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TUMOUR ANGIOGENESIS MODEL WITH VARIABLE
VESSELS’ EFFECTIVENESS

Abstract. We propose a model of vascular tumour growth, which gen-
eralises the well recognised model formulated by Hahnfeldt et al. in 1999.
Our model is based on the same idea that the carrying capacity for any
solid tumour depends on its vessel density but it also incorporates vascula-
ture quality which may be lost during angiogenesis as recognised by Jain in
2005. In the model we assume that the loss of vessel quality affects the diffu-
sion coefficient inside the tumour. We analyse basic mathematical properties
of the proposed model and present some numerical simulations.

1. Introduction. The growth of a tumour under angiogenic signalling
was successfully mathematically described by Hahnfeldt et al. in [14]. The
biological validity of the Hahnfeldt et al. model confirmed by lab exper-
iments makes it probably the most important model describing this as-
pect of tumour development. Several other studies have incorporated math-
ematical models for the development of tumour under angiogenic signalling:
see [21] and references therein or [6], where also other processes connected
with tumour growth are presented. Several models based on the Hahn-
feldt et al. model are studied by different groups of researchers. D’Onofrio
and Gandolfi [7, 8, 9] analysed these models from a dynamical systems
point of view. Świerniak, Świerniak et al. [26, 27, 28] and Ledzewicz and
Schättler [18, 19, 20, 17] studied these models as optimal control problems
with the goal of designing optimal and suboptimal antiangiogenic proto-
cols. In the literature we can also find models built on different assump-
tions (see e.g. [3, 2]) and other approaches to angiogenesis (see e.g. [4]). All
models based on the Hahnfeldt et al. model take into account the influence
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of angiogenic stimulators and inhibitors on tumour growth. In our model
we also incorporate a changing rate of tumour vessels’ impairment. We base
our assumptions on the precise description of the mechanism [29, 15, 16]
and modulators [30] of angiogenesis.

When a tumour appears it grows without any vasculature as long as
the limited oxygen and nutrition supplies from the surrounding tissues are
sufficient. For further tumour growth, blood supplies need to be increased
[29, 1]. Therefore, the tumour starts to produce chemical signals to begin
angiogenesis. This is a process characterised by sprouting new blood ves-
sels from existing ones to supply tissues with all needed components from
blood. In adults its normal physiological role is restricted to wound healing,
the menstrual cycle and pregnancy. In addition, it is critical during fetal de-
velopment. Unfortunately, it is also a fundamental process connected with
carcinogenesis and it depends on a large variety of stimulating and inhibiting
factors [30].

Despite the essential role of angiogenesis in tumour growth, it has been
discovered that tumour angiogenesis is highly pathological. Incorrect struc-
ture and poor efficiency of newly formed vessels are common tumour features
[15, 16]. Healthy tissues are nourished by straight vessels, which ramify in
predictable way to smaller ones and at the end to capillary tubes. Vessels
which were build due to tumour stimuli are rather arranged in tangled knots.
They connect with each other in a random way, some of their branches are
excessively big, there appear additional immature capillary tubes or, what
can be even worse, they do not exist in some tumour regions. In addition
tumour vessels work poorly, because they are build incorrectly. It has been
discovered that in some vessels blood stream is excessively rapid, in oth-
ers excessively slow and in some of them it turns back periodically. This
makes even distribution of drugs very difficult. In addition, some parts of
vessels walls are poorly permeable, whereas other parts are very leaky. This
is caused by incorrect structure of pores in vessels walls, which can have
almost one hundred times larger diameter than in healthy tissue. Hence, it
is almost impossible to maintain correct pressure gradient, which is essen-
tial in efficient exchange of oxygen, nutrient and drugs between vessels and
cells. This also causes an increase of interstitial pressure which may lead to
necrosis in some tumour regions. Some trials which were developed to in-
vestigate the tumour biology revealed that most of the administered dose of
chemotherapy is not even absorbed by the tumour. Moreover, the absorbed
part of the dose may not be evenly distributed in particular tumour regions.
This makes effective tumour treatment difficult, because cells which do not
get a sufficient amount of drug can survive, and even if they are only few,
repeated tumour growth is inevitable.



