Aleksandra Orpel (Łódź)

SEMILINEAR ELLIPTIC PROBLEMS IN UNBOUNDED DOMAINS

Abstract

We investigate the existence of positive solutions and their continuous dependence on functional parameters for a semilinear Dirichlet problem. We discuss the case when the domain is unbounded and the nonlinearity

 is smooth and convex on a certain interval only.1. Introduction. In this paper we are dealing with the following boundary value problem for second order PDE of elliptic type:

$$
\left\{\begin{array}{l}
-\Delta x(y)=F_{x}(y, x(y)) \quad \text { for a.e. } y \in \Omega \tag{1.1}\\
x \in W_{0}^{1,2}(\Omega, \mathbb{R})
\end{array}\right.
$$

for Ω being an unbounded domain in \mathbb{R}^{n} with boundary $\partial \Omega$ and F_{x} denoting the derivative of F with respect to x. We are looking for a nonnegative and nontrivial weak solution $x \in W_{0}^{1,2}(\Omega, \mathbb{R})$ of this problem such that $\Delta x(\cdot)$ belongs to $L^{2}(\Omega, \mathbb{R})$.

There are numerous papers concerning similar equations for a bounded domain Ω (see, among others, [1]-[5]). In the vast existing literature we can also find results on radial solutions for our problem in an exterior domain (see [9], [10], [17]-[19]). More precisely, [17] was devoted to both radial and nonradial cases for an exterior domain with sublinear nonlinearities. In the first part of [17], the authors presented the results for the radial case. Then they obtained sub- and supersolutions of (1.1) as radial solutions of a problem associated to (1.1). Finally, they derived the existence of positive nonradial solutions for (1.1) using the sub- and supersolution methods based on the theory due to Noussair ([11]) for Ω being the exterior of a ball.

[^0]Here we do not impose any symmetry condition on Ω, and we cover both sub- and superlinear cases. Similar boundary value problems on unbounded domains have been discussed e.g. in [11]-[14]. In [12]-[14] (for systems of equations) the authors investigated a semilinear elliptic problem of the form

$$
\begin{cases}\mathbf{L} u=\lambda \mathbf{f}(y, u) & \text { for } y \in \Omega \tag{1.2}\\ u(y)=0 & \text { for } y \in \partial \Omega\end{cases}
$$

where \mathbf{L} is a uniformly elliptic operator in $\Omega, n>2, \lambda>0$ and Ω is a smooth unbounded domain in \mathbb{R}^{n}. They obtained the existence and nonexistence results for (1.2) provided that, among other things, f is locally Lipschitz continuous on $(\Omega \cup \partial \Omega) \times[0, \infty)$ and $f(x, t)<0$ for all $x \in \Omega$ and sufficiently large t. Here we consider the case when the nonlinearity is increasing and smooth with respect to the second variable on a certain interval \widetilde{I} only. So there is no information concerning its behavior and smoothness outside \widetilde{I}.
2. The existence results. We propose an approach based on the following assumptions:
$(\boldsymbol{\Omega}) \quad \Omega$ is an unbounded domain in \mathbb{R}^{n} with a locally Lipschitz boundary $\partial \Omega$.
(G1) There exist $M, M_{0} \in W^{1,2}(\Omega, \mathbb{R}) \cap L^{\infty}(\Omega, \mathbb{R})$ such that $0<M_{0}(y)<$ $M(y)$ for a.e. $y \in \Omega,\left.M_{0}\right|_{\partial \Omega},\left.M\right|_{\partial \Omega} \geq 0, \Delta M_{0}(\cdot) \in L^{2}(\Omega, \mathbb{R}) \cap$ $L^{\infty}(\Omega, \mathbb{R})$ and for each bounded set $\Omega^{\prime} \subset \Omega$,

$$
\begin{equation*}
-F_{x}(y, M(y)) \geq \Delta M_{0}(y) \quad \text { a.e. in } \Omega^{\prime} \tag{2.1}
\end{equation*}
$$

