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STABILITY SWITCHES FOR SOME CLASS
OF DELAYED POPULATION MODELS

Abstract. We study stability switches for some class of delay differential
equations with one discrete delay. We describe and use a simple method
of checking the change of stability which originally comes from the paper
of Cook and Driessche (1986). We explain this method on the examples of
three types of prey-predator models with delay and compare the dynamics
of these models under increasing delay.

1. Introduction. Typically, population models are described using or-
dinary differential equations (see e.g. [10, 5] and the review in [1]). However,
it is sometimes biologically relevant to consider time delays present in many
processes in nature. Therefore, instead of ODEs we study delay differential
equations describing the dynamics of populations and interactions between
them.

In this paper we describe and explain, on the basis of some population
models, a method of studying stability switches for systems of delay dif-
ferential equations with one discrete delay. The idea of this method comes
from [2]. However, it is still not well recognised in the literature. It turns
out that in many cases to study the change of stability of the steady state
it is enough to check the derivative of some auxiliary function at the criti-
cal point z0 = ω2

0, where ±iω0 is a pair of purely imaginary eigenvalues for
a critical value of delay τ0. On the other hand, although different types of
prey-predator models with time delays have been studied in many papers
and text -books, it is not easy to find a comparison between the dynamics
of systems that have origins in different ecological assumptions. Therefore,
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we apply our method to three types of prey-predator models with delay and
compare the influence of delays on the dynamics of these systems.

Typically, studying the stability of some steady state one uses the method
of linearisation (see e.g. [6]). For the resulting linear system we find the
characteristic equation, also called the transcendental equation (for a similar
type of transcendental equation see e.g. [7]). The characteristic function is
usually not a polynomial, but a combination of some polynomials and the
exponential function. It is well known that time delay can have destabilising
influence, as in the case in the most exploited delayed population model
given by the Hutchinson equation [8]. Therefore, it is of great importance to
study the stability of the steady state which is stable for the system without
delay under the influence of increasing delay. In such a case the real parts
of the characteristic values are negative in the absence of delay. As long
as these real parts are negative, the steady state is stable. Note that the
characteristic values are roots of analytic functions, and hence depend on
the model parameters, and this dependence is as smooth as the right-hand
side of the system under study (see [6]). We focus on the dependence of the
stability on the time delay. The stability may change and a bifurcation can
occur at a threshold value of the delay for which there exist a pair of purely
imaginary eigenvalues. A change of stability appears at such a threshold if
the characteristic values cross the imaginary axis from left to right and then
the steady state loses stability. On the other hand, if the steady state is
unstable for delays smaller than the threshold, then it can gain stability.
Namely, if we know that there is only one pair of eigenvalues with positive
real part and the characteristic values pass from the right to the left half-
plane, then this point can gain stability. This direction is described by the
sign of the real part of the derivative of the characteristic values with respect
to the bifurcation parameter. If this parameter is positive, the steady state
becomes unstable. If it is negative, it can become stable.

The paper is organised as follows. In Section 2 we present the main
theorem which is applied in Section 3 to study stability switches for three
types of prey-predator models. Section 4 is devoted to the discussion of
results and presents some hints towards general applications of the method
described.

2. Main Theorem. In this article we focus on systems of delay differ-
ential equations with one discrete delay (see [2]). We are interested in DDEs
for which the characteristic function has a special form

(2.1) W (λ) = P (λ) +Q(λ)e−τλ =
n0∑
k=0

akλ
k +

n1∑
k=0

bkλ
ke−τλ, n0 > n1,

where ak are real numbers and Q has no roots on the imaginary axis.
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In this section we present the main theorem concerning stability changes.
We assume that for the steady state we study, the characteristic function has
the form (2.1), and this state is stable for τ = 0. Then the real parts of all
eigenvalues are negative. We would like to check whether the steady state
can become unstable for some positive values of τ . As each eigenvalue is a
continuous function of τ , a necessary condition for a stability change is the
existence of some critical value τ0 of delay for which there are eigenvalues
on the imaginary axis.

Therefore, the characteristic function (2.1) must have a purely imaginary
root. We shall find that point. As there exist two roots with positive and
negative imaginary part, we focus on finding the positive one.