Tumour angiogenesis model 35

In this paper, we propose a qualitative model for tumour growth under
angiogenic stimulator/inhibitor control which incorporates a changing rate
of tumour vessels’ impairment. A simple analysis is followed by numerical
simulations of untreated tumour growth as well as tumour growth under
antiangiogenic treatment, chemotherapy and combined therapy. The model
proposed follows the approach presented in [24, 25]. In those papers we have
proposed an arbitrary form of the equation of vessels’ impairment, while in
the present work we try to combine it with the diffusion process.

2. Model presentation

2.1. Model derivation. Following the idea that the volume of any
solid tumour depends on the vessels’ carrying capacity, let the variables V ,
K denote the tumour volume and the vessels’ carrying capacity, respectively.
In [14] the basic Gompertzian [13] type of growth was proposed to describe
the evolution of the tumour volume,

(2.1) V̇ = −λ1V ln
(
V

K

)
,

which may be understood as a bi-directional control process: the tumour
regulates the associated vascular growth or suppression, and in turn the
tumour vasculature controls the tumour growth through its usual nutritive
function [14]. In the case of constant carrying capacity dependent only on
vessels in the tumour surroundings it illustrates well the empirically observed
phenomenon that a tumour without any vasculature grows to a limited size.

To ascertain the nature of the carrying capacity dynamics, a diffusion-
consumption equation was considered in [14]. This equation reads

(2.2) D2 · ∇2n(x, t)− cn(x, t) + s =
∂n(x, t)
∂t

, x ∈ R3,

where n is the concentration of a stimulator or inhibitor inside and outside
the tumour, D2 is the constant diffusion coefficient, c is the clearance rate,
while s = s0 inside and s = 0 outside the tumour is the rate of stimulator
or inhibitor secretion. We suggest that D2 is lower inside the tumour than
outside. As in the case of the parameter s, the discontinuity of D2 is biologi-
cally reasonable, because the microenvironment inside is highly pathological.
Therefore, let us write D2 = D̃2 inside and D2 = D

2 outside the tumour,
where D̃ < D.

Using equation (2.2) and assuming that the tumour is in a quasi-steady
state and the concentration n is radially symmetric, the same derivation as
in [14] leads to

(2.3) K̇ = −λ2K + bV − dKV
2/3

D̃2
.
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The right-hand side terms are interpreted as the vessels’ natural mortality,
the effect of tumour stimulation, and the endogenous inhibition of previously
generated vasculature, respectively. Using the argument from [14] we observe
that D̃2 affects only the endogenous inhibition term, which is multiplied by
I = 1/D̃2. I should be understood as a measure of vessels’ impairment. For
almost healthy vessels, the inhibition is slightly increased. If the vascula-
ture is impaired significantly, that is, for large values of I, the inhibition
is enormously large. Therefore, I should not be constant any longer. We
suggest choosing for I a decreasing function of vessels’ effectiveness, which
is bounded by 1 and by the maximum admissible value of impairment. We
do not consider infinite impairment, because a too high rate of it is lethal.

Now, we want to introduce the average value of vessels’ effectiveness
inside the tumour. It only depends on time and we denote it by E(t). Let
E(t) be the ratio of the amount of nutrients and oxygen which may diffuse to
tissue by pathological vessels to the maximal amount in the case of healthy
vessels.

The vessels’ impairment I decreases with the vessels’ effectiveness E, so
for simplicity we choose E = 1/I. Therefore,

(2.4) E : R+ → [Emin, 1],

where 0 < Emin = 1/Imax is the minimal admissible effectiveness.
Of course, there are other possibilities of incorporating vessels’ effective-

ness defined as above in the Hahnfeldt et al. model. We may e.g. change the
carrying capacity in the equation for V with a function of vessels’ amount
and their effectiveness.