(G2) $\quad F(y, \cdot) \in C^{1}(\widetilde{I})$ and is convex in \tilde{I} for a.e. $y \in \Omega, F(\cdot, x)$ is measurable in Ω for all $x \in \tilde{I}$, where \tilde{I} is a certain neighborhood of $I:=[0, a]$, with $a:=\operatorname{ess} \sup _{y \in \Omega} M(y)$.
(G3) $\quad F_{x}(y, \cdot)$ is nonnegative in I for a.e. $y \in \Omega, F_{x}(\cdot, a) \in L^{2}(\Omega, \mathbb{R}) \cap$ $L^{\infty}(\Omega, \mathbb{R})$;
(G4) $\quad \int_{\Omega} F_{x}(y, 0) d y \neq 0,\left|\int_{\Omega} F(y, 0) d y\right|<\infty$.
Let us define

$$
\begin{aligned}
& X:=\left\{x \in W_{0}^{1,2}(\Omega, \mathbb{R}): 0 \leq x(y) \leq M(y) \text { a.e. on } \Omega\right. \\
& \left.\quad \text { and } \Delta x(\cdot) \in L^{2}(\Omega, \mathbb{R})\right\} .
\end{aligned}
$$

We will prove the existence of solutions to (1.1) in X and their properties in two steps. First we shall construct a sequence of solutions of the corresponding problems in bounded domains. Then a solution of (1.1) will be obtained as the limit of this sequence (precisely, of a subsequence). Let us consider
the sequence of bounded sets

$$
\Omega_{m}:=\left\{y=\left(y_{1}, \ldots, y_{n}\right) \in \Omega:\left|y_{i}\right|<m \text { for each } i=1, \ldots, n\right\}, \quad m \in \mathbb{N} .
$$

There exists an $m_{0} \in \mathbb{N}$ such that $\Omega_{m} \neq \emptyset$ for all $m \in N_{0}:=\{m \in \mathbb{N}$: $\left.m \geq m_{0}\right\}$. For each $m \in N_{0}$, we will use the Schauder fixed point theorem to prove the existence of a solution $x_{m} \in X_{m}$ of the problem

$$
\left\{\begin{array}{l}
-\Delta x(y)=F_{x}(y, x(y)) \quad \text { for a.e. } y \in \Omega_{m} \tag{2.2}\\
x \in W_{0}^{1,2}\left(\Omega_{m}, \mathbb{R}\right)
\end{array}\right.
$$

with

$$
\begin{array}{r}
X_{m}=\left\{x \in W_{0}^{1,2}\left(\Omega_{m}, \mathbb{R}\right): 0 \leq x(y) \leq M(y) \text { a.e. on } \Omega_{m}\right. \\
\left.\quad \text { and } \Delta x(y) \in L^{2}\left(\Omega_{m}, \mathbb{R}\right)\right\} .
\end{array}
$$

Thus, we fix $m \in N_{0}$ and consider a map T_{m} defined in X_{m} as follows:

$$
T_{m} x(y)=\int_{\Omega_{m}} \mathbf{G}_{m}(y, z) \widetilde{F}_{x}(z, x(z)) d z \quad \text { for } x \in X_{m}
$$

where \mathbf{G}_{m} is the Green's function corresponding to the linear homogeneous problem associated with (2.2), and

$$
\widetilde{F}_{x}(z, x):= \begin{cases}F_{x}(z, 0) & \text { for } x<0 \text { and } z \in \Omega_{m} \\ F_{x}(z, x) & \text { for } 0 \leq x \leq a \text { and } z \in \Omega_{m} \\ F_{x}(z, a) & \text { for } x>a \text { and } z \in \Omega_{m}\end{cases}
$$

where a was given in (G2). By the above assumptions T_{m} is well defined on $L^{2}\left(\Omega_{m}, \mathbb{R}\right)$ and is continuous and compact.

It is clear that our problem is equivalent to the existence of a fixed point of T_{m} in X_{m}. So we have to show that T_{m} maps X_{m} into X_{m}. To this end we prove the following lemma:

Lemma 2.1. For each $m \in N_{0}$ and each $x_{0} \in X_{m}$ there exists $\bar{x} \in X_{m}$ such that

$$
\left\{\begin{array}{l}
-\Delta \bar{x}(y)=F_{x}\left(y, x_{0}(y)\right) \quad \text { for a.e. } y \in \Omega_{m} \\
x \in W_{0}^{1,2}\left(\Omega_{m}, \mathbb{R}\right)
\end{array}\right.
$$

Proof. Since $\left.M_{0}\right|_{\Omega_{m}} \in X_{m}$ we get $X_{m} \neq \emptyset$. Let us fix $x_{0} \in X_{m}$ and investigate the existence of solution for the linear problem

$$
\left\{\begin{array}{l}
-\Delta x(y)=F_{x}\left(y, x_{0}(y)\right) \quad \text { for a.e. } y \in \Omega_{m} \tag{2.3}\\
x \in W_{0}^{1,2}\left(\Omega_{m}, \mathbb{R}\right)
\end{array}\right.
$$