Definition 2.1. Let us define two auxiliary functions f , g : R+ → R:

(2.2) g(y) = |P (iy)|2 − |Q(iy)|2 and f(y) = g(
√
y).

Note that at a point where the stability is lost the function g is equal
to zero. Therefore, we are interested in finding points where g(y) = 0. Next,
we calculate the values τk of delay such that W (iy) = 0. The form of (2.1)
implies that for any purely imaginary eigenvalue λ = iy there may exist a
sequence of critical values of delays. Finally we check the sign of the deriva-
tive d<λ(τ)

dτ

∣∣
τ=τk

. If this sign is positive, the steady state loses stability, while
if it is negative, the stationary point remains stable.

Main Theorem 2.2. If the characteristic function has the form (2.1)
and Q has no roots on the imaginary axis, then the derivative d<λ(τ)

dτ

∣∣
τ=τk

,
where τk, k ∈ N, denote the threshold values of delay, has the same sign as
f ′(y2), where the auxiliary function f is defined in (2.2), and λ(τk) = iy.

Proof. Assume that for the threshold values τk the characteristic function
W (λ) has an imaginary root λ = iy. We would like to find the sign of d<λ(τ)

dτ
for τ = τk. Let λ = x+iy. We differentiate (2.1) with respect to τ for τ = τk,
that is, at x = 0. We have

0 = W ′(x+ iy)|x=0

= P ′(iy)(x′ + iy′)−Q(iy)e−iyτ ((x′ + iy′)τ + iy) +Q′(iy)e−iyτ (x′ + iy′).

For λ = iy, we have x = 0 and P (iy) = −Q(iy)e−iyτ , P (iy)/Q(iy) = −e−iyτ .
Hence,

W ′(iy) = P ′(iy)(x′ + iy′) + P (iy)((x′ + iy′)τ + iy)−Q′(iy)
P (iy)
Q(iy)

(x′ + iy′).
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We define

(2.3)

P1r(y) := <P (iy), P1i := =P (iy),
P2r(y) := <P ′(iy), P2i := =P ′(iy),
Q1r(y) := <Q(iy), Q1i := =Q(iy),
Q2r(y) := <Q′(iy), Q2i := =Q′(iy),

and notice that

P ′1r(y) = −P2i(y), P ′1i(y) = P2r(y),
Q′1r(y) = −Q2i(y), Q′1i(y) = Q2r(y).

Now we can rewrite W ′(iy) using its real and imaginary part and (2.3):{
0 = <W ′(iy) = ax′ − by′ − P1iy,

0 = =W ′(iy) = bx′ + ay′ + P1ry,

where

a = P2r + τP1r

+
1

Q2
1r +Q2

1i

(P1iQ1rQ2i − P1rQ1rQ2r − P1iQ1iQ2r − P1rQ1iQ2i),

b = P2i + τP1i

+
1

Q2
1r +Q2

1i

(P1rQ1iQ2r − P1iQ1iQ2i − P1iQ1rQ2r − P1rQ1rQ2i).

After solving the equations above we obtain

x′ =
y(P1ia− P1rb)

a2 + b2
.

The sign of x′ depends only on y(P1ia− P1rb), where

P1ia− P1rb = P1iP2r − P1rP2i − (Q1iQ2r −Q1rQ2i)
P 2

1i + P 2
1r

Q2
1r +Q2

1i

.

Therefore,

(2.4) sign(x′) = sign
(
y

(
P1iP2r−P1rP2i−(Q1iQ2r−Q1rQ2i)

P 2
1i + P 2

1r

Q2
1r +Q2

1i

))
.

Now, we consider f ′(y2), where f and g are defined by (2.2). Note that

g(y) = P 2
1r(y) + P 2

1i(y)−Q2
1r(y)−Q2

1i(y),

so

g′(y) = 2P1r(y)P ′1r(y) + 2P1i(y)P ′1i(y)− 2Q1r(y)Q′1r(y)− 2Q1i(y)Q′1i(y),

that is,

g′(y) = 2P1i(y)P2r(y)− 2P1r(y)P2i(y)− 2Q1i(y)Q2r(y) + 2Q1r(y)Q2i(y).
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Recalling that f(y) = g(
√
y), we calculate

f ′(y) = g′(
√
y)(
√
y)′ =

P1i(
√
y)P2r(

√
y)− P1r(

√
y)P2i(

√
y)−Q1i(

√
y)Q2r(

√
y) +Q1r(

√
y)Q2i(

√
y)

√
y

and obtain

f ′(u)|u=y2 =
1
y

(P1i(y)P2r(y)−P1r(y)P2i(y)−Q1i(y)Q2r(y)+Q1r(y)Q2i(y)).

