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T -p(x)-SOLUTIONS FOR NONLINEAR ELLIPTIC

EQUATIONS WITH AN L1-DUAL DATUM

Abstract. We establish the existence of a T -p(x)-solution for the p(x)-
elliptic problem

−div(a(x, u,∇u)) + g(x, u) = f − divF in Ω,

where Ω is a bounded open domain of RN , N ≥ 2 and a : Ω×R×RN → RN
is a Carathéodory function satisfying the natural growth condition and the
coercivity condition, but with only a weak monotonicity condition. The right
hand side f lies in L1(Ω) and F belongs to

∏N
i=1 L

p′(·)(Ω).

1. Introduction. In this work we are concerned with the problem of
existence of a T -p(x)-solution for a class of nonlinear elliptic equations of
the type

(1.1)

{
−div(a(x, u,∇u)) + g(x, u) = f − divF in Ω,

u ≡ 0 on ∂Ω.

HereΩ is a smooth bounded domain in RN (N≥2) and a : Ω×R×RN → RN
is a Carathéodory function (that is, a(·, s, ξ) is measurable on Ω for every
(s, ξ) in R × RN , and a(x, ·, ·) is continuous on R × RN for almost every x
in Ω) and g(x, u) is a nonlinear term which satisfies some suitable conditions
(see (3.1) and (3.2) below). The right hand side f is in L1(Ω) and F lies in∏N
i=1 L

p′(·)(Ω) where p(·) : Ω → R is a measurable function satisfying some
hypotheses (see Section 2). The vector function a(·) is supposed to satisfy
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the following assumptions:

• For almost every x ∈ Ω, and all (s, ξ) ∈ R×RN , with γ(·) a continuous
function and k(·) ∈ Lp′(·)(Ω),

(1.2) |a(x, s, ξ)| ≤ k(x) + |s|p(x)−1 + [γ(s)|ξ|]p(x)−1.
• For almost every x ∈ Ω and all (s, ξ) ∈ R×RN , and for some constant
α > 0,

(1.3) a(x, s, ξ) · ξ ≥ α|ξ|p(x).
• For almost every x ∈ Ω and all (s, ξ, ξ) ∈ R× RN × RN with ξ 6= ξ,

(1.4) (a(x, s, ξ)− a(x, s, ξ)) · (ξ − ξ) > 0.

Our objective in this paper is to study the existence of a possible solution
of (1.1) in the framework of Sobolev spaces with variable exponent under
only some weak monotonicity condition.

Hypotheses (1.3) and (1.4) are natural extensions of the classical as-
sumptions in the study of nonlinear monotone operators of divergence form
for constant p(·) ≡ p (see [19]). However, the growth condition (1.2) is not a
natural hypothesis. This is due to the function γ(·) introduced in (1.2) (this

makes the term a(x, u,∇u) not necessarily bounded in
∏N
i=1 L

p′(·)(Ω)), so,
proving the existence of a solution seems to be an arduous task. To over-
come this difficulty we use the framework of T -p(x)-solutions (this is the
first aim of this paper). The formula of this solution is written in the form
of an equality (see Definition 3.1 below). However, the formula for the en-
tropy solution (see [6] for instance) is an inequality. So we can say that the
T -p(x)-solution is an entropy solution with equality.

One of our motivations for studying (1.1) comes from applications of
electro-rheological fluids, an important class of non-Newtonian fluids
(sometimes referred to as smart fluids). The electro-rheological fluids are
characterized by their ability to drastically change the mechanical proper-
ties under the influence of an extremal electromagnetic field. A mathematical
model of electro-rheological fluids was proposed by Rajagopal and Růžička
(we refer to [26], [28] for more details).

Another important application is related to image processing [11] where
the diffusion operator is used to underline the borders of the distorted im-
age and to eliminate the noise. We also mention that our space appears
in elasticity [26] and in the calculus of variations with variable exponents
[2]–[22].

Before starting, we list some remarks about solvability of (1.1). Firstly,
in the case where p = p(x) we can cite several studies such as: [5], [16],
[21], [13]. Secondly, it should be noted that in all recent works, the strict
monotonicity condition (1.4) is assumed. When trying to relax this condition
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on a(·), the classical monotone operator methods developed by Vǐsik [28],
Minty [24], Browder [10], Brézis [9], Lions [19] and others are not applicable.

The second aim of our paper is to treat the problem (1.1) when (1.4) is
replaced by the weak monotonicity condition

(1.5) (a(x, s, ξ)− a(x, s, ξ)) · (ξ − ξ) ≥ 0.

Here we cannot use the classical method of almost everywhere convergence
of the gradient for the approximation of solutions because there is no guar-
antee that ∇un → ∇u a.e. in Ω. To overcome this difficulty we use some new
techniques based on the L1-version of Minty’s lemma. When p(·) = p = con-
stant, the problem (1.1) is studied under the weak monotonicity assumption
(1.5) in [7] and in [4] (in the last work the degenerate or singular operator
is treated). Finally, our third aim in this paper is to generalize [4] and [7]
to the case where p = p(x). Note also that this article can be seen as a
generalization of [5], [21], [23] and as a continuation of [4]. Recently, in the
case p = p(x), Wittbold and Zimmermann [29] have proved the existence
and uniqueness of a renormalized solution to nonlinear elliptic equations of
the form

(1.6)

{
−div(a(x,∇u)) + g(u) = f − divF in Ω,

u ≡ 0 on ∂Ω.