From assumptions (G1)-(G3) we can derive that

$$
\begin{equation*}
0 \leq F_{x}\left(y, x_{0}(y)\right) \leq F_{x}(y, M(y)) \leq-\Delta M_{0}(y) \tag{2.4}
\end{equation*}
$$

a.e. in Ω_{m} and $F_{x}\left(\cdot, x_{0}(\cdot)\right) \in L^{2}\left(\Omega_{m}, \mathbb{R}\right)$. It is well known that problem (2.3) has a unique solution $\bar{x} \in W_{0}^{1,2}\left(\Omega_{m}, \mathbb{R}\right) \cap W_{\text {loc }}^{2,2}\left(\Omega_{m}, \mathbb{R}\right)$ (see e.g. [5, Th. 8.9]).

Our task is now to show that $\bar{x} \in X_{m}$. To this end we can observe that, by (G3), $\Delta \bar{x} \leq 0$ a.e. in Ω_{m}. Applying the weak maximum principle (see e.g. [5, Th. 8.1]) we infer that $\bar{x} \geq 0$ a.e. in Ω_{m}. On the other hand, taking into account (2.4), we obtain

$$
-\Delta \bar{x}(y)=F_{x}\left(y, x_{0}(y)\right) \leq-\Delta M_{0}(y)
$$

a.e. in Ω_{m}, so that

$$
\Delta\left(\bar{x}(y)-M_{0}(y)\right) \geq 0
$$

Moreover we know that $\bar{x}-M_{0} \leq 0$ in $\partial \Omega_{m}$. Finally, using again the weak maximum principle, we find that $\bar{x} \leq M_{0}$ a.e. in Ω_{m} and further $0 \leq \bar{x} \leq M$ a.e. in Ω_{m}. Thus $\bar{x} \in X_{m}$.

By the above lemma, for each $m \in N_{0}$, the continuous and compact operator T_{m} maps the convex set $X_{m} \subset L^{2}\left(\Omega_{m}, \mathbb{R}\right)$ into itself. Now Schauder's fixed point theorem gives the existence of a fixed point $x_{m} \in X_{m}$ of T_{m}. Thus we have proved the following result.

THEOREM 2.2. If hypotheses $(\boldsymbol{\Omega})$ and $(\mathbf{G 1})-(\mathbf{G 4})$ are satisfied then for each $m \in N_{0}$, there exists a solution $x_{m} \in X_{m}$ for (2.2).

Now we define the sequence $\left\{\bar{x}_{m}\right\}_{m \in N_{0}}$ as follows: for each $m \in N_{0}$,

$$
\bar{x}_{m}(y)= \begin{cases}x_{m}(y) & \text { for } y \in \Omega_{m} \\ 0 & \text { for } y \in \Omega \backslash \Omega_{m}\end{cases}
$$

where x_{m} is a solution for (2.2). Its existence follows from Theorem 2.2. Our task is to prove that the weak limit of a certain subsequence of $\left\{\bar{x}_{m}\right\}_{m \in N_{0}}$ is a solution for (1.1). A similar approach was also used e.g. by Noussair, and Noussair and Swanson (see [11]-[13]). However, we shall consider a quite different class of elliptic problems.

Now we formulate our main result:
Theorem 2.3. Assume hypotheses $\mathbf{(\Omega)}$ and (G1)-(G4). Then there exists a solution $x_{0} \in X$ of the problem

$$
\left\{\begin{array}{l}
-\Delta x(y)=F_{x}(y, x(y)) \quad \text { for a.e. } y \in \Omega \tag{2.5}\\
x \in W_{0}^{1,2}(\Omega, \mathbb{R})
\end{array}\right.
$$

Proof. For each $m \in N_{0}$, Theorem 2.2 yields the existence of $x_{m} \in X_{m}$ such that

$$
\left\{\begin{array}{l}
-\Delta x_{m}(y)=F_{x}\left(y, x_{m}(y)\right) \text { for a.e. } y \in \Omega_{m} \tag{2.6}\\
x_{m} \in W_{0}^{1,2}\left(\Omega_{m}, \mathbb{R}\right)
\end{array}\right.
$$