We are looking for ȳ such that W (iȳ) = 0 and g(ȳ) = 0. Hence, P 2
1r(ȳ) +

P 2
1i(ȳ) = Q2

1r(ȳ) +Q2
1i(ȳ), which yields

ȳf ′(u)|u=ȳ2 = P1i(ȳ)P2r(ȳ)− P1r(ȳ)P2i(ȳ)(2.5)

− P 2
1r(ȳ) + P 2

1i(ȳ)
Q2

1r(ȳ) +Q2
1i(ȳ)

(Q1i(ȳ)Q2r(ȳ)−Q1r(y0)Q2i(ȳ)).

Comparing (2.5) and (2.4) one gets

sign(x′) = sign
(
y

(
P1iP2r − P1rP2i − (Q1iQ2r −Q1rQ2i)

P 2
1i + P 2

1r

Q2
1r +Q2

1i

))
= sign(y2f ′(y2)).

Therefore, d<λ(τ)
dτ

∣∣
τ=τk

, where τk, k ∈ N, denote the threshold values of delay,
has the same sign as f ′(y2).

Remark 2.3. Notice that the assumption that Q has no roots on the
imaginary axis can be weakened. One can only require Q2

1r + Q2
1i 6= 0 in a

neighbourhood of the point iȳ which is the eigenvalue for the critical value
of delay τ .

3. Stability switches for prey-predator models with delay. Now,
we explain the use of the Main Theorem on simple examples coming from
population dynamics, namely prey-predator models with delay. In [11] we
have also studied the Hutchinson equation using this framework. However,
this single equation is simple and very well known and in our opinion it
cannot highlight the power of our method. We need an at least two-variable
model to describe this method properly.

In this section we present three examples of prey-predator models that
have characteristic functions of the form (2.1), and study stability switches
using the Main Theorem of the previous section. The original prey-predator
model without delay is very well known (see e.g. [10, 5]). We focus on the
prey-predator model with carrying capacity for prey because we would like
to study the possible destabilisation effect of delay; hence, we require a stable
steady state for the system without delay. The relevant system without delay



56 J. Skonieczna and U. Foryś

reads

(3.1)

 V̇ (t) = a1V (t)
(

1− V (t)
K

)
− b1V (t)P (t),

Ṗ (t) = −a2P (t) + b2V (t)P (t),

where V (t) and P (t) are the densities of preys and predators, respectively, a1

is the prey reproduction rate, K is their carrying capacity, b1 describes the
effectiveness of hunting, a2 is the predator mortality rate and b2/b1 reflects
the part of hunted biomass which is used for predator reproduction. The
term V (t)P (t) is the number of prey-predator encounters and it describes
prey-predator interactions.

It is well known that (3.1) always has two steady states

(V̄ , P̄ ) ∈ {(0, 0), (K, 0)}

and for K > a2/b2 there exists a third positive steady state

(V ∗, P ∗) =
(
a2

b2
,
a1

b1

(
1− a2

Kb2

))
.

The first steady state (0, 0) is always unstable, independently of the model
parameters. For K < a2/b2 the second steady state (K, 0) is stable, while
for K > a2/b2 it is unstable and the positive steady state (V ∗, P ∗) that
exists for such parameter values is stable. Moreover, stable steady states are
globally stable in (R+)2 (see e.g. [10, 5]).

It is obvious that time delay can be introduced into different terms
of (3.1) depending on the model assumptions. In general, we can consider
the system with several delays reflecting time lags appearing in different
processes in this model. However, two types of prey-predator systems with
delay are best known. In the first one, proposed by Wangersky and Cun-
ningham [12], delay is incorporated in prey-predator interactions. On the
other hand, May [9] pointed out that from the ecological point of view the
three-level trophic system such as the vegetation-herbivore-carnivore system
should be more stable than the two-level vegetation-herbivore system. If
the two-level trophic system is described by the Hutchinson equation, then
adding interactions with predators typically should have a stabilising effect.
Therefore, it is of biological relevance to consider the prey-predator model
with time delay in the term describing the growth of preys.

