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ASYMPTOTIC COVARIANCES FOR
THE GENERALIZED GAMMA DISTRIBUTION

Abstract. The five-parameter generalized gamma distribution is one of
the most flexible distributions in statistics. In this note, for the first time, we
provide asymptotic covariances for the parameters using both the method
of maximum likelihood and the method of moments.

1. Introduction and summary. The generalized gamma distribution
(GGD) also known as power-gamma distribution due to Stacy (1962) and
Stacy and Mihram (1965) is that of the five-parameter family

X = λ1 + {β(G+ λ2)}1/c,(1.1)

where G ∼ gamma(γ), that is, G has density pG(g) = gγ−1 exp(−g)/Γ (γ) on
(0,∞). Assume that βc > 0 so that X is an increasing function of G. Then X
has density pX(x) = pG(g)∂g/∂x on (x0,∞), where x0 = λ1 + (βλ2)1/2 and
g = (x−λ1)c/β−λ2. So, ∂g/∂x = (x−λ1)c−1c/β. Section 8.4 of Johnson and
Kotz (1970) assumes λ2 = 0 and reparametrizes (1.1) as X = λ1 + β′G1/c,
where β′ = β1/c.

Many authors have developed estimation procedures for the GGD. Stacy
(1962) discusses several distributional properties of the GGD but no esti-
mation procedures are given. Stacy and Mihram (1965) consider maximum
likelihood and moment estimators with formulas for variances given for some
very special cases. Harter (1967), Lawless (1980), Wingo (1987) and Wong
(1993) consider maximum likelihood estimation but give no expressions for
the asymptotic covariance matrix. Hager and Bain (1970) and Parr and
Webster (1965) consider maximum likelihood estimation and give formulas
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for asymptotic covariances for the particular case λ1 = 0. Stacy (1973) pro-
poses new quasimaximum likelihood estimators for the usual two-parameter
gamma distribution as alternatives for the maximum likelihood and mo-
ments estimators. Huang and Hwang (2006) propose an estimation method
based on a characterization of the GGD, and show it to be more convenient
and more efficient than the maximum likelihood estimator for small sam-
ples. Gomes et al. (2008) propose a new algorithm for estimation referred
to as iteration transformation estimation validation. Song (2008) presents
fast and globally convergent algorithms for estimation based on novel scale-
independent shape estimation equations.

None of the papers in the literature have given formulas for asymptotic
covariances of the estimates for the GGD. It would be helpful to have explicit
expressions to help construct tests and confidence intervals for functions of
the parameters. The aim of this note is to provide asymptotic covariances for
the maximum likelihood estimates (Section 2) and for the moment estimates
for logX (Section 3), which we call the log-moments. We assume that either
λ1 = 0 or λ2 = 0. We use the estimate x̂0 = min(X1, . . . , Xn), where
X1, . . . , Xn are the sample values, assumed i.i.d. from (1.1). That is, we
use λ̂1 = x̂0 assuming λ2 = 0, or λ̂2 = x̂0ĉ/β̂ assuming λ1 = 0, where ĉ, β̂, γ̂
are the maximum likelihood estimates or log-moment estimates computed
as if λ2 were known.

Note that x̂0 is superefficient, that is, E(x0 − x̂0)2 = O(n−2) not just
O(n−1). Consequently, the asymptotic covariance of (λ̂, ĉ, β̂, γ̂), where λ̂ =
λ̂1 or λ̂2, is to O(n−2) just that for the case when x̂0 is replaced by x0.
So, a consistent confidence region for any smooth function of (ĉ, β̂, γ̂) as-
suming λ2 = 0, or of (λ̂2, ĉ, β̂γ̂) assuming λ1 = 0, is obtainable by this
device, effectively reducing us to the three-parameter problem, where x0 is
known.