By the definitions of X_{m} and \bar{x}_{m} we have

$$
\begin{equation*}
0 \leq \bar{x}_{m}(y) \leq M(y) \quad \text { a.e. in } \Omega \tag{2.7}
\end{equation*}
$$

Moreover using (2.6), the monotonicity of $\widetilde{I} \ni x \mapsto F_{x}(y, x)$ and the fact that $F_{x}(\cdot, M(\cdot)) \in L^{2}(\Omega, \mathbb{R})$, we can derive that for each $m \in N_{0}$,

$$
\begin{align*}
& \int_{\Omega}\left|\nabla \bar{x}_{m}(y)\right|^{2} d y=\int_{\Omega_{m}}\left\langle\nabla \bar{x}_{m}(y), \nabla \bar{x}_{m}(y)\right\rangle d y \tag{2.8}\\
= & \int_{\Omega_{m}} F_{x}\left(y, \bar{x}_{m}(y)\right) \bar{x}_{m}(y) d y \leq\left[\int_{\Omega}\left(F_{x}(y, M(y))^{2} d y\right]^{1 / 2}\left[\int_{\Omega}(M(y))^{2} d y\right]^{1 / 2}\right.
\end{align*}
$$

Taking into account (2.8) we derive that the sequence $\left\{\nabla \bar{x}_{m}\right\}_{m \in N_{0}}$ is bounded in $L^{2}\left(\Omega, \mathbb{R}^{n}\right)$, so (up to a subsequence) $\left\{\nabla \bar{x}_{m}\right\}_{m \in N_{0}}$ tends weakly in $L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ to a certain $v \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$. Thus we obtain the existence of $\bar{x}_{1} \in W_{0}^{1,2}(\Omega, \mathbb{R})$ such that $v=\nabla \bar{x}_{1}$ in $L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ and further (up to a subsequence again) $\left\{\bar{x}_{m}(y)\right\}_{m \in N_{0}}$ tends to $\bar{x}_{1}(y)$ a.e. in Ω, so $\bar{x}_{1}(y) \leq M(y)$ a.e. in Ω.

Now we claim that

$$
\Delta \bar{x}_{m} \rightharpoonup p_{1} \quad(\text { weakly }) \text { in } L^{2}(\Omega, \mathbb{R}) .
$$

Indeed, from (G2) and the definition of \bar{x}_{m} one obtains the estimate

$$
\left|\Delta \bar{x}_{m}(y)\right| \leq F_{x}\left(y, \bar{x}_{m}(y)\right) \leq F_{x}(y, M(y)) \quad \text { a.e. on } \Omega
$$

for each $m \in N_{0}$. Therefore $\left\{\Delta \bar{x}_{m}\right\}_{m \in N_{0}}$ is bounded in $L^{2}(\Omega, \mathbb{R})$, and consequently, passing to a subsequence if necessary, it tends weakly to a certain element p_{1} in $L^{2}(\Omega, \mathbb{R})$. So for any $h \in C_{\mathrm{c}}^{\infty}(\Omega, \mathbb{R})$,

$$
\begin{aligned}
\int_{\Omega}\left\langle\nabla \bar{x}_{1}(y), \nabla h(y)\right\rangle d y & =\lim _{m \rightarrow \infty} \int_{\Omega}\left\langle\nabla \bar{x}_{m}(y), \nabla h(y)\right\rangle d y \\
& =-\lim _{m \rightarrow \infty} \int_{\Omega} \Delta \bar{x}_{m}(y) h(y) d y=-\int_{\Omega} p_{1}(y) h(y) d y
\end{aligned}
$$

which means that $\Delta \bar{x}_{1}(y)=p_{1}(y)$ for a.e. $y \in \Omega$. On the other hand, by (2.6), we obtain, for $h \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$,

$$
\begin{align*}
\int_{\Omega}- & \Delta \bar{x}_{1}(y) h(y) d y=\lim _{m \rightarrow \infty} \int_{\Omega}-\Delta \bar{x}_{m}(y) h(y) d y \tag{2.9}\\
& =\lim _{m \rightarrow \infty} \int_{\Omega_{m}}-\Delta \bar{x}_{m}(y) h(y) d y=\lim _{m \rightarrow \infty} \int_{\Omega_{m}} F_{x}\left(y, \bar{x}_{m}(y)\right) h(y) d y \\
& =\lim _{m \rightarrow \infty}\left[\int_{\Omega} F_{x}\left(y, \bar{x}_{m}(y)\right) h(y) d y-\int_{\Omega \backslash \Omega_{m}} F_{x}\left(y, \bar{x}_{m}(y)\right) h(y) d y\right] \\
& =\lim _{m \rightarrow \infty}\left[\int_{\Omega} F_{x}\left(y, \bar{x}_{m}(y)\right) h(y) d y-\int_{\Omega \backslash \Omega_{m}} F_{x}(y, 0) h(y) d y\right]
\end{align*}
$$