To obtain the full description of the model we shall formulate an ODE
for the variable E. As the variables V and K tend to move together [14],
their difference reflects quite well the actual state of the angiogenesis pro-
cess, that is, whether it is conducting or reversing. It has been experimen-
tally confirmed that pathological angiogenesis is caused by overexpression
of proangiogenic factors, e.g. VEGF, the vascular endothelial growth fac-
tor [15, 16]. In healthy tissue proangiogenic factors are balanced by natural
inhibitors, e.g. trombospodin. The actual state of angiogenesis is strictly
dependent on imbalance between stimulation and inhibition. Therefore, as
the difference of V and K reflects the actual state of the angiogenesis pro-
cess, we assume that the vessels’ effectiveness starts to decrease when the
carrying capacity overtakes the tumour volume. The dynamics of E should
be a process bi-directionally controlled by V and K: E increases for V > K
and decreases for V < K. More precisely, in the case when V > K we
may expect that the carrying capacity decreases due to the inhibition of
angiogenesis—the vessels’ effectiveness increases. On the other hand, in the
case when V < K the tumour growth under angiogenic stimulation pro-
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ceeds, so the overexpression of proangiogenic factors occurs—the vessels’
effectiveness decreases. Of course, the dynamics of E should also depend on
the magnitude of the angiogenic factors imbalance. We also incorporate the
following assertions that are based on the definition of E:

(1) E is bounded by some positive minimum and maximum constant
values (E ∈ [Emin, 1], where 0 < Emin).

(2) E changes faster in its middle values and more slowly near extreme
values.

The above assumptions about the nature of the dynamics of E are sat-
isfied for instance in the case of the following equation:

(2.5) Ė = g(1− E)(E − Emin)
(
V

K
− 1
)
.

Combining equations (2.1), (2.3) and (2.5), we propose the following
system of three ODEs describing tumour development under angiogenic sig-
nalling with dependence on vessel quality:

(2.6)



V̇ = −λ1V ln
(
V

K

)
,

K̇ = −λ2K + bV − dKV
2/3

E
,

Ė = g(1− E)(E − Emin)
(
V

K
− 1
)
.

Note that the value of the parameter g plays an essential role in the
dynamics of E. Setting g = 0 and E = 1, we obtain the model of Hahnfeldt
et al. from [14].

2.2. Basic mathematical properties of the model. In this subsec-
tion we prove theorems about existence and uniqueness of solutions and of
an invariant set for the model (2.6). We analyse (2.6) in the phase space
S = {(v, k, e) : v, k ∈ R+, e ∈ [Emin, 1]} under the assumption that all the
parameters are positive, in particular Emin < 1.

Theorem 2.1. Every solution to (2.6) with initial data (V0,K0, E0) in
S exists and is unique on some interval (−δ,+δ).

Proof. The vector field corresponding to (2.6) is of class C∞ in S,
and therefore the Picard–Lindelöf theorem [5] guarantees the existence and
uniqueness of solution through every x∗ ∈ S.

Theorem 2.2. The set S = {(v, k, e) : v, k ∈ R+, e ∈ [Emin, 1]} is
invariant for the system (2.6).
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Proof. The first equation of (2.6) is equivalent to the integral equation

V (t) = V (0) exp
(
−λ

t�

0

ln
V (s)
K

ds

)
.

Therefore, V (0) > 0 implies V (t) > 0 for all t > 0.
For K = 0 we have K̇ = bV > 0 due to the positivity of V .
For every solution through x∗ ∈ S with the last coordinate E = 1 or

E = Emin we have Ė = 0 for all t. Therefore, from the uniqueness of
solution through x∗, a solution which starts from int(S) cannot reach points
with the last coordinate equal to Emin or 1. This completes the proof.

Theorem 2.3. For every x∗ ∈ S the solution through x∗ exists for every
t ≥ 0.

Proof. From the forward invariance of the set S the following inequalities
can be obtained easily:

Emin ≤ E(t) ≤ 1 ∀t ≥ 0.

The inequality
x

x+ 1
≤ ln(1 + x) for x > −1

yields
V̇ (t) ≤ −λ1V (t) + λ1K(t),

which together with the positivity of V (t) implies

V̇ (t) ≤ λ1K(t).

From the equation for K̇(t) we have

K̇(t) ≤ bV (t).

To prove the global existence of solutions one only needs to derive an upper
bound of K(t) + V (t). Using the previous inequalities we obtain

d(K(t) + V (t))
dt

= V̇ (t)+K̇(t) ≤ λ1K(t)+bV (t) ≤ max(λ1, b)(K(t)+V (t)).