2. The maximum likelihood estimate. Here, we consider the case
λ2 = 0, as assumed by Johnson and Kotz (1970). That is X = λ1 + (βG)1/c,
where G ∼ gamma(γ). We take λ̂1 = min(X1, . . . , Xn). As noted in Sec-
tion 1, the asymptotic covariance of (ĉ, β̂, γ̂) is the same to O(n−2) as for
the case λ̂1 = λ1 known. So, for a test or confidence region for (c, β, γ)
without loss of generality we assume λ1 = 0, that is, X = (βG)1/c. So,

log pX(x) = log{cβ−γ/Γ (γ)}+ (cγ − 1) log x− qc(x)/β,

where qc(x) = xc, and the mean log likelihood of a random sample
X1, . . . , Xn from pX(x) is

L = log{cβ−γ/Γ (γ)}+ (cγ − 1)l − qc/β,
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where

l = n−1
n∑
i=1

logXi =
�
log x dFn(x), qc = n−1

n∑
i=1

qc(Xi) =
�
qc(x) dFn(x),

where Fn(x) is the empirical distribution. The maximum likelihood estimate
θ̂ = (ĉ, γ̂, β̂)′ satisfies

0 = ∂L/∂β−1 = γ/β−1 − qc,
0 = ∂L/∂c = c−1 + γl − qc1/β,
0 = ∂L/∂γ = − log β − ψ(γ) + cl,

where ψ(γ) = (d/dγ) logΓ (γ) and

qci = (∂/∂c)iqc =
�
qci(x) dFn(x),

where the ith derivative with respect to c of qc(x) = xc is qci(x) = xc(log x)i.
So, θ = θ̂ satisfies

β = qc/γ, γ = c−1(qc1q
−1
c − l)−1,(2.1)

0 = cl − log c− log(qc1 − lqc)− ψ(γ).(2.2)

Equations (2.1) and (2.2) can be viewed as one equation in ν = ĉ = c or as
two equations in ν = (γ̂, ĉ) or as three equations in ν = θ̂. In each case, one
can solve them by Newton’s method for solving h(ν) = 0, starting from an
initial value ν0, and iterating using

νi+1 = ν − εḣ(ν)−1h(ν)

at ν = νi, where ḣ(ν) = ∂h(ν)/∂ν ′ is p × p, and h, ν have the same
dimension p = 1, 2 or 3. Here, ε is an arbitrary damping parameter in (0, 1],
say 0.5, to lessen overshoot. Now

covar θ̂ = Vn−1 +O(n−2),

where V = I(θ, F )−1 and

I(θ, F ) = −E∂2 log pX(X)/∂θ∂θ′ = −
�
∂2 log pX(x)/∂θ∂θ′ dF (x),

Fisher’s information matrix, and F (x) = Fθ(x) say is the cumulative dis-
tribution of X ∼ pX(x). Note that V may be estimated by either V̂ =
I(θ̂, Fbθ)−1 or V̂ = I(θ̂, Fn)−1.

A confidence region of level α + O(n−1) for any smooth function say
t : R3 → R2, where 1 ≤ q ≤ 3, is then given by

n{t(θ)− t(θ̂)}TCt(θ̂, V̂)−1{t(θ)− t(θ̂)} ≤ χ2
q,α,(2.3)

where χ2
q,α is the αth quantile of χ2

q , and

Ct(θ,V) = lim
n→∞

n covar t(θ̂) = ṫ(θ)Vṫ(θ)′
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for ṫ(θ) = ∂t(θ)/∂θ′. If we work with θ = (c, γ, β−1) rather than (c, γ, β),
the elements of I = I(θ, Fn) = −∂2L/∂θ∂θ′ are

I11 = c−2 + β−1qc2, I12 = −l, I13 = qc1,

I22 = ψ̇(γ), I23 = −(β−1)−1 = −β, I33 = γ(β−1)−2 = γβ2,

and I has inverse J/det I, where

J11 = I22I33 − I2
23 = (ψ̇(γ)γ − 1)β2,

J12 = I13I23 − I12I33, J13 = I12I23 − I13I22,

J22 = I11I33 − I2
13, J23 = I12I13 − I11I23, J33 = I11I22 − I2

12,

and det I = I11J11 + I12J12 + I13J13.

3. Log-moment estimates. Again we assume that λ2 = 0 and take
λ̂1 = min(X1, . . . , Xn). So, for a test or confidence region for any smooth
function t(θ), where θ = (c, γ, β), we may without loss of generality assume
λ1 = 0. A confidence region for t(θ) of level α + O(n−1) is given by (2.3),
where now θ̂ is the log-moment estimate.