The notion of renormalized solutions has been introduced, for the first time,
by Lions and DiPerna [14] in their study of the Boltzmann equations. See
also P.-L. Lions [20] for a few applications to fluid mechanics models. The
equivalence between entropy and renormalized solutions was developed by
G. Dal Maso, F. Murat, L. Orsina and A. Prignet [12] for the study of nonlin-
ear elliptic problems. Moreover, this equivalence was generalized to parabolic
equations with smooth measure data by J. Droniou and A. Prignet [15].

In the case of the Dirichlet problem in divergence form with variable
growth, modeled on the p(x)-Laplace equation, M. Sanchón and J. M. Ur-
bano [27] proved the existence and uniqueness of an entropy solution for L1

data.

Note that, in our work, if f ∈ Lp
′(·)(Ω), then (1.1) admits no weak

solution because the term a(x, s, ξ) is not necessarily in Lp
′(·)(Ω) due to the

introduction of the function γ(·) in (H1) (see Remark 5.2 below). However,
in other works [27], [29], a(·, s, ξ) ∈ Lp′(·)(Ω) and consequently (1.1) has a
weak solution.

This paper is organized as follows: In the second section, we introduce
some basic properties of the generalized Lebesgue and Sobolev–Lebesgue
spaces. In the third section, we prove some technical lemmas after giving
the basic assumptions. In the fourth section, we begin by studying an ap-
proximate problem (Pn) for our main problem (P), which will be useful in
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proving the main result in the last section. The latter proof is divided into
three steps.

2. Mathematical preliminaries. This section is devoted to introduc-
ing some definitions and properties of generalized Lebesgue spaces Lp(·)(Ω)
and Lebesgue–Sobolev spaces W 1,p(·)(Ω), where Ω is a bounded open do-
main in RN , N ≥ 2, that will be needed throughout the paper (for further
details about these notions and results, we refer the reader to [17], [18] and
[30] for instance).

We set

C+(Ω) = {p ∈ C(Ω) : p(x) > 1 for all x ∈ Ω}.

For every p ∈ C+(Ω) we define

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

The variable exponent Lebesgue space Lp(·)(Ω) is defined as

Lp(·)(Ω) =
{
u : u is a measurable real-valued function,

∃λ > 0 :
�

Ω

|u(x)/λ|p(x) dx <∞
}
,

normed by the so-called Luxemburg norm,

‖u‖p(·) = inf
{
λ > 0 :

�

Ω

|u(x)/λ|p(x) dx ≤ 1
}
.

The Lp(·)(Ω) spaces have some properties similar to those of the classical
Lebesgue spaces. They are Banach spaces ([18, Theorem 2.5]). They are
reflexive if and only if 1 < p− ≤ p+ < ∞ ([18, Corollary 2.7]) and the
continuous functions are dense if p+ <∞ ([18, Theorem 2.11]). The conju-
gate space of Lp(·)(Ω) is Lp

′(·)(Ω) where 1/p(x) + 1/p′(x) = 1. And for all
u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the Hölder inequality∣∣∣ �

Ω

u(x)v(x) dx
∣∣∣ ≤ ( 1

p−
+

1

p+

)
‖u‖p(·)‖v‖p′(·)

holds.

An important role in manipulating the generalized Lebesgue–Sobolev
spaces is played by the modular of the Lp(·)(Ω) space, which is the mapping
ρp(·)(u) : Lp(·)(Ω)→ R defined by

ρp(·)(u) =
�

Ω

|u(x)|p(x) dx for all u ∈ Lp(·)(Ω).

If u ∈ Lp(·)(Ω) and p+ <∞ then the following relations hold:
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• If ‖u‖p(·) > 1, then ‖u‖p−p(·) ≤ ρp(·)(u) ≤ ‖u‖p
+

p(·).

• If ‖u‖p(·) < 1, then ‖u‖p
+

p(·) ≤ ρp(·)(u) ≤ ‖u‖p−p(·).

We also have

‖u‖p(·) → 0 if and only if ρp(·)(u)→ 0.

Next, we define the generalized Lebesgue–Sobolev space W 1,p(·)(Ω) as

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)},
which is endowed with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·).
We define

W
1,p(·)
0 (Ω) = C∞0 (Ω)

W 1,p(·)(Ω)
.

W−1,p
′(·)(Ω) is the dual space of W

1,p(·)
0 (Ω).

We end this section by recalling the following important properties of
these spaces which will be needed throughout the following.

Proposition 2.1 ([18]).

(1) W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are Banach spaces, which are separable if

p ∈ L∞(Ω) and reflexive if 1 < p− < p+ <∞.
(2) If q ∈ C+(Ω) with q(x) < p∗(x) then we have the compact embedding

W 1,p(·)(Ω) ↪→↪→ Lq(·)(Ω),

where p∗(x) = Np(x)/(N − p(x)) for all p(x) < N . Since p(x) <
p∗(x) for all x ∈ Ω, in particular

(2.1) W 1,p(·)(Ω) ↪→↪→ Lp(·)(Ω).