Therefore we have

K(t) + V (t) ≤ emax(λ1,b)t ∀t ≥ 0,

which together with the non-negativity of K(t) and V (t) gives the asser-
tion.

It can be easily seen that steady states in the invariant set S exist if and
only if λ2 < b, and they lie on the curve

s(e) =
((

(b− λ2)e
d

)3/2

,

(
(b− λ2)e

d

)3/2

, e

)
,
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where e ∈ [Emin, 1] is an arbitrary parameter. Therefore, we can expect that
depending on the initial values, the solution can tend to different steady
states.

2.3. Numerical simulations of tumour growth. This subsection
presents the result of numerical simulations of the model described by (2.6).
We performed a series of numerical simulations to see how the evolution of
the vessels efficiency E influences the tumour growth. The following model
parameters are fixed for all simulations:

λ1 = 0.192, λ2 = 0, b = 5.85, d = 0.00873, Emin = 0.4.

The first four parameters have the same meaning as in the Hahnnfeldt et al.
model, and their values were obtained in [14] by fitting model solutions to
the results of laboratory experiments. The value of Emin is chosen arbitrarily.
We also fixed the initial conditions at the following values:

V0 = 200, K0 = 625, E0 = 0.9,

where the initial conditions for V and K are the same as in [14]. We change
only the value of the parameter g to see how the dynamics of the variable
E affects the tumour growth.

Fig. 1. Comparison between solutions to system (2.6) with different values of g

In Fig. 1 we present numerical simulations of untreated tumour growth.
It can be seen that setting different values of the parameter g is reflected in
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different values of the vessels efficiency that are reached asymptotically. It
is obvious that different values of the variable E that are attained for large
t provide different quantitative results for final values of the tumour volume
and carrying capacity. As can be seen in Fig. 1, small g is reflected in small
decrease in the vessels efficiency E which stabilises at a level close to the
initial condition E0. In that case we observe the highest asymptotic value of
the tumour volume and carrying capacity. A high level of E indicates that
the tumour has proper vessels structure. Thus, this type of tumour should
be sensitive to treatment. Small g also provides the same qualitative and
similar quantitative result as the Hahnfeldt et al. model.

If the values of g are higher, one can observe major changes of quanti-
tative results for the values of all three modelled variables. For large g we
can expect that the steady state with the lowest value of E is reached. In
that case also the tumour volume and the vessels carrying capacity stabilise
at a much lower level than in the case of small g. For large g the change in
qualitative results for the carrying capacity dynamics can also be observed
as it is no longer an increasing function. The low level of E indicates that the
tumour has incorrect and highly inefficient vessel structure. Thus, despite
the lower level of tumour volume, a lower efficiency of treatment is expected
than in the case of small g.

Corollary 2.4. Higher values of g are reflected in a slowdown of the
tumour growth and in decrease of tumour vessels’ efficiency. A lower value of
E indicates worse vessels structure, which may be reflected in uneven spread
of drugs, nutrition or oxygen inside the tumour region. Thus, it seems that
higher values of the parameter g should make the tumour less responsive to
treatment.

3. Chemotherapy and antiangiogenic treatment. Let us now in-
troduce to the model (2.6) two types of treatment that are common in
today’s medicine—antiangiogenic treatment and chemotherapy. Influencing
the process of angiogenesis is currently one of the most important methods
in cancer treatment. This method was proposed by Folkman [10]. However,
its implementation was possible due to the discovery of antiangiogenic drugs
by O’Reilly et al. (cf. [22, 23] and also [11, 12]). The effectiveness of this
method is caused by a very small group of substances that cause forma-
tion of new blood vessels. Thus, it is easier to create universal drugs to
fight cancer. We assume that chemotherapy and angiogenic inhibitors are
administered as boli at times t1, . . . , tn. Under the usual pharmacokinetic
assumptions [14] the concentration of drug at time t has the following form:

(3.1) f(t, c, (A1, . . . , An), (t1, . . . , tn)) = exp(−ct)
n∑
i=1

Ai exp(cti)1[0,t)(ti),
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where Ai is the amount of drug administered at time ti and c is its clearance
rate. The function f(t, ·) generally includes partially cleared contributions
from prior administration at earlier times t′ < t. We assume that the same
amount of drug is administered at each injection time, that is, Ai = A for
i = 1, . . . , n. Exemplary plots of f(t, c, A, (t1, . . . , tn)) are presented in Fig. 2.