Each model is illustrated by a few plots showing dependences between
solutions and delay. The plots are made for the same parameters a1 = 3,
a2 = 1, b1 = 1, b2 = 2, k = 3 and initial data (V0, P0) = (1, 1). In each
model for small delay the stationary point is stable and loses stability after
increasing the delay.
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3.1. Prey-predator model with delay: type I. In this subsection we
consider two types of models reflecting the idea of delay in the prey-predator
interactions term. In this model we assume that the prey reproduction pro-
cess is very fast, and therefore we do not consider any delay in the equation
describing this population. On the other hand, the predator reproduction
process is not so fast and we incorporate a time delay in this process. In the
first model we consider a time delay in the per capita growth rate, that is,
we introduce a delay only in V (t− τ) leaving the density of predators P (t)
at the present time, while in the second model we just add a time delay in
the interaction term b2V P replacing it by b2V (t− τ)P (t− τ).

Now, we assume that the per capita growth rate of predators depends
on the number of preys hunt some time ago. Therefore, we consider the
following system of delayed differential equations:

(3.2)

 V̇ (t) = a1V (t)
(

1− V (t)
K

)
− b1V (t)P (t),

Ṗ (t) = −a2P (t) + b2V (t− τ)P (t).

It is obvious that (3.2) has the same steady states as (3.1). In this paper we
focus on the stability of the positive steady state (V ∗, P ∗) which is stable for
τ = 0. We study the change of stability with respect to the delay parameter
τ . To check the stability of the steady state we make a linearisation around
(V ∗, P ∗) and after simple calculations we obtain

(3.3)


˙̃
V (t) = −a1a2

Kb2
Ṽ (t)− b1

a2

b2
P̃ (t),

˙̃
P (t) = b2

a1

b1

(
1− a2

Kb2

)
Ṽ (t− τ),

where P̃ and Ṽ are small deviations from P ∗ and V ∗, respectively. The
characteristic matrix of (3.3) reads

(3.4)
(

−a1a2
Kb2
− λ −b1 a2

b2

a1
b2
b1

(
1− a2

Kb2

)
e−λτ −λ

)
,

and the characteristic function which is the determinant of the matrix (3.4)
has the form

W (λ) = λ2 +
a1a2

Kb2
λ+ a1a2

(
1− a2

Kb2

)
e−λτ = λ2 + c1λ+ c2e

−λτ ,

which is obviously of the form (2.1). To study stability we check for which
values of τ the real parts of the roots of the characteristic function, that is, the
eigenvalues of (3.4) are negative. The continuous dependence of eigenvalues
on the delay parameter (see e.g. [10, 5]) implies that a change of stability
requires the appearance of purely imaginary eigenvalues. Looking for purely
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imaginary eigenvalues we follow [2], [3] and formulate the necessary condition
|−y2 + c1iy| = |c2e

−iyτ |, where λ = iy. As in the Main Theorem, we use the
auxiliary functions

g(y) = |−y2 + c1iy|2 − |c2|2 = y4 + c2
1y

2 − c2
2,

f(y) = g(
√
y) = y2 + c2

1y − c2
2.

Notice that
f ′(t)|t=y2 = 2y2 + c2

1 > 0.

Solving the equation g(y) = 0 for y > 0 one gets

ȳ1 =

√√
c4

1 + 4c2
2 − c2

1

2
.

To check for which values of τ we have λ = iȳ1, we solve{
−ȳ2

1 + c2 cos(ȳ1τ) = 0,
c1ȳ1 − c2 sin(ȳ1τ) = 0,

and obtain the sequence (τk), k ∈ N, such that

(3.5) τ0 =
1
ȳ1

arccos
(
ȳ2

1

c2

)
and τk = τ0 +

2kπ
ȳ1

.