(3) There exists a constant c > 0 with ‖u‖p(·) ≤ c‖∇u‖p(·) for all u ∈
W

1,p(·)
0 (Ω), hence ‖∇u‖p(·) and ‖u‖1,p(·) are equivalent norms on

W
1,p(·)
0 (Ω).

3. Basic assumptions and technical lemmas

3.1. Basic assumptions. First, we suppose that the Carathéodory
function a : Ω × R× RN → RN satisfies the following assumptions:

|ai(x, s, ξ)| ≤ k(x) + |s|p(x)−1 + (γ(s)|ξ|)p(x)−1;(H1)

(a(x, s, ξ)− a(x, s, ξ)) · (ξ − ξ) ≥ 0;(H2)

N∑
i=1

ai(x, s, ξ) · ξi ≥ α
N∑
i=1

|ξi|p(x),(H3)
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for almost every x ∈ Ω all (s, ξ) ∈ R × RN , and all i ∈ {1, . . . , N}, where
k(·) is a positive function in Lp

′(·)(Ω), γ(·) is a continuous function and α is
a positive constant.

Next, we consider the following p(x)-Dirichlet problem:

(P)

{
−div(a(x, u,∇u)) + g(x, u) = f − divF in Ω,

u = 0 on ∂Ω,

where f ∈ L1(Ω) and F lies in the dual space
∏N
i=1 L

p′(·)(Ω). Moreover,
g(x, s) is a Carathéodory function satisfying

g(x, s)s ≥ 0,(3.1)

sup
|s|≤n

|g(x, s)| = hn(x) ∈ L1(Ω).(3.2)

For all k > 1 and s in R, the truncation Tk is defined as

Tk(s) =

{
s if |s| ≤ k,

ks/|s| if |s| > k.

Definition 3.1. Let u be a measurable function such that Tk(u) ∈
W

1,p(·)
0 (Ω). Then u is called a T -p(x)-solution of the problem (P) if
�

Ω

a(x, u,∇u)∇Tk(u− ϕ) dx+
�

Ω

g(x, u)Tk(u− ϕ) dx

=
�

Ω

fTk(u− ϕ) dx+
�

Ω

F∇Tk(u− ϕ) dx

for all ϕ ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω).

Definition 3.2. Let X be a Banach reflexive space and let X∗ be its
dual space. We say that the operator L : X → X∗ is pseudo-monotone if

un ⇀ u weakly in X

lim sup
n→∞

〈Lun, un − u〉 ≤ 0

 ⇒

{
Lun ⇀ Lu weakly in X∗,

〈Lun, un〉 → 〈Lu, u〉.

The symbol ⇀ denotes weak convergence.

3.2. Some technical lemmas

Lemma 3.3. Let q ∈ C+(Ω), g ∈ Lq(·)(Ω) and (gn)n ∈ Lq(·)(Ω) with
‖gn‖q(·) ≤ C, where C is a positive constant. If gn(x)→ g(x) almost every-

where in Ω, then gn ⇀ g in Lq(·)(Ω).

Proof. We set

E(N) = {x ∈ Ω : |gn(x)− g(x)| ≤ 1, ∀n ≥ N}.
Then

meas(E(N))→ meas(Ω) as N →∞.
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Let

F = {ϕ ∈ Lq′(·)(Ω) : ϕ ≡ 0 almost everywhere in Ω \ E(N) for some N}.
We shall show that F is dense in Lq

′(·)(Ω). Let f ∈ Lq′(·)(Ω), and put

fN (x) =

{
f(x) if x ∈ E(N),

0 if x ∈ Ω \ E(N).

Then

ρq′(·)(fN − f) =
�

Ω

|fN (x)− f(x)|q′(x) dx

=
�

E(N)

|fN (x)− f(x)|q′(x) dx+
�

Ω\E(N)

|fN (x)− f(x)|q′(x) dx

=
�

Ω\E(N)

|f(x)|q′(x) dx =
�

Ω

|f(x)|q′(x)χΩ\E(N) dx.

Taking ψN (x) = |f(x)|q′(x)χΩ\E(N)(x) for almost every x in Ω, we obtain

ψN → 0 almost everywhere in Ω and |ψN | ≤ |f |q
′(x).

Thus by the dominated convergence theorem, we conclude that

ρq′(·)(fN − f)→ 0 as N →∞.

Therefore, fN → f in Lq
′(·)(Ω). Consequently, F is dense in Lq

′(·)(Ω).

Now, we will show that

lim
n→∞

�

Ω

ϕ(x)(gn(x)− g(x)) dx = 0 for all ϕ ∈ F .

Suppose ϕ ≡ 0 in Ω \ E(N). We put φn = ϕ(gn − g). Since |ϕ(x)| |gn(x) −
g(x)| ≤ |ϕ(x)| almost everywhere in E(N) and since φn → 0 almost ev-
erywhere in Ω, thanks (again) to the dominated convergence theorem we
obtain φn → 0 in L1(Ω) as desired.

Finally, by the density of F in Lq
′(·)(Ω), we conclude that

lim
n→∞

�

Ω

ϕgn dx =
�

Ω

ϕg dx for all ϕ ∈ Lq′(·)(Ω),

which proves that gn ⇀ g in Lq(·)(Ω).

