e. on Ωand ∆x(·) ∈ L2(Ω, R)}.We will prove the existene of solutions to (1.1) in X and their properties intwo steps. First we shall onstrut a sequene of solutions of the orrespond-ing problems in bounded domains. Then a solution of (1.1) will be obtainedas the limit of this sequene (preisely, of a subsequene). Let us onsider



Semilinear ellipti problems in unbounded domains 347the sequene of bounded sets
Ωm := {y = (y1, . . . , yn) ∈ Ω : |yi| < m for eah i = 1, . . . , n}, m ∈ N.There exists an m0 ∈ N suh that Ωm 6= ∅ for all m ∈ N0 := {m ∈ N :

m ≥ m0}. For eah m ∈ N0, we will use the Shauder �xed point theoremto prove the existene of a solution xm ∈ Xm of the problem(2.2) {
−∆x(y) = Fx(y, x(y)) for a.e. y ∈ Ωm,

x ∈ W 1,2
0 (Ωm, R),with

Xm = {x ∈ W 1,2
0 (Ωm, R) : 0 ≤ x(y) ≤ M(y) a.e. on Ωmand ∆x(y) ∈ L2(Ωm, R)}.Thus, we �x m ∈ N0 and onsider a map Tm de�ned in Xm as follows:

Tmx(y) =
\

Ωm

Gm(y, z)F̃x(z, x(z)) dz for x ∈ Xm,where Gm is the Green's funtion orresponding to the linear homogeneousproblem assoiated with (2.2), and
F̃x(z, x) :=





Fx(z, 0) for x < 0 and z ∈ Ωm,

Fx(z, x) for 0 ≤ x ≤ a and z ∈ Ωm,

Fx(z, a) for x > a and z ∈ Ωm,where a was given in (G2). By the above assumptions Tm is well de�ned on
L2(Ωm, R) and is ontinuous and ompat.It is lear that our problem is equivalent to the existene of a �xed pointof Tm in Xm. So we have to show that Tm maps Xm into Xm. To this endwe prove the following lemma:Lemma 2.1. For eah m ∈ N0 and eah x0 ∈ Xm there exists x ∈ Xmsuh that {

−∆x(y) = Fx(y, x0(y)) for a.e. y ∈ Ωm,

x ∈ W 1,2
0 (Ωm, R).Proof. Sine M0|Ωm
∈ Xm we get Xm 6= ∅. Let us �x x0 ∈ Xm andinvestigate the existene of solution for the linear problem(2.3) {

−∆x(y) = Fx(y, x0(y)) for a.e. y ∈ Ωm,

x ∈ W 1,2
0 (Ωm, R).From assumptions (G1)�(G3) we an derive that(2.4) 0 ≤ Fx(y, x0(y)) ≤ Fx(y, M(y)) ≤ −∆M0(y)a.e. in Ωm and Fx(·, x0(·)) ∈ L2(Ωm, R). It is well known that problem (2.3)has a unique solution x ∈ W 1,2

0 (Ωm, R)∩W 2,2
loc

(Ωm, R) (see e.g. [5, Th. 8.9℄).



348 A. OrpelOur task is now to show that x ∈ Xm. To this end we an observe that, by(G3), ∆x ≤ 0 a.e. in Ωm. Applying the weak maximum priniple (see e.g.[5, Th. 8.1℄) we infer that x ≥ 0 a.e. in Ωm. On the other hand, taking intoaount (2.4), we obtain
−∆x(y) = Fx(y, x0(y)) ≤ −∆M0(y)a.e. in Ωm, so that

∆(x(y) − M0(y)) ≥ 0.Moreover we know that x − M0 ≤ 0 in ∂Ωm. Finally, using again the weakmaximum priniple, we �nd that x ≤ M0 a.e. in Ωm and further 0 ≤ x ≤ Ma.e. in Ωm. Thus x ∈ Xm.By the above lemma, for eah m ∈ N0, the ontinuous and ompat op-erator Tm maps the onvex set Xm ⊂ L2(Ωm, R) into itself. Now Shauder's�xed point theorem gives the existene of a �xed point xm ∈ Xm of Tm.Thus we have proved the following result.Theorem 2.2. If hypotheses (Ω) and (G1)�(G4) are satis�ed then foreah m ∈ N0, there exists a solution xm ∈ Xm for (2.2).Now we de�ne the sequene {xm}m∈N0
as follows: for eah m ∈ N0,