Finally, the Main Theorem shows that the sign of d<λ(τ)
dτ

∣∣
τ=τk

is equal to
the sign of f ′(ȳ2), which is positive for every k ∈ N. Therefore, the eigen-
values always cross the imaginary axis from left to right, which means that
for τ = τ0 the steady state (V ∗, P ∗) loses stability and cannot gain it for
larger τ . Indeed, at τ = τk for k > 0 there appears a pair of purely imaginary
eigenvalues which again cross the imaginary axis from left to right and the
number of eigenvalues with positive real part increases.

Now we consider the second prey-predator model with delay in the prey-
predator interaction term:

(3.6)

 V̇ (t) = a1V (t)
(

1− V (t)
K

)
− b1V (t)P (t),

Ṗ (t) = −a2P (t) + b2V (t− τ)P (t− τ).

As for (3.2), we study stability switches for the steady state (V ∗, P ∗), starting
from τ = 0 and checking the change of stability for increasing delay.

Firstly, we need to find the characteristic function. After linearisation
around (V ∗, P ∗) one gets

˙̃
V (t) = −a1a2

Kb2
Ṽ (t)− b1

a2

b2
P̃ (t),

˙̃
P (t) =

a1b2
b1

(
1− a2

Kb2

)
Ṽ (t− τ)− a2P̃ (t) + a2P̃ (t− τ).
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Fig. 1. Plot of solution to (3.2) for τ = 0.1
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Fig. 2. Plot of solution to (3.2) for τ = 0.2
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Fig. 3. Plot of solution to (3.2) for τ = 0.3

The characteristic function is

W (λ) = λ2 +
(
a2 +

a1a2

Kb2

)
λ+

a1a
2
2

Kb2
+
(
−a2λ− 2

a1a
2
2

Kb2
+ a1a2

)
e−λτ .

We are looking for purely imaginary eigenvalues so that the stability may
change. We calculate

W (iω) = −ω2 + (a2 + c)iω + a2c+ (−a2iω − 2a2c+ a1a2)e−iωτ ,

where c = c1 = a1a2
Kb2

and c < a1. We find the auxiliary function

g(y) = (−y2 + a2c)2 + (a2 + c)2y2 − (a1a2 − 2a2c)2 − a2
2y

2,

that is,
g(y) = y4 + c2y2 + a2

2(4a1c− a2
1 − 3c2),
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Fig. 4. Plot of solution to (3.6) for τ = 0.1
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Fig. 5. Plot of solution to (3.6) for τ = 0.3
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Fig. 6. Plot of solution to (3.6) for τ = 0.5

and the functions f and f ′:
f(y) = y2 + c2y + a2

2(4a1c− a2
1 − 3c2), f ′(y) = 2y + c2.

Note that f ′(y2) = 2y2 + c2 is always positive.
Now it is necessary to find points such that g(y) = y4 + c2y2 + a2

2(4a1c−
a2

1−3c2) = 0. This equality can hold if 4a1c−a2
1−3c2 < 0. Therefore, a1 < c

or a1 > 3c. Note that a1 < c contradicts the existence of a positive steady
state (V ∗, P ∗) we study.

Summing up, the steady state (V ∗, P ∗) for 3a2/b2 > K is always stable
and the stability switches are not possible. For 3a2/b2 < K we use the Main
Theorem, and the inequality f ′(y2) > 0 implies that (V ∗, P ∗) loses stability
for the first critical value τ0 of delay such that W (iȳ) = 0 and cannot gain
it for larger τ , as in the case of (3.2).
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3.2. Prey-predator model with delay: type II. The next possibility
of introducing delay was explained by May [9] and is connected with the ecol-
ogy rule of increasing stability of trophic systems with increasing number of
species involved. Let V be the herbivore density in the two-level vegetation-
herbivore trophic system. We describe the dynamics of this species using the
Hutchinson equation

(3.7) V̇ (t) = a1V (t)
(

1− V (t− τ)
K

)
,

where τ reflects the time needed for recovery of vegetation from being grazed.
It is well known (see e.g. [4]) that the Hutchinson equation has a positive
steady state V ∗ = K which is stable for τ < π/(2a1) = τcrit, loses stability
at τcrit and is unstable for larger τ . This means that the delay in (3.7)
yields stability or instability depending on its proportion to the characteristic
growth-rate time T = 1/a1 of the system.