Lemma 3.4. Let F : R → R be a uniformly Lipschitz function with

F (0) = 0, and p ∈ C+(Ω). If u ∈ W
1,p(·)
0 (Ω), then F (u) ∈ W

1,p(·)
0 (Ω).

Moreover, if the set D of discontinuity points of F ′ is finite, then

∂(F ◦ u)

∂xi
=

{
F ′(u)

∂u

∂xi
a.e. in {x ∈ Ω : u(x) /∈ D},

0 a.e. in {x ∈ Ω : u(x) ∈ D}.
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Proof. First, we consider the case where

F ∈ C1(Ω) and F ′ ∈ L∞(Ω).

Let u in W
1,p(·)
0 (Ω). Since C∞0 (Ω)

W 1,p(·)(Ω)
= W

1,p(·)
0 (Ω), there exists a se-

quence (un)n ⊂ C∞0 (Ω) such that un → u in W
1,p(·)
0 (Ω), hence un → u

almost everywhere on Ω and ∇un → ∇u almost everywhere on Ω.

Therefore,

|F (un)| = |F (un)− F (0)| ≤ ‖F ′‖∞‖un‖,

implying

|F (un)|p(x) ≤ ‖F ′‖p+∞ ‖un‖p(x) and

∣∣∣∣ ∂F∂xi (un)

∣∣∣∣p(x) =

∣∣∣∣F ′(un)
∂un
∂xi

∣∣∣∣p(x).
So F (un) ∈W 1,p(·)

0 (Ω) and F (un) is bounded in W
1,p(·)
0 (Ω), implying F (un)

⇀ v in W
1,p(·)
0 (Ω). Thus, F (un) → v in Lp(·)(Ω) (strongly) by (2.1). So,

F (un)→ v almost everywhere in Ω, hence v = F (u) ∈W 1,p(·)
0 (Ω).

Now let F : R→ R be uniformly Lipschitz. Then

Fn = F ∗ ρn → F

uniformly on every compact set, where ρn is the regularizing function. We
have Fn ∈ C1(R) and F ′n ∈ L∞(R), therefore by the foregoing, we have

Fn(u) ∈ W 1,p(·)
0 (Ω), Fn(u) → F (u) for almost everywhere on Ω, and also

(Fn(u))n is bounded in W
1,p(·)
0 (Ω) and Fn(u) ⇀ v in W

1,p(·)
0 (Ω) (weakly).

So, by using (2.1) we obtain

Fn(u)→ v in Lp(·)(Ω).

Finally, Fn(u) → v for almost everywhere in Ω, and consequently v =

F (u) ∈W 1,p(·)
0 (Ω).

Lemma 3.5. Let u ∈ W 1,p(·)
0 (Ω). Then Tk(u) ∈ W 1,p(·)

0 (Ω) with k > 0.

Moreover, Tk(u)→ u in W
1,p(·)
0 (Ω) as k →∞.

Proof. For k > 0, let

Tk : R→ R+, s 7→ Tk(s) =

{
s if |s| ≤ k,

ks/|s| if |s| > k.

Since Tk is uniformly Lipschitz and Tk(0) = 0, so using Lemma 3.4 we have

Tk(u) ∈W 1,p(·)
0 (Ω). Moreover,
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�

Ω

|Tk(u)− u|p(x) dx+
�

Ω

|∇Tk(u)−∇u|p(x) dx

=
�

|u|≤k

|Tk(u)− u|p(x) dx+
�

|u|>k

|Tk(u)− u|p(x) dx

+
�

|u|≤k

|∇Tk(u)−∇u|p(x) dx+
�

|u|>k

|∇Tk(u)−∇u|p(x) dx

=
�

|u|>k

|Tk(u)− u|p(x) dx+
�

|u|>k

|∇u|p(x) dx.

Since Tk(u) → u as k → ∞, and by using the dominated convergence
theorem, we have�

|u|>k

|Tk(u)− u|p(x) dx+
�

|u|>k

|∇u|p(x) dx→ 0 as k →∞.

Finally, ‖Tk(u)− u‖
W

1,p(·)
0 (Ω)

→ 0 as k →∞.

Lemma 3.6. Let (un)n ⊂ W
1,p(·)
0 (Ω) with un ⇀ u in W

1,p(·)
0 (Ω). Then

Tk(un) ⇀ Tk(u) in W
1,p(·)
0 (Ω).

Proof. We have un ⇀ u in W
1,p(·)
0 (Ω). So, by the compact embedding

(2.1) we have un → u in Lp(·)(Ω), and hence un → u almost everywhere
on Ω. On the other hand,

�

Ω

N∑
i=1

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x)dx =
N∑
i=1

�

Ω

∣∣∣∣T ′k(un)
∂un
∂xi

∣∣∣∣p(x)dx ≤ N∑
i=1

�

Ω

∣∣∣∣∂un∂xi

∣∣∣∣p(x)dx <∞.
Thus, (Tk(un))n is bounded on W

1,p(·)
0 (Ω), so there exists vk ∈ W

1,p(·)
0 (Ω)

such that

Tk(un) ⇀ vk in W
1,p(·)
0 (Ω) as n→∞.

Therefore, by the compact embedding (2.1) again, we have

Tk(un)→ vk almost everywhere in Ω.