Taking into account (G2)-(G3), the Lebesgue dominated convergence theorem leads to

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\Omega} F_{x}\left(y, \bar{x}_{m}(y)\right) h(y) d y=\int_{\Omega} F_{x}\left(y, \bar{x}_{1}(y)\right) h(y) d y \tag{2.10}
\end{equation*}
$$

Moreover, by the continuity of the integral as a function of a set, and the fact that $\bigcup_{n=n_{0}}^{\infty} \Omega_{m}=\Omega$ and $\Omega_{m} \subset \Omega_{m+1} \subset \Omega$ for all $m \in N_{0}$, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\Omega \backslash \Omega_{m}} F_{x}(y, 0) h(y) d y=0 . \tag{2.11}
\end{equation*}
$$

Combining (2.9) with (2.10) and (2.11) we obtain

$$
\int_{\Omega}-\Delta \bar{x}_{1}(y) h(y) d y=\int_{\Omega} F_{x}\left(y, \bar{x}_{1}(y)\right) h(y) d y .
$$

Since $h \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ was arbitrary we infer that $\bar{x}_{1} \in X$ satisfies (2.5).

3. Applications

EXAMPLE 1. Let us consider (1.1) with $\Omega=\left\{y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}: 1 / 10<\right.$ $y_{1}<1 / 2$ and $\left.y_{2}<6\right\}$, and

$$
F(y, x)=\frac{25}{11} \ln |x+5|-\frac{36}{11} \ln |6-x|-x+\left(\frac{1}{4} x^{4}+x\right) \frac{1}{y^{4}}
$$

for $y \in \Omega$ and all $x \in \mathbb{R} \backslash\{-5,6\}$. Then the problem

$$
\left\{\begin{array}{l}
-\Delta x(y)=\frac{(x(y))^{2}}{(6-x(y))(x(y)+5)}+\frac{(x(y))^{3}+1}{\left(y_{2}\right)^{4}} \quad \text { for a.e. } y \in \Omega \tag{3.1}\\
x \in W_{0}^{1,2}(\Omega, \mathbb{R})
\end{array}\right.
$$

has at least one positive solution x_{0} such that $x_{0}(y) \leq M$ a.e. on Ω.
Proof. Our task is to find $0<M_{0} \leq M$ a.e. on Ω such that (2.1) holds. Let us consider

$$
M_{0}\left(y_{1}, y_{2}\right)=\frac{1}{2}\left[\frac{y_{1}}{\left(y_{1}\right)^{4}+1 / 20}+\frac{1}{\left(y_{2}\right)^{4}}\right]
$$

and $M\left(y_{1}, y_{2}\right)=1.1 M_{0}\left(y_{1}, y_{2}\right)$. It is easy to check that $M_{0} \in W^{1,2}(\Omega, \mathbb{R}) \cap$ $L^{\infty}(\Omega, \mathbb{R}), \Delta M_{0}(\cdot) \in L^{2}(\Omega, \mathbb{R}) \cap L^{\infty}(\Omega, \mathbb{R})$ and

$$
-F_{x}(y, M(y)) \geq \Delta M_{0}(y) \quad \text { a.e. in } \Omega,
$$

where

$$
F_{x}(y, x)=\frac{x^{2}}{(6-x)(x+5)}+\frac{x^{3}+1}{\left(y_{2}\right)^{4}}
$$

Since $0 \leq M\left(y_{1}, y_{2}\right) \leq 3.5$ on Ω and $F(y, \cdot)$ is smooth and convex, e.g. in $(-1,4)$, assumptions (G2)-(G4) are satisfied. Thus, by Theorem 2.3 there exists a nonnegative, nontrivial and bounded solution of (3.1).