Now, we add the next species to our ecosystem increasing the trophic
level and considering the vegetation-herbivore-carnivore system described
by the Hutchinson equation coupled with the predator equation. Therefore,
the model reads

(3.8)

 V̇ (t) = a1V (t)
(

1− V (t− τ)
K

)
− b1V (t)P (t),

Ṗ (t) = −a2P (t) + b2V (t)P (t).

In [9] it is claimed that for such systems there are three characteristic times:
τ and T described above and T̃ which is the geometric mean of herbivore
birth and carnivore death times which reflects the characteristic period for
prey-predator oscillations in Lotka-Volterra system (see e.g. [10]). Typically,
we have T < τ < T̃ and this yields stability.

Now, we check stability switches for (V ∗, P ∗) as a steady state of (3.8).
For this system the characteristic matrix reads(

−a1
V ∗

K e−λτ − λ −b1V ∗

b2P
∗ −λ

)
,

which leads to the characteristic function

W (λ) = λ2 + b1b2V
∗P ∗ +

a1V
∗

K
λe−λτ = λ2 + c2 + c1λe

−λτ .

We easily calculate the auxiliary function

f(y) = y2 − (2c2 + c2
1)y + c2

2

and see that f(y) = 0 (that is, g(
√
y) = 0) has two positive solutions

ȳ1 =
2c2 + c2

1 − c1

√
c2

1 + 4c2

2
and ȳ2 =

2c2 + c2
1 + c1

√
c2

1 + 4c2

2
> ȳ1.
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Fig. 7. Plot of solution to (3.8) for τ = 0.1
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Fig. 8. Plot of solution to (3.8) for τ = 0.8

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10

Fig. 9. Plot of solution to (3.8) for τ = 0.9

It is obvious that f ′(ȳ1) < 0 and f ′(ȳ2) > 0. In this case we have two
sequences of critical delays τ1

k and τ2
k for which iω1 and iω̄2, ω̄i =

√
yi, are the

eigenvalues, respectively. The identity W (iω̄) = 0 yields ω̄1τ
1
k = π/2 + 2kπ

and ω̄2τ
2
k = π/2 + 2kπ. Let us consider τ1

0 and τ2
0 . The inequality ω̄1 < ω̄2

implies τ1
0 > τ2

0 . Therefore, if τ increases starting from τ = 0, the first critical
value of delay for which (V ∗, P ∗) can lose stability is τ2

0 . For this critical delay
there is a pair of purely imaginary eigenvalues ±iω̄2 and the Main Theorem
shows that the eigenvalues at τ2

0 cross the imaginary axis from left to right so
that (V ∗, P ∗) loses stability. As τ increases, the next critical value of delay
can be either τ1

0 or τ2
1 depending on the model parameters. More precisely,

if ω̄2 < 6ω̄1, then τ1
0 < τ2

1 and then the next critical delay is τ1
0 for which

the eigenvalues cross the imaginary axis from right to left and (V ∗, P ∗) can
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gain stability. If ω̄2 > 6ω̄1, then τ1
0 > τ2

1 and then the next critical delay is
τ2

1 for which the eigenvalues cross the imaginary axis from left to right and
(V ∗, P ∗) stays unstable. With increasing delay, stability switches can occur
under the assumption that the sequences of critical delays fulfil

(3.9) τ2
0 < τ1

0 < τ2
1 < τ1

1 < · · · < τ2
k < τ1

k < τ2
k+1.

However, the sequences (τ1
k )k∈N and (τ2

k )k∈N are both arithmetic progressious
with difference 2π/ω̄1 and 2π/ω̄2, respectively. Therefore, there exist k ∈ N
such that (3.9) ceases to hold and then (V ∗, P ∗) becomes unstable. The
number of possible stability switches depends on the model parameters.

4. Discussion. In this section we summarise and discuss the results pre-
sented in the previous section. As can be seen, different ecological assump-
tions reflected in different models with delays lead to different dynamics of
resulting prey-predator systems. The most complicated behaviour depend-
ing on the model parameters is obtained for system (3.8) proposed as the
description of a three-level trophic system (see [9]). In this model there is
always a change of stability of the positive steady state with increasing de-
lay. Moreover, for some parameter values there can be a finite sequence of
stability switches ending with instability for large delays.