Set µ = E logX and µr = E(logX − µ)r. Then from Johnson and
Kotz (1970),

µ3µ
−3/2
2 = ψ̈(γ)ψ̇(γ)−3/2 = a(γ) say,(3.1)

c = µ2µ
−1
3 b(γ),(3.2)

β = exp{µc− ψ(γ)},(3.3)

where b(γ) = ψ̈(γ)ψ̇(γ)−1. The log-moment estimates θ̂ for θ are obtained
by replacing µ, µ2, µ3 by their sample values. Also

covar θ̂ = Vn−1 +O(n−2),

where V = V(θ, F ) is given in Appendix A. It may be estimated by
V̂ = V(θ̂, Fbθ) or V(θ̂, Fn). As for the maximum likelihood estimates, re-
finements to the confidence region (2.3) may be made using the method of
Withers (1989) to bring the error in the nominal level α down from O(n−1)
to O(n−k) for any fixed k.

4. Fractional log-moment estimates. In Section 3, we gave esti-
mates for (c, γ, β) based on the first three moments of logX. These esti-
mates downweight the upper tail so will be more robust to outliers than the
estimates based on the first three moments of X.

Even more robust would be estimates based on the first three moments
of say (logX)1/2, a quantity that may be imaginary. Since X = (βG)1/c,

logX = c−1(log β + logG).(4.1)
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Since

EXr = βr/cΓ (r/c+ γ)/Γ (γ)(4.2)

for Re r/c+ γ > 0, one has

E(logX)j = (∂/∂t)jEXt|t=0

= c−j(∂/∂t)jβtΓ (t+ γ)/Γ (γ)|t=0

= c−j
j∑

k=0

(
j

k

)
Γ (k)(γ)Γ (γ)−1(log β)j−k

by Leibniz’s rule. Similarly, from (4.2), the rth cumulant of logX is

κr(logX) = (∂/∂t)r{logEXt}|t=0/r! = δr1c
−1 log β + c−rψ(r−1)(γ),

which proves (3.1). This is not enough to give us the moments of (logX)1/2.
From (4.1),

(logX)t = c−t
∞∑
j=0

(
t

j

)
(log β)t−j(logG)j

if |logG| < |log β|, so

E(logX)t = c−t
∞∑
j=0

(
t

j

)
(log β)t−jgj(γ)(4.3)

if convergent, where

gj(γ) = E(logG)j = (∂/∂t)jEGt|t=0 = Γ (j)(γ)/Γ (γ).

There is no longer a simple expression for the cumulant generating function
or cumulants of (logX)1/2, so one is forced to solve (4.3) for t = 1/2, 1, 3/2
by numerical means. Set

h(t) =
∞∑
j=0

(
t

j

)
(log β)t−jgj(γ), m(t) = E(logX)t.

So,

m(0.5) = c−1/2h(0.5), m(1) = c−1h(1), m(1.5) = c−3/2h(1.5),

where h(1) = log β + ψ(γ). So,

m(1)m(0.5)−2 = h(1)h(1.5)−2 = H1(β, δ)(4.4)

say, and

m(1.5)m(1)−3/2 = h(1.5)h(1)−3/2 = H2(β, δ)(4.5)

say. One can now apply Newton’s method to solve (4.4) and (4.5) for β, γ
and hence find the estimates in terms of the sample versions of E(log)j/2,
j = 1, 2, 3.
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The above method assumes that β > 1 so that (log β)t is real for t real.
Now suppose that β < 1. Then the right hand side of (4.4) is complex.
So, the real and imaginary parts of (4.4) provide two equations and (4.5) is
not needed, provided the right hand side of (4.4) is not purely imaginary.
For the sample versions, which method is used is determined by whether the
sample version of m(1)m(0.5)−2 is real or complex but not purely imaginary.
If m(1)m(0.5)−2 is purely imaginary, then one needs to include (4.5).