xm(y) =

{
xm(y) for y ∈ Ωm,0 for y ∈ Ω \ Ωm,where xm is a solution for (2.2). Its existene follows from Theorem 2.2. Ourtask is to prove that the weak limit of a ertain subsequene of {xm}m∈N0is a solution for (1.1). A similar approah was also used e.g. by Noussair,and Noussair and Swanson (see [11℄�[13℄). However, we shall onsider a quitedi�erent lass of ellipti problems.Now we formulate our main result:Theorem 2.3. Assume hypotheses (Ω) and (G1)�(G4). Then there ex-ists a solution x0 ∈ X of the problem(2.5) {

−∆x(y) = Fx(y, x(y)) for a.e. y ∈ Ω,

x ∈ W 1,2
0 (Ω, R).Proof. For eah m ∈ N0, Theorem 2.2 yields the existene of xm ∈ Xmsuh that(2.6) {

−∆xm(y) = Fx(y, xm(y)) for a.e. y ∈ Ωm,

xm ∈ W 1,2
0 (Ωm, R).By the de�nitions of Xm and xm we have(2.7) 0 ≤ xm(y) ≤ M(y) a.e. in Ω.



Semilinear ellipti problems in unbounded domains 349Moreover using (2.6), the monotoniity of Ĩ ∋ x 7→ Fx(y, x) and the fatthat Fx(·, M(·)) ∈ L2(Ω, R), we an derive that for eah m ∈ N0,
(2.8)

\
Ω

|∇xm(y)|2 dy =
\

Ωm

〈∇xm(y),∇xm(y)〉 dy

=
\

Ωm

Fx(y, xm(y))xm(y) dy ≤
[\
Ω

(Fx(y, M(y))2 dy
]1/2[\

Ω

(M(y))2 dy
]1/2

.

Taking into aount (2.8) we derive that the sequene {∇xm}m∈N0
isbounded in L2(Ω, Rn), so (up to a subsequene) {∇xm}m∈N0

tends weaklyin L2(Ω, Rn) to a ertain v ∈ L2(Ω, Rn). Thus we obtain the existene of
x1 ∈ W 1,2

0 (Ω, R) suh that v = ∇x1 in L2(Ω, Rn) and further (up to a sub-sequene again) {xm(y)}m∈N0
tends to x1(y) a.e. in Ω, so x1(y) ≤ M(y) a.e.in Ω.Now we laim that

∆xm ⇀ p1 (weakly) in L2(Ω, R).Indeed, from (G2) and the de�nition of xm one obtains the estimate
|∆xm(y)| ≤ Fx(y, xm(y)) ≤ Fx(y, M(y)) a.e. on Ω,for eah m ∈ N0. Therefore {∆xm}m∈N0

is bounded in L2(Ω, R), and on-sequently, passing to a subsequene if neessary, it tends weakly to a ertainelement p1 in L2(Ω, R). So for any h ∈ C∞
c (Ω, R),\

Ω

〈∇x1(y),∇h(y)〉 dy = lim
m→∞

\
Ω

〈∇xm(y),∇h(y)〉 dy

= − lim
m→∞

\
Ω

∆xm(y)h(y) dy = −
\
Ω

p1(y)h(y) dy,

whih means that ∆x1(y) = p1(y) for a.e. y ∈ Ω. On the other hand, by(2.6), we obtain, for h ∈ C∞
c (Rn, R),

(2.9)
\
Ω

−∆x1(y)h(y) dy = lim
m→∞

\
Ω

−∆xm(y)h(y) dy

= lim
m→∞

\
Ωm

−∆xm(y)h(y) dy = lim
m→∞

\
Ωm

Fx(y, xm(y))h(y) dy

= lim
m→∞

[ \
Ω

Fx(y, xm(y))h(y) dy −
\

Ω\Ωm

Fx(y, xm(y))h(y) dy
]

= lim
m→∞

[ \
Ω

Fx(y, xm(y))h(y) dy −
\

Ω\Ωm

Fx(y, 0)h(y) dy
]
.