And since Tk(un)→ Tk(u) almost everywhere in Ω, we deduce that

vk = Tk(u) and Tk(un) ⇀ Tk(u) in W
1,p(·)
0 (Ω).

4. The approximate problem. Let (fn)n be a sequence of functions
in L∞(Ω) which is strongly convergent to f in L1(Ω) such that ‖fn‖L1 ≤
‖f‖L1 , and consider the following approximate problem:

(Pn)

{
un ∈W 1,p(·)

0 (Ω),

−div(a(x, Tn(un),∇un)) + gn(x, un) = fn − div(F ) in Ω,
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where

gn(x, s) =
g(x, s)

1 + 1
n |g(x, s)|

.

In this section we will prove the existence of a solution to (Pn) under certain
conditions. This is contained in the following theorem;

Theorem 4.1. Let Bk be the operator defined by

Bk : W
1,p(·)
0 (Ω)→W−1,p

′(·)(Ω),

u 7→ Bku = −div(a(x, Tk(u),∇u) + gk(x, u).

The operator Bk is bounded, hemi-continuous, coercive and pseudo-mono-
tone.

By using [19] and Theorem 4.1, we obtain

Theorem 4.2. Problem (Pn) admits a solution un in W
1,p(·)
0 (Ω).

Proof of Theorem 4.1

• Bk is bounded : For u, v ∈W 1,p(·)
0 (Ω),

|〈Bku, v〉| =
∣∣∣ �
Ω

a(x, Tk(u),∇u)∇v dx+
�

Ω

gk(x, u)v dx
∣∣∣

≤
(

1

p′−
+

1

p−

)
‖a(x, Tk(u),∇u)‖p′(·) · ‖∇v‖p(·) +

�

Ω

|kv(x)| dx

≤ C1

(
1 +

�

Ω

(
k(x) + |Tk(u)|p(x)−1 + (γ(Tk(u))|∇u|)p(x)−1

)p′(x)
dx
)1/p′s‖v‖1,p(·)

≤ C1

(
1 +

�

Ω

C2

(
kp
′(x) + |Tk(u)|p(x) + (γ(Tk(u)))p(x)|∇u|p(x)

)
dx
)1/p′s‖v‖1,p(·)

≤ C3‖v‖1,p(·),
because γ(·) is a continuous function, thus supp(Tk(u)) ⊂ [−k, k], which
implies that γ(Tk(u)) is bounded in W 1,p(·)(Ω); here C1, C2 and C3 are
positive constants and

p′s =

{
p′− if ‖a(x, Tk(u),∇u)‖p′(·) > 1,

p′+ if ‖a(x, Tk(u),∇u)‖p′(·) ≤ 1.

• Bk is hemi-continuous: Let t be a real variable tending to t0. We have

ai(x, Tk(u+ tv),∇(u+ tv))→ ai(x, Tk(u+ t0v),∇(u+ t0v))

almost everywhere inΩ and for i ∈ {1, . . . , N}. As moreover (ai(u, Tk(u+tv),
∇(u+tv)))t is bounded in Lp

′(·)(Ω), by Lemma 3.3, a(x, Tk(u+tv),∇(u+tv))
⇀ a(x, Tk(u+ t0v),∇(u+ t0v)) in (Lp

′(·)(Ω))N as t→ t0.
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Let w ∈W 1,p(·)
0 (Ω). Since ∇w ∈ (Lp(·)(Ω))N and

g(x, u+ tv)

1 + 1
k |g(x, u+ tv)|

→ g(x, u+ t0v)

1 + 1
k |g(x, u+ t0v)|

in Lp
′(·)(Ω) as t→ t0,

we have
〈Bk(u+ tv), w〉 → 〈Bk(u+ t0v), w〉 as t→ t0.

• Bk is coercive: For u ∈W 1,p(·)
0 (Ω), we have

〈Bku, u〉
‖u‖1,p(·)

=

	
Ω a(x, Tk(u),∇u) · ∇u dx

‖u‖1,p(·)
+

	
Ω gk(x, u)u dx

‖u‖1,p(·)

≥
α
	
Ω |∇u|

p(x) dx

‖u‖1,p(·)
≥ α
‖u‖ps1,p(·)
‖u‖1,p(·)

≥ α‖u‖ps−1

1,p(·) → +∞ as ‖u‖1,p(·) →∞,
where

ps =

{
p− if ‖u‖p(·) ≤ 1,

p+ if ‖u‖p(·) > 1.

• Bk is pseudo-monotone: Let (uj)j∈N ⊂W
1,p(·)
0 (Ω) be such that

(4.1) uj ⇀ u in W
1,p(·)
0 (Ω) and lim sup 〈Bkuj , uj − u〉 ≤ 0.

We decompose the operator Bk as Bk = Ak +Gk, where

〈Aku, v〉 =
�

Ω

a(x, Tk(u),∇u)∇v dx and 〈Gku, v〉 =
�

Ω

gk(x, u)v dx,

for all u, v in W
1,p(·)
0 (Ω).

Step 1: Bkuj ⇀ Bku. First, we show that

lim
j→∞
〈Gkuj , uj − u〉 = 0.