When the delay is introduced into the prey-predator interaction term the
behaviour also depends on the manner of introducing the delay. If the delay
is introduced into the per capita growth rate, then there is always a change of
stability for some critical value of delay and there is no possibility of gaining
stability again. For the system where the delay is introduced into the whole
interaction term the dynamics depends on the magnitude of the carrying
capacity K of prey species. More precisely, if K < 3V ∗, then the positive
steady state (V ∗, P ∗) is stable independently of the delay. For K > 3V ∗

a change of stability occurs for a critical value of delay and a sequence of
stability switches cannot occur.

We see that for system (3.1) with delay introduced under different eco-
logical assumptions all three possible types of dependence on the delay are
possible. These three types are the following:

• The steady state is stable independently of the delay.
This behaviour is a consequence of non-existence of purely imaginary
eigenvalues, which is equivalent to non-existence of positive roots of
the auxiliary function g.
• The steady state loses stability for some critical value of the delay and

cannot gain it again for larger delays.
This is connected with the function g that has one positive root. For
such g the function f which is a quadratic function also has one positive
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root at which f is increasing. Therefore, at every critical value of delay
the eigenvalues cross the imaginary axis from left to right and the
number of eigenvalues with positive real parts increases. This implies
that the steady state loses stability at the first critical delay and cannot
gain it for larger delays.
• There is a sequence of stability switches with increasing delay which

ends with instability for large delays.
This type of behaviour can occur for a system with the function g
having two positive roots. If y1 < y2 are the roots of g, then f ′(y1) < 0
and f ′(y2) > 0. On the other hand, the critical values of delay depend
inversely on the roots of g and hence τ1

crit > τ2
crit, that is, for τ2

crit a
change of stability occurs. On the other hand, for both y1 and y2 there
is a sequence of critical values of delay at which the steady state can
change stability due to the existence of purely imaginary eigenvalues.
Both sequences τ1

n and τ2
n are arithmetic progressions with different

differences. Therefore, there can appear a finite sequence of stability
switches with increasing delay.

It should be noted that when the steady state loses stability and becomes
unstable, then typically the Hopf bifurcation is observed and the system has
periodic solutions oscillating around the steady state.

Finally, we would like to compare critical values of delays calculated for
specific parameter values of (3.1). Assume that a1 = 3, b1 = 0.5, K =
100, a2 = 0.2, b2 = 0.01. For these parameter values the characteristic
times mentioned by May [9] are T = 1/a1 = 1/3, T̃ =

√
a1a2 ≈ 0.77

and τcrit ≈ 0.52, where τcrit denotes the critical delay of the Hutchinson
equation where there is a change of stability in this equation. We see that
T < τcrit < T̃ , as is suggested in [9]. According to the suggestions of May the
critical delay for a three-level trophic system described by the prey-predator
system with delay should be significantly greater, which may reflect the
well known ecological rule of increasing stability with increasing number of
species involved in the ecosystem. Indeed, for these parameter values the
critical values of delays are 1.428050311 for (3.8) and 1.396019183 for (3.2),
respectively, while τcrit = 0.5235987758, which is significantly smaller.

It should also be noted that the method described in this paper obviously
can also be applied in the case of a steady state which is unstable for τ = 0. In
such a case we can check whether this state can gain stability with increasing
delay and whether stability switches are possible.

It is obvious that the three types of behaviour described above can also be
observed in other delayed models with two variables and in delayed models
with three or more variables, while stability switches are not possible in the
case of one variable delayed models, where the auxiliary function f is linear
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and it has a constant derivative yielding the movement of eigenvalues in one
direction for each critical value of delay.

In general, for delayed models with two or more variables, from the Main
Theorem we can deduce that

• if the auxiliary function f has no positive root, then a change of sta-
bility is not possible;
• if the auxiliary function f has exactly one positive root, then there can

be exactly one change of stability from stable to unstable steady state,
and if the steady state loses stability, it cannot gain it again;
• if the auxiliary function f has at least two positive roots, then stability

switches with increasing delay are possible.
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