350 A. OrpelTaking into aount (G2)�(G3), the Lebesgue dominated onvergene the-orem leads to(2.10) lim
m→∞

\
Ω

Fx(y, xm(y))h(y) dy =
\
Ω

Fx(y, x1(y))h(y) dy.Moreover, by the ontinuity of the integral as a funtion of a set, and thefat that ⋃∞
n=n0

Ωm = Ω and Ωm ⊂ Ωm+1 ⊂ Ω for all m ∈ N0, we have(2.11) lim
m→∞

\
Ω\Ωm

Fx(y, 0)h(y) dy = 0.

Combining (2.9) with (2.10) and (2.11) we obtain\
Ω

−∆x1(y)h(y) dy =
\
Ω

Fx(y, x1(y))h(y) dy.Sine h ∈ C∞
c (Rn, R) was arbitrary we infer that x1 ∈ X satis�es (2.5).3. AppliationsExample 1. Let us onsider (1.1) with Ω = {y = (y1, y2) ∈ R

2 : 1/10 <
y1 < 1/2 and y2 < 6}, and

F (y, x) =
25

11
ln |x + 5| −

36

11
ln |6 − x| − x +

(
1

4
x4 + x

)
1

y4for y ∈ Ω and all x ∈ R \ {−5, 6}. Then the problem
(3.1) 




−∆x(y) =
(x(y))2

(6 − x(y))(x(y) + 5)
+

(x(y))3 + 1

(y2)4
for a.e. y ∈ Ω,

x ∈ W 1,2
0 (Ω, R),has at least one positive solution x0 suh that x0(y) ≤ M a.e. on Ω.Proof. Our task is to �nd 0 < M0 ≤ M a.e. on Ω suh that (2.1) holds.Let us onsider

M0(y1, y2) =
1

2

[
y1

(y1)4 + 1/20
+

1

(y2)4

]

and M(y1, y2) = 1.1M0(y1, y2). It is easy to hek that M0 ∈ W 1,2(Ω, R) ∩
L∞(Ω, R), ∆M0(·) ∈ L2(Ω, R) ∩ L∞(Ω, R) and

−Fx(y, M(y)) ≥ ∆M0(y) a.e. in Ω,where
Fx(y, x) =

x2

(6 − x)(x + 5)
+

x3 + 1

(y2)4
.Sine 0 ≤ M(y1, y2) ≤ 3.5 on Ω and F (y, ·) is smooth and onvex, e.g. in

(−1, 4), assumptions (G2)�(G4) are satis�ed. Thus, by Theorem 2.3 thereexists a nonnegative, nontrivial and bounded solution of (3.1).



Semilinear ellipti problems in unbounded domains 351Of ourse our results an also be applied to sublinear problems.Example 2. The sublinear ellipti BVP
(3.2) 




−∆x(y) =
(x(y))2

(4 − x(y))(5 + x(y))
+

√
x(y) + 1

y1

(y2)6
a.e. in Ω,

x ∈ W 1,2
0 (Ω, R),with Ω given as in Example 1, has at least one positive solution.Proof. One an easily hek that for M0 and M from Example 1, as-sumption (G1) is satis�ed. Moreover

F (y, x) = −x −
16

9
ln |4 − x| +

25

9
ln |x + 5| +

2

3
(x + 1)3/2 y1

(y2)6is ontinuously di�erentiable and onvex in x, e.g. in Ĩ =
(
−1

2
, 31

2

). Finally,(G2)�(G4) hold. Thus Theorem 2.3 gives the existene of a nonnegative,nontrivial and bounded solution of (3.2).4. Continuous dependene on parameters. Continuous dependeneof solutions for ellipti problems has been widely disussed by S. Walzaksine the 1990's (see e.g. [6℄�[8℄, [20℄�[22℄). It was also studied in [15℄ (forbounded Ω) and in [16℄ (for an exterior domain).This setion is devoted to the following PDE:(4.1) {
−∆x(y) = Fx(y, x(y)) + u(y) for a.e. y ∈ Ω,

x ∈ W 1,2
0 (Ω, R),with funtional parameters u from a ertain subset U of L2(Ω, R+). Weintrodue the following assumption:(G1u) there exists M0 ∈ W 1,2(Ω, R)∩L∞(Ω, R) suh that for eah u ∈ Uthere exist Mu, M0u ∈ W 1,2(Ω, R) ∩ L∞(Ω, R) suh that