Indeed,

|〈Gkuj , uj − u〉| =
∣∣∣∣ �
Ω

g(x, uj)

1 + 1
k |g(x, uj)|

(uj − u) dx

∣∣∣∣
≤

�

Ω

∣∣∣∣ g(x, uj)

1 + 1
k |g(x, uj)|

∣∣∣∣|uj − u| dx
≤

�

Ω

k|uj − u| dx ≤ C‖uj − u‖p(·) → 0 as j →∞,

thanks to (2.1). By (4.1), we have

lim sup〈Akuj +Gkuj , uj − u〉
= lim sup〈Akuj , uj − u〉+ lim sup 〈Gkuj , uj − u〉 ≤ 0,
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which implies that

(4.2) lim sup 〈Akuj , uj − u〉 ≤ 0

Now since uj ⇀ u in W
1,p(·)
0 (Ω), we have ∂uj/∂xi ⇀ ∂u/∂xi in Lp(·)(Ω)

for all i = 1, . . . , N . And since (Ak(uj))j is bounded in W−1,p
′(·)(Ω), there

exist hk and hki such that

(4.3)
Akuj ⇀ hk in W−1,p

′(·)(Ω),

ai(·, Tk(uj),∇uj) ⇀ hki in Lp
′(·)(Ω) ∀i = 1, . . . , N.

So, by (4.2) and (4.3) we obtain

(4.4) lim sup 〈Akuj , uj〉 ≤ 〈hk, u〉.
Moreover, by using (H2), we can write

N∑
i=1

�

Ω

(
ai(x, Tk(uj),∇v)− ai(x, Tk(uj),∇uj)

)( ∂v

∂xi
− ∂uj
∂xi

)
dx ≥ 0

for all v ∈W 1,p(·)
0 (Ω), hence

N∑
i=1

�

Ω

ai(x, Tk(uj),∇uj)
∂uj
∂xi

dx ≥
N∑
i=1

�

Ω

ai(x, Tk(uj),∇uj)
∂v

∂xi
dx(4.5)

−
N∑
i=1

�

Ω

ai(x, Tk(uj),∇v)
∂v

∂xi
dx

+

N∑
i=1

�

Ω

ai(x, Tk(uj),∇v)
∂uj
∂xi

dx.

Since, uj → u in Lp(·)(Ω) thanks to (2.1), we get uj → u almost everywhere
in Ω. Then, by (H1) and the dominated convergence theorem, we obtain

(4.6)

ai(x, Tk(uj),∇v)→ ai(x, Tk(u),∇v) in Lp
′(·)(Ω) for all i = 1, . . . , N.

Thus,

N∑
i=1

�

Ω

ai(x, Tk(uj),∇v)
∂v

∂xi
dx→

N∑
i=1

�

Ω

ai(x, Tk(u),∇v)
∂v

∂xi
dx,(4.7)

N∑
i=1

�

Ω

ai(x, Tk(uj),∇v)
∂uj
∂xi

dx→
N∑
i=1

�

Ω

ai(x, Tk(u),∇v)
∂u

∂xi
dx.(4.8)

By using (4.3), we get

N∑
i=1

�

Ω

ai(x, Tk(uj),∇uj)
∂v

∂xi
dx→

N∑
i=1

�

Ω

hki
∂v

∂xi
dx.
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Letting j →∞ in (4.5) and using (4.6)–(4.8), we deduce that

lim
j→∞

N∑
i=1

�

Ω

ai(x, Tk(uj),∇uj)
∂uj
∂xi

dx ≥
N∑
i=1

�

Ω

hki
∂v

∂xi
dx

+

N∑
i=1

�

Ω

ai(x, Tk(u),∇v)
∂u

∂xi
dx

−
N∑
i=1

�

Ω

ai(x, Tk(u),∇v)
∂v

∂xi
dx.

By invoking (4.4), we get

N∑
i=1

�

Ω

hki
∂u

∂xi
dx ≥

N∑
i=1

�

Ω

hki
∂v

∂xi
dx+

N∑
i=1

�

Ω

ai(x, Tk(u),∇v)
∂u

∂xi
dx

−
N∑
i=1

�

Ω

ai(x, Tk(u),∇v)
∂v

∂xi
dx.

So
N∑
i=1

�

Ω

(ai(x, Tk(u),∇v)− hki)
(
∂v

∂xi
− ∂u

∂xi

)
dx ≥ 0 for all v ∈W 1,p(·)

0 (Ω).

Taking v = u+ tw with first t = 1 and then t = −1, and using the technique
of Minty, we have�

Ω

(
a(x, Tk(u),∇(u+ tw))− hk

)
∇w dx = 0 for all w ∈W 1,p(·)

0 (Ω).

Consequently,

(4.9) Aku = hk

is an element of W−1,p
′(·)(Ω), so we deduce that

Akuj ⇀ Aku in W−1,p
′(·)(Ω).

Now, since gk(x, uj) → gk(x, u) almost everywhere in Ω as j → ∞, and
|gk(x, uj)| ≤ k, the dominated convergence theorem yields

(4.10) gk(x, uj) ⇀ gk(x, u) in Lp
′(·)(Ω).

Finally,
(Ak +Gk)(uj) ⇀ (Ak +Gk)(u) in W−1,p

′(·)(Ω).