Of course our results can also be applied to sublinear problems.
Example 2. The sublinear elliptic BVP

$$
\left\{\begin{array}{l}
-\Delta x(y)=\frac{(x(y))^{2}}{(4-x(y))(5+x(y))}+\sqrt{x(y)+1} \frac{y_{1}}{\left(y_{2}\right)^{6}} \quad \text { a.e. in } \Omega \tag{3.2}\\
x \in W_{0}^{1,2}(\Omega, \mathbb{R})
\end{array}\right.
$$

with Ω given as in Example 1, has at least one positive solution.
Proof. One can easily check that for M_{0} and M from Example 1, assumption (G1) is satisfied. Moreover

$$
F(y, x)=-x-\frac{16}{9} \ln |4-x|+\frac{25}{9} \ln |x+5|+\frac{2}{3}(x+1)^{3 / 2} \frac{y_{1}}{\left(y_{2}\right)^{6}}
$$

is continuously differentiable and convex in x, e.g. in $\widetilde{I}=\left(-\frac{1}{2}, 3 \frac{1}{2}\right)$. Finally, (G2)-(G4) hold. Thus Theorem 2.3 gives the existence of a nonnegative, nontrivial and bounded solution of (3.2).
4. Continuous dependence on parameters. Continuous dependence of solutions for elliptic problems has been widely discussed by S. Walczak since the 1990's (see e.g. [6]-[8], [20]-[22]). It was also studied in [15] (for bounded Ω) and in [16] (for an exterior domain).

This section is devoted to the following PDE:

$$
\left\{\begin{array}{l}
-\Delta x(y)=F_{x}(y, x(y))+u(y) \quad \text { for a.e. } y \in \Omega \tag{4.1}\\
x \in W_{0}^{1,2}(\Omega, \mathbb{R})
\end{array}\right.
$$

with functional parameters u from a certain subset U of $L^{2}\left(\Omega, \mathbb{R}_{+}\right)$. We introduce the following assumption:
$(\mathbf{G 1 u}) \quad$ there exists $M_{0} \in W^{1,2}(\Omega, \mathbb{R}) \cap L^{\infty}(\Omega, \mathbb{R})$ such that for each $u \in U$ there exist $M_{u}, M_{0 u} \in W^{1,2}(\Omega, \mathbb{R}) \cap L^{\infty}(\Omega, \mathbb{R})$ such that

$$
0<M_{0 u}(y)<M_{u}(y) \leq M_{0}(y)
$$

for a.e. $y \in \Omega$, and $\Delta M_{0 u}(\cdot) \in L^{2}(\Omega, \mathbb{R}) \cap L^{\infty}(\Omega, \mathbb{R})$ and for each bounded set $\Omega^{\prime} \subset \Omega$,

$$
\begin{equation*}
-F_{x}\left(y, M_{u}(y)\right) \geq \Delta M_{0 u}(y) \tag{4.2}
\end{equation*}
$$

$$
\text { a.e. in } \Omega^{\prime},\left.M_{u}\right|_{\partial \Omega},\left.M_{0 u}\right|_{\partial \Omega} \geq 0
$$

We shall consider the case when $(\boldsymbol{\Omega}),(\mathbf{G} 2)-(\mathbf{G 4})$ hold for $M=M_{0}$ a.e. in Ω.

TheOrem 4.1. Assume hypotheses $(\mathbf{\Omega}),(\mathbf{G 1 u})$ and $\mathbf{(G 2) - (G 4) . ~ S u p - ~}$ pose that $\left\{u_{m}\right\}_{m \in \mathbb{N}} \subset U$ tends weakly to 0 in $L^{2}\left(\Omega, \mathbb{R}_{+}\right)$. For each $m \in \mathbb{N}$, denote by $x_{m} \in X_{u_{m}}$ a solution of (4.1) corresponding to u_{m}, namely

$$
\begin{equation*}
\left.-\Delta x_{m}(y)\right)=F_{x}\left(y, x_{m}(y)\right)+u_{m}(y) \tag{4.3}
\end{equation*}
$$

for a.e. $y \in \Omega$, with

$$
\begin{array}{r}
X_{u_{m}}=\left\{x \in W_{0}^{1,2}(\Omega, \mathbb{R}): 0 \leq x(y) \leq M_{u_{m}}(y) \text { a.e. on } \Omega\right. \\
\left.\quad \text { and } \Delta x \in L^{2}(\Omega, \mathbb{R})\right\} .
\end{array}
$$