0 < M0u(y) < Mu(y) ≤ M0(y)for a.e. y ∈ Ω, and ∆M0u(·) ∈ L2(Ω, R) ∩ L∞(Ω, R) and for eahbounded set Ω′ ⊂ Ω,(4.2) −Fx(y, Mu(y)) ≥ ∆M0u(y)a.e. in Ω′, Mu|∂Ω, M0u|∂Ω ≥ 0.We shall onsider the ase when (Ω), (G2)�(G4) hold for M = M0 a.e.in Ω.Theorem 4.1. Assume hypotheses (Ω), (G1u) and (G2)�(G4). Sup-pose that {um}m∈N ⊂ U tends weakly to 0 in L2(Ω, R+). For eah m ∈ N,denote by xm ∈ Xum
a solution of (4.1) orresponding to um, namely(4.3) −∆xm(y)) = Fx(y, xm(y)) + um(y)



352 A. Orpelfor a.e. y ∈ Ω, with
Xum

= {x ∈ W 1,2
0 (Ω, R) : 0 ≤ x(y) ≤ Mum

(y) a.e. on Ωand ∆x ∈ L2(Ω, R)}.Then {xm}m∈N (up to a subsequene) tends weakly to x0 in W 1,2
0 (Ω, R),where x0 ∈ X0 is a solution of the equation(4.4) −∆x(y) = Fx(y, x(y)) for a.e. y ∈ Ω.Proof. We start with the observation that (G1u), the properties of Fxand (4.3) yield

(4.5)
\
Ω

|∇xm(y)|2 dy =
\
Ω

(−∆xm(y)xm(y)) dy

=
\
Ω

Fx(y, xm(y))xm(y) dy +
\
Ω

um(y)xm(y) dy

≤
[\
Ω

(Fx(y, M0(y)))2 dy
]1/2[\

Ω

(M0(y))2 dy
]1/2

+
\
Ω

um(y)M0(y) dyfor eah m ∈ N0. Combining (4.5) with the weak onvergene of {um}m∈Nto 0 in L2(Ω, R+) we infer that {∇xm}m∈N is bounded in L2(Ω, R), andonsequently, it is (up to a subsequene) weakly onvergent in L2(Ω, R) toa ertain v ∈ L2(Ω, R). This yields the existene of x0 ∈ W 1,2
0 (Ω, R) suhthat v = ∇x0 in L2(Ω, Rn). We an also derive that some subsequene of

{xm}m∈N (still denoted by {xm}m∈N) tends to x0 a.e. on Ω, whih impliesthat x0 ≤ M0 a.e. in Ω.Our task is to show that x0 is a solution for (4.4). To see this, we use again(4.3), monotoniity of Fx(y, ·) and the fat that um ⇀ 0 in L2(Ω, R+), andobtain the boundedness of {∆xm}m∈N in L2(Ω, R). So (up to a subsequene)
{∆xm}m∈N is weakly onvergent to p in L2(Ω, R). Analysis similar to thatin the proof of Theorem 2.3 shows that p = ∆x0 a.e. on Ω. Taking intoaount (4.3) and the weak onvergene of {um(·)}m∈N to 0 in L2(Ω, R+),and employing the sheme used in the proof of (2.9), we get, for any h ∈
C∞

c (Ω, R),
(4.6)

\
Ω

−∆x0(y)h(y) dy = lim
m→∞

\
Ω

−∆xm(y)h(y) dy

= lim
m→∞

\
Ω

(Fx(y, xm(y)) + um(y))h(y) dy =
\
Ω

Fx(y, x0(y))h(y) dy.Sine h ∈ C∞
c (Ω, R) was arbitrary we onlude that x0 ∈ X satis�es (4.4).Summarizing we have proved that the sequene {xm}m∈N of solutionsorresponding to the sequene {um}m∈N of parameters tends weakly in

W 1,2
0 (Ω,R) (up to a subsequene) to x0 provided that um(·) ⇀ 0 in L2(Ω,R+)as m → ∞.
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