Step 2: 〈Bkuj , uj〉 → 〈Bku, u〉. According to (4.4) and (4.9), we have

lim sup 〈Akuj , uj〉 ≤ 〈Aku, u〉 = 〈hk, u〉,
and by (4.10), 〈Gkuj , uj〉 → 〈Gku, u〉, hence

lim sup(〈Akuj , uj〉+ 〈Gkuj , uj〉) ≤ 〈Aku, u〉+ 〈Gku, u〉,
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thus,

lim sup 〈Bkuj , uj〉 ≤ 〈Bku, u〉.
So it suffices to prove that

lim inf 〈Bkuj , uj〉 ≥ 〈Bku, u〉.
We have

〈Bkuj , uj〉 =
N∑
i=1

�

Ω

ai(x, Tk(uj),∇uj)
∂uj
∂xi

dx+
�

Ω

gk(x, uj)uj dx

=

N∑
i=1

�

Ω

(
ai(x, Tk(uj),∇uj)− ai(x, Tk(uj),∇u)

)(∂uj
∂xi
− ∂u

∂xi

)
dx

+
N∑
i=1

�

Ω

ai(x, Tk(uj),∇u)

(
∂uj
∂xi
− ∂u

∂xi

)
dx

+
N∑
i=1

�

Ω

ai(x, Tk(uj),∇uj)
∂u

∂xi
dx+

�

Ω

gk(x, uj)uj dx.

Now, since

N∑
i=1

�

Ω

ai(x, Tk(uj),∇uj)
∂uj
∂xi

dx+
�

Ω

gk(x, uj)uj dx ≥ 0,

we have

〈Bkuj , uj〉 ≥
N∑
i=1

�

Ω

ai(x, Tk(uj),∇u)

(
∂uj
∂xi
− ∂u

∂xi

)
dx

+
N∑
i=1

�

Ω

ai(x, Tk(uj),∇uj)
∂u

∂xi
dx+

�

Ω

gk(x, uj)uj dx.

Thus,

lim inf〈Bkuj , uj〉 ≥ lim inf

N∑
i=1

�

Ω

ai(x, Tk(uj),∇u)

(
∂uj
∂xi
− ∂u

∂xi

)
dx

+ lim inf
N∑
i=1

�

Ω

ai(x, Tk(uj),∇uj)
∂u

∂xi
dx+ lim inf

�

Ω

gk(x, uj)uj dx.

So, we deduce that

lim inf 〈Bkuj , uj〉 ≥
N∑
i=1

�

Ω

hi
∂u

∂xi
dx+

�

Ω

gk(x, u)u dx ≥ 〈Bku, u〉.

Consequently, Bk is pseudo-monotone.
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5. Main result. Now, we are in a position to rephrase our main result
under convenient hypotheses. Precisely, we may state the following.

Theorem 5.1. Under the assumptions (H1)–(H3), problem (P) admits
at least one T -p(x)-solution.

Remarks 5.2. In the formulation of problem (P), we have a(x, u,∇u)
instead of a(x, Tn(un),∇un) and the term a(x, u,∇u) is not necessarily in
Lp
′(·)(Ω), nor in L1(Ω), therefore (P) need not have a weak solution. For

example, if

a(x, u,∇u) = exp[(p(x)− 1)‖u‖p(·)] · ‖∇u‖
p(x)−2
p(·) ∇u,

with γ(s) = exp[(p(x) − 1)s] and g(x, u) = α(x)u|u|q, with α a positive
function in L1(Ω) and q a positive constant, then the problem
Tk(u) ∈W 1,p(·)

0 (Ω), F ∈
∏N
i=1 L

p′(·)(Ω),

−div
(
exp[(p(x)− 1)‖u‖]‖∇u‖p(x)−2∇u

)
+ α(x)u|u|q = f − divF in Ω,

u = 0 on ∂Ω,

has a T -p(x)-solution but no weak solution.

We recall that in the following calculations, the symbol C is a constant
with changing value.

Proof of Theorem 5.1

Step I: The approximate problem and a priori estimate. We recall that
(fn)n is a sequence of L∞(Ω) functions which is strongly convergent to f in
L1(Ω) such that

‖fn‖L1 ≤ ‖f‖L1 for all n ∈ N.

Let un ∈ W 1,p(·)
0 (Ω) be a solution of the approximate problem (Pn), whose

existence is guaranteed by Theorem 4.2. Choosing Tk(un) as a test function
in (Pn), we have

�

Ω

a(x, Tn(un),∇un)∇Tk(un) dx+
�

Ω

gn(x, un)Tk(un) dx

=
�

Ω

fnTk(un) dx+
�

Ω

F∇Tk(un) dx.

Using ∇Tk(un) = ∇unχ{|un|≤k} and thanks to the coercivity condition (H3),
we obtain

�

Ω

a(x, Tn(un),∇un)∇Tk(un) dx ≥ α
N∑
i=1

�

Ω

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x) dx.
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Since gn(x, un)T k(un) ≥ 0, one has

α
N∑
i=1

�

Ω

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x) dx ≤ k‖f‖L1 +
N∑
i=1

�

Ω

|Fi|
∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣ dx
≤ k‖f‖L1 +

N∑
i=1

�

Ω

|Fi|
(
α

2

)−1/p(x)∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣(α2
)1/p(x)

dx.