Then $\left\{x_{m}\right\}_{m \in \mathbb{N}}$ (up to a subsequence) tends weakly to x_{0} in $W_{0}^{1,2}(\Omega, \mathbb{R})$, where $x_{0} \in X_{0}$ is a solution of the equation

$$
\begin{equation*}
-\Delta x(y)=F_{x}(y, x(y)) \quad \text { for a.e. } y \in \Omega . \tag{4.4}
\end{equation*}
$$

Proof. We start with the observation that $(\mathbf{G 1 u})$, the properties of F_{x} and (4.3) yield

$$
\begin{align*}
& \int_{\Omega}\left|\nabla x_{m}(y)\right|^{2} d y=\int_{\Omega}\left(-\Delta x_{m}(y) x_{m}(y)\right) d y \tag{4.5}\\
& =\int_{\Omega} F_{x}\left(y, x_{m}(y)\right) x_{m}(y) d y+\int_{\Omega} u_{m}(y) x_{m}(y) d y \\
& \leq\left[\int_{\Omega}\left(F_{x}\left(y, M_{0}(y)\right)\right)^{2} d y\right]^{1 / 2}\left[\int_{\Omega}\left(M_{0}(y)\right)^{2} d y\right]^{1 / 2}+\int_{\Omega} u_{m}(y) M_{0}(y) d y
\end{align*}
$$

for each $m \in N_{0}$. Combining (4.5) with the weak convergence of $\left\{u_{m}\right\}_{m \in \mathbb{N}}$ to 0 in $L^{2}\left(\Omega, \mathbb{R}_{+}\right)$we infer that $\left\{\nabla x_{m}\right\}_{m \in \mathbb{N}}$ is bounded in $L^{2}(\Omega, \mathbb{R})$, and consequently, it is (up to a subsequence) weakly convergent in $L^{2}(\Omega, \mathbb{R})$ to a certain $v \in L^{2}(\Omega, \mathbb{R})$. This yields the existence of $x_{0} \in W_{0}^{1,2}(\Omega, \mathbb{R})$ such that $v=\nabla x_{0}$ in $L^{2}\left(\Omega, \mathbb{R}^{n}\right)$. We can also derive that some subsequence of $\left\{x_{m}\right\}_{m \in \mathbb{N}}$ (still denoted by $\left\{x_{m}\right\}_{m \in \mathbb{N}}$) tends to x_{0} a.e. on Ω, which implies that $x_{0} \leq M_{0}$ a.e. in Ω.

Our task is to show that x_{0} is a solution for (4.4). To see this, we use again (4.3), monotonicity of $F_{x}(y, \cdot)$ and the fact that $u_{m} \rightharpoonup 0$ in $L^{2}\left(\Omega, \mathbb{R}_{+}\right)$, and obtain the boundedness of $\left\{\Delta x_{m}\right\}_{m \in \mathbb{N}}$ in $L^{2}(\Omega, \mathbb{R})$. So (up to a subsequence) $\left\{\Delta x_{m}\right\}_{m \in \mathbb{N}}$ is weakly convergent to p in $L^{2}(\Omega, \mathbb{R})$. Analysis similar to that in the proof of Theorem 2.3 shows that $p=\Delta x_{0}$ a.e. on Ω. Taking into account (4.3) and the weak convergence of $\left\{u_{m}(\cdot)\right\}_{m \in \mathbb{N}}$ to 0 in $L^{2}\left(\Omega, \mathbb{R}_{+}\right)$, and employing the scheme used in the proof of (2.9), we get, for any $h \in$ $C_{\mathrm{c}}^{\infty}(\Omega, \mathbb{R})$,

$$
\begin{align*}
& \int_{\Omega}-\Delta x_{0}(y) h(y) d y=\lim _{m \rightarrow \infty} \int_{\Omega}-\Delta x_{m}(y) h(y) d y \tag{4.6}\\
& =\lim _{m \rightarrow \infty} \int_{\Omega}\left(F_{x}\left(y, x_{m}(y)\right)+u_{m}(y)\right) h(y) d y=\int_{\Omega} F_{x}\left(y, x_{0}(y)\right) h(y) d y
\end{align*}
$$

Since $h \in C_{c}^{\infty}(\Omega, \mathbb{R})$ was arbitrary we conclude that $x_{0} \in X$ satisfies (4.4).
Summarizing we have proved that the sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}}$ of solutions corresponding to the sequence $\left\{u_{m}\right\}_{m \in \mathbb{N}}$ of parameters tends weakly in $W_{0}^{1,2}(\Omega, \mathbb{R})$ (up to a subsequence) to x_{0} provided that $u_{m}(\cdot) \rightharpoonup 0$ in $L^{2}\left(\Omega, \mathbb{R}_{+}\right)$ as $m \rightarrow \infty$.