Appendix A. Here, we give the asymptotic covariance of the log-mo-
ment estimates of Section 3. Writing

µ(F ) = µ =
�
x dF (x), µr(F ) = µr =

�
(x− µ(F ))r dF (x),

(3.1)–(3.3) give equations for θ(F ) = θ. So, θ̂ = θ(Fn) has covariance
Vn−1 +O(n−2), where

V =
�
θx θ′x,(A.1)

where �
g(x) =

�
g(x) dF (x),

and θx = θF (x) is the influence function, that is, the first von Mises deriva-
tive of θ(F ). This is obtained by differentiating both sides of (3.1)–(3.3):

a1γx = −3µ2xµ3µ
−5/2
2 /2 + µ3xµ

−3/2
2 ,

cx = (µ2xµ
−1
3 − µ3xµ2µ

−2
3 )b0 + γxµ

−1
3 µ2b1,

βx = (µxc+ cxµ− γxψ1)β,

where a1 = ȧ(γ), b0 = b(γ), b1 = ḃ(γ), ψ1 = ψ̇(γ), µx = µF (x) = x− µ, the
influence function of µ, and µrx = µrF (x) = (x − µ)r − µr − rµxµr−1, the
influence function of µr: see, for example, Withers (1983). Set

σ = µ
1/2
2 , λr = µrσ

−r,

ur =
�
µxµrx = µr+1 − rµ2µr−1,

νrs =
�
µrxµsx = µr+s − µrµs − rµr−1µs+1 − sµs−1µr+1 + rsµ2µr−1µs−1.

Then, using
�
µrxγx = a−1

1 (νr3µ
−3/2
2 − 3νr2µ3µ

−5/2
2 /2),

�
µrxcx = b0(νr2µ−1

3 − νr3µ
−2
3 µ2) + b1µ

−1
3 µ2

�
µrxγx,�

µxcx = b0P1 + b1a
−1
1 P2,�

µxγx = σa−1
1 P3
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for P1 = 1−(λ4−3)λ−2
3 , P2 = λ−1

3 (λ4−3)−3λ3/2, and P3 = λ4−3−3λ2
3/2,

(A.1) gives

V11 = σ−2(b20A0 + 2b0b1a−1
1 A1 + b21λ

−2
3 V22),

V12 = σ−1(a1b0A2 + a−2
1 b1λ

−1
3 A3),

V13 = σ−1λ−1
3 (b0βB1 + b1βB2 − λ−1

3 B3),
V22 = a−2

1 A3,

V23 = a−1
1 {cσ(λ4 − 3) + µσ−1B4} − ψ1a

−2
1 A5/2,

V33 = β2B5

for

A0 = λ−4
3 (λ4λ

2
3 − 2λ5λ3 + λ6 + 6λ2

3 − 6λ4 + 9),
A1 = λ−3

3 (−λ6 + 6λ4 − 9) + λ−2
3 (3λ5 + 2λ4 − 3λ4λ3 + 5λ3)/2,

A2 = λ−2
3 (−λ6 + 6λ4 − 9) + λ−1

3 (5λ5 − 3λ4λ3 − 15λ3)/2,
A3 = λ6 − 6λ4 + 9− 3λ5λ3 + λ2

3(9λ4 − 35)/4,
B1 = cσλ3 + µσ−1b0{−λ−2

3 λ5 + λ−1
3 (λ4 + 3)}

+ µσ−1b1a
−2
1 {λ4(2λ−1

3 − 3)− 5}/2,
B2 = cσa−1

1 (λ4−3−3λ2
3/2) + µσ−1(a1b0λ

−2
3 A2 + a−2

1 b1λ
−1
3 A3)−ψ1a

−2
1 A3,

B3 = cσ(λ4 − 3) + µσ−1b0A4,

A4 = λ−2
3 (−λ6 + 6λ4 − 9) + λ−1

3 (λ5 − 3λ3),
B4 = b0A6 + b1λ

−1
3 a1A5/2,

A5 = λ4(2− 3λ3)− 5λ3,

A6 = −λ5λ
−2
3 + (λ4 + 3)λ−1

3 ,

B5 = c2µ2 + 2cµ(b0P1 + a−1
1 b1P2)− 2ψ1a

−1
1 cσP3.
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