Fig. 2. Exemplary plots of f(t, ·). We assume that the drug is administered from t = 0
till t = 20 at intervals of length i.

Let functions

ψ(t,pa) = f(t, ca, Aa, (ta1, . . . , t
a
n)) and φ(t,pc) = f(t, cc, Ac, (tc1, . . . , t

c
n))

represent the amount of inhibitors and chemotherapy administered at time t,
respectively. It is clear that the inhibitors only affect the dynamics of the
carrying capacity K as they block signals to the further growth of vessels.
For chemotherapy, despite its effect on the dynamics of the tumour volume,
the influence on the carrying capacity should be included as chemother-
apy is not cell selective and it affects endothelial cells which create vessels.
The effectiveness of chemotherapy and antiangiogenic treatment is highly
dependent on the possibility of its even distribution in all tumour regions.
Therefore, we postulate that the effect of φ(t,pc) and ψ(t,pa) should also
be proportional to the vessels efficiency E. Under those assumptions we
propose the following modification of the model 2.6:

(3.2)



V̇ = −λ1V ln
(
V

K

)
− f1V Eψ(t,pc),

K̇ = −λ2K + bV − dKV
2/3

E
− eKEφ(t,pa)− f2KEψ(t,pc),

Ė = g(1− E)(E − Emin)
(
V

K
− 1
)
.
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To compare the efficiency of each type of treatment we define the following
function.

Definition 3.1. The function

s(t) = 1− V ac(t)
V (t)

is called the treatment efficiency, where V (t) is the solution to (2.6), that is,
the volume to which the tumour grows without any treatment, and V ac(t)
is the solution to (3.2), that is, the volume of the treated tumour.

It is clear that for the same sets of parameters describing the tumour
growth only a higher reduction of the tumour volume at time t caused by
treatment will be reflected in a higher value of s(t).

3.1. Numerical simulations of tumour treatment. In simulations
with included treatment we use the following parameter values:

Aa = 8, e = 0.38, ca = 0.15, tai = i,

for antiangiogenic treatment, and

Ac = 4, f1 = 0.15, f2 = 0.1, cc = 0.2, tci = 5i

for chemotherapy. We assume that the inhibitors and chemotherapy are ad-
ministered every day and every five days, respectively. The values of the
parameters for antiangiogenic treatment are the same as obtained by Hah-
nfeldt for Angiostatin [22]. We only change the value of g to see how the
dynamics of the variable E affects the efficiency of tumour treatment.

3.1.1. Antiangiogenic treatment. As can be expected, Figs. 3 and 4 re-
veal that a strong decrease of E results in a decreased efficiency of antian-
giogenic treatment. Therefore, even if a tumour reaches its dormant state
at a much lower volume due to the low E, it is far less responsive to the
treatment than a much bigger tumour but with a higher value of the vessels’
efficiency E. This reflects the fact that if the vessels are of poor quality and
are poorly organised the drug cannot be spread evenly and there can even be
regions it does not reach. In addition, for medium values of g, antiangiogenic
treatment causes normalisation of vasculature [16], that is, the carrying ca-
pacity stabilises at the state characterised by appropriate vessels’ efficiency.

3.1.2. Chemotherapy. In the case of chemotherapy simulations presented
in Fig. 6 and the plot of treatment effectiveness in Fig. 5 lead to conclusions
similar to the case of antiangiogenic treatment, that is, if g is higher, then
the efficiency of treatment is lower.