References

［1］A．Baalal and N．B．Rhouma，Dirichlet problem for quasi－linear elliptic equations， Electron．J．Differential Equations 2002，no．82， 18 pp．
［2］A．Benkirane and A．Elmahi，A strongly nonlinear elliptic equation having natural growth terms and L^{1} data，Nonlinear Anal． 39 （2000），403－411．
［3］C．Ebmeyer and J．Frehse，Mixed boundary value problems for nonlinear elliptic equations with p－structure in nonsmooth domains，Differential Integral Equations 14 （2001），801－820．
［4］N．Grenon，Existence and comparison results for quasilinear elliptic equations with critical growth in the gradient，J．Differential Equations 171 （2001），1－23．
［5］D．Gilbarg and N．S．Trudinger，Elliptic Partial Differential Equations of Second Order，Springer， 1983.
［6］D．Idczak，M．Majewski and S．Walczak，Stability of solutions to an optimal control problem for a continuous Fornasini－Marchesini system，in：The Second Interna－ tional Workshop on Multidimensional（nD）Systems（Czocha Castle，2000），Techn． Univ．Press，Zielona Góra，2000，201－208．
［7］—，一，一，N－dimensional continuous systems with the Darboux－Goursat and Dirich－ let boundary data，in：Proc．9th IEEE Internat．Conf．on Electronics，Circuits and Systems（Dubrovnik，2002）．
［8］U．Ledzewicz，H．Schattler and S．Walczak，Stability of elliptic optimal control prob－ lems，Comput．Math．Appl． 41 （2001），1245－1256．
［9］Y．H．Lee，Eigenvalues of singular boundary value problems and existence results for positive radial solutions of semilinear elliptic problems in exterior domains，Differ－ ential Integral Equations 13 （2000），631－648．
［10］R．Molle and D．Passaseo，Multiple solutions of nonlinear elliptic Dirichlet problems in exterior domains，Nonlinear Anal． 39 （2000），447－462．
［11］E．S．Noussair，On semilinear elliptic boundary value problems in unbounded domain， J．Differential Equations 41 （1981），334－348．
［12］E．S．Noussair and C．A．Swanson，Global positive solutions of semilinear elliptic problems，Pacific J．Math． 115 （1984），117－192．
［13］—，一，Semilinear elliptic problems with pairs of decaying positive solutions，Canad． J．Math． 39 （1987），1162－1173．
［14］—，一，Positive solutions of elliptic systems with bounded nonlinearities，Proc．Soc． Edinburgh Sect．A 108 （1988），321－332．
［15］A．Orpel，On the existence of positive solutions and their continuous dependence on functional parameters for some class of elliptic problems，J．Differential Equations 204 （2004），247－264．
［16］A．Orpel，Bounded solutions of elliptic BVPs in exterior domain，Numer．Funct． Anal．Optim． 26 （2005），897－909．
［17］B．Przeradzki and R．Stańczy，Positive solutions for sublinear elliptic equations， Colloq．Math． 92 （2002），141－151．
［18］R．Stańczy，Bounded solutions for nonlinear elliptic equations in unbounded do－ mains，J．Appl．Anal． 6 （2000），129－138．
［19］－，Positive solutions for superlinear elliptic equations，J．Math．Anal．Appl． 283 （2003），159－166．
［20］S．Walczak，On the continuous dependence on parameters of solutions of the Dirich－ let problem．Part I：Coercive case，Part II：The case of saddle points，Bull．Cl．Sci． Acad．Roy．Belgique 7－12（1995），263－273．
[21] S. Walczak, Continuous dependence on parameters and boundary data for nonlinear P.D.E., coercive case, Differential Integral Equations 11 (1998), 35-46.
[22] -, Superlinear variational and boundary value problems with parameters, Nonlinear Anal. 43 (2001), 183-198.

Faculty of Mathematics
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-mail: orpela@math.uni.lodz.pl

Received on 20.9.2006;
revised version on 5.10.2006

[^0]: 2000 Mathematics Subject Classification: 35J60, 35B30, 35B35.
 Key words and phrases: elliptic Dirichlet problem, weak solution, maximum principle, fixed point, dependence of solutions on parameters.