This also reflects the fact that if the vessels are of poor quality and are
poorly organised, the drug cannot be spread evenly and there can even be
regions it does not reach. In addition, as can be seen in Fig. 5 for small



Tumour angiogenesis model 43

Fig. 3. Comparison between solutions to system (3.2) with only antiangiogenic treatment
included and with different values of g

Fig. 4. Efficiency of antiangiogenic treatment at the end of simulation run tmax for different
values of g

values of g, by administering chemotherapy we are able to reduce the tu-
mour volume below its initial value. Unfortunately, that kind of reduction
is only temporary as the therapy finally gives quantitative results similar to
the case of high values of g. This can be explained by decreasing vessels’
efficiency, due to the chemotherapy administration (see also the plot of E
in Fig. 6). Therefore, independently of the initial value of E, chemotherapy
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Fig. 5. Efficiency of chemotherapy at the end of simulation run tmax for different values
of g

brings finally E to its minimal admissible value, which makes chemotherapy
far less efficient.

Fig. 6. Comparison between solutions to system (3.2) with only chemotherapy included
and with different values of g

3.1.3. Combined treatment. As can be seen in Fig. 8, there is a ma-
jor quantitative change in treatment effectiveness in the case of combined
treatment. With the same doses of each treatment as in the case of separate
therapies we fully suppress the tumour for all values of g. As in the previous
cases, there is a dependence of treatment efficiency on the value of g (see
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Fig. 7. Efficiency of chemotherapy combined with antiangiogenic treatment at the end of
simulation run tmax for different values of g

Fig. 8. Comparison between solutions to system (3.2) with both treatments included and
with different values of g

Fig. 7) but in this case this dependence is negligible. That kind of change in
quantitative results reflects the fact that increased survivorship of patients
in the case when chemotherapy and antiangiogenic therapy were combined
was observed in clinical trials. Of course, a major role may be played by
the effect of accumulation of both therapies. Let us now define chemother-
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apy contribution to the treatment as the last term of the first equation of
system (3.2) divided by V :

C(t) = f1E(t)ψ(t,pc).
As can be seen in Fig. 10, in the case of combined treatment an increase of
the mean chemotherapy contribution to the tumour treatment can be ob-
served. In Fig. 10 also the exact value of that increase is presented. That kind
of increase of the chemotherapy contribution can be explained biologically
by vasculature normalisation effect, that is, increased vessels’ effectiveness
due to administering antiangiogenic inhibitors, which helps to hold a high
chemotherapy efficiency for longer time.

In Fig. 9 we have compared the effectiveness of all types of treatment.
It can be seen that combined treatment is far more efficient in every type of
tumour growth.

Fig. 9. Comparison of treatment efficiency at the end of simulation run tmax for three
types of therapies: chemotherapy, antiangiogenic treatment and combination of those two
therapies

Fig. 10. Comparison between contributions of chemotherapy C(t) to the tumour treat-
ment with different parameter g values and in presence or absence of the antiangiogenic
treatment. Horizontal lines are plots of mean chemotherapy contributions.
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4. Summary. We have proposed a model of tumour growth described
by a system of three ODEs that involve the tumour volume V , the vessel
carrying capacity K and the average value E of vessels’ effectiveness inside
the tumour. We have mainly focused on the influence of the dynamics of E on
the tumour growth and the effect of its treatment. Three types of treatment
have been included in the model: standard chemotherapy, antiangiogenic
therapy and a combined treatment.

In Section 1 we have explained the process of angiogenesis and its pathol-
ogy in the case of cancerogenesis, while in Section 2 a model without treat-
ment has been proposed. Moreover, in Subsection 2.2 some basic mathemat-
ical properties of the model have been described. It has been proven that
for every x in an invariant set, there exists a unique solution to the system
through x and it exists globally in time (t ≥ 0). Under some conditions on
the parameters, the set of steady states has been found.

Numerical simulations in Subsection 2.3 show that due to the different
dynamics of the variable E, which depends on the value of only one param-
eter, different values of steady states can be reached.

In Section 3 we have introduced three types of treatment to the model
and defined the function of treatment effectiveness. Moreover in Subsection
3.1 we have reported numerical simulations performed to compare results of
all three types of treatment. This comparison revealed that a higher loss in
the vessel efficiency E is reflected in lower effectiveness of each treatment,
but only for combined treatment that effect is negligible. In addition, the
numerical simulations show that only with the use of combined treatment
we are able to suppress the tumour successfully.
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