Now, by Young’s inequality, we obtain

α
N∑
i=1

�

Ω

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x) dx ≤ k‖f‖L1 +
N∑
i=1

�

Ω

C(α)

p′(x)
|Fi|p

′(x) dx

+
N∑
i=1

�

Ω

α

2p(x)

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x) dx.
So,

α

N∑
i=1

�

Ω

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x) dx ≤ k‖f‖L1 +

N∑
i=1

�

Ω

C(α, p′−)|Fi|p
′(x) dx

+
N∑
i=1

�

Ω

α

2p−

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x) dx.
Then(

1− 1

2p−

)
α

N∑
i=1

�

Ω

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x) dx ≤ k(‖f‖L1+
C(α, p′−)

k

N∑
i=1

�

Ω

|Fi|p
′(x) dx

)
for k ≥ 1, which implies that

(5.1)

N∑
i=1

�

Ω

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x) dx ≤ Ck for all k > 1.

Step II: Local convergence in measure of un. We prove that (un)n con-
verges to some function u locally in measure (and therefore we can always
assume that the convergence is a.e. after passing to a subsequence). We shall
show that (un)n is a Cauchy sequence in measure in any ball BR.

For k > 0 large enough, we have

kmeas({|un| > k} ∩BR) =
�

{|un|>k}∩BR

|Tk(un)| dx ≤
�

BR

|Tk(un)| dx

≤ C‖∇Tk(un)‖p(·) ≤ C
( �

Ω

N∑
i=1

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x)dx)1/ps
≤ Ck1/ps
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with

ps =

{
p− if ‖∇Tk(un)‖p(·) ≤ 1,

p+ if ‖∇Tk(un)‖p(·) > 1,

which implies

(5.2) meas({|un| > k} ∩BR) ≤ C

k1−1/ps
for all k > 1.

We have, for every δ > 0,

meas({|un − um| > δ} ∩BR) ≤ meas({|un| > k} ∩BR)(5.3)

+ meas({|um| > k} ∩BR)

+ meas({|Tk(un)− Tk(um)| > δ}).

Since (Tk(un))n is bounded in W
1,p(·)
0 (Ω), there exists vk in W

1,p(·)
0 (Ω) such

that

Tk(un) ⇀ vk weakly in W
1,p(·)
0 (Ω),

Tk(un)→ vk strongly in Lp(·)(Ω) and a.e. in Ω (by (2.1)).

Consequently, we can assume that Tk(un) is a Cauchy sequence in measure
in Ω.

Let ε > 0. Then by (5.2) and (5.3), there exists some k(ε) > 0 such that

meas({|un − um| > δ} ∩BR) < ε for all n,m ≥ n0(k(ε), δ, R).

This proves that (un)n is a Cauchy sequence in measure in BR, thus con-
verges almost everywhere to some measurable function u. Then

(5.4)
Tk(un) ⇀ Tk(u) weakly in W

1,p(·)
0 (Ω),

Tk(un)→ Tk(u) strongly in Lp(·)(Ω) and a.e. in Ω (by (2.1)).

Step III: Equi-integrability of the nonlinearities. We need to prove that

(5.5) gn(x, un)→ g(x, u) strongly in L1(Ω).

It is enough to prove the equi-integrability of gn(x, un). We take Tl+1(un)−
Tl(un) as a test function in (Pn) to obtain

�

Ω

a(x, Tn(un),∇un)∇(Tl+1(un)− Tl(un)) dx

+
�

Ω

gn(x, un)(Tl+1(un)− Tl(un)) dx

=
�

Ω

fn(Tl+1(un)− Tl(un)) dx+

N∑
i=1

�

Ω

Fi∇(Tl+1(un)− Tl(un)) dx,
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which implies that
�

{l≤|un|≤l+1}

a(x, Tn(un),∇un)∇un dx+
�

{|un|≥l+1}

|gn(x, un)| dx

≤ C
�

{|un|≥l}

|fn| dx+
N∑
i=1

�

{l≤|un|≤l+1}

|Fi|
(
α

2

)−1/p(x)
|∇un|

(
α

2

)1/p(x)

dx.

By Young’s inequality,
�

{l≤|un|≤l+1}

a(x, Tn(un),∇un)∇un dx+
�

{|un|≥l+1}

|gn(x, un)| dx

≤ C
�

{|un|≥l}

|fn| dx+ C(α, p′−)
N∑
i=1

�

{|un|≥l}

|Fi|p
′(x) dx

+
α

2p−

N∑
i=1

�

l≤{|un|≤l+1}

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p(x) dx.
Thus, by the coercivity condition (H3),

�

{|un|≥l+1}

|gn(x, un)| dx ≤ C
�

{|un|≥l}

|fn| dx+C(α, p′−)
N∑
i=1

�

{|un|≥l}

|Fi|p
′(x) dx.

Let ε > 0. Then there exists l(ε) ≥ 1 such that

(5.6)
�

{|un|>l(ε)}

|gn(x, un)| dx ≤ ε

2
.

For any measurable subset E ⊂ Ω, we have�

E

|gn(x, un)| dx ≤
�

E∩{|un|≤l(ε)}

|gn(x, un)| dx+
�

E∩{|un|>(ε)}

|gn(x, un)| dx

≤
�

E

|hl(ε)(x)| dx+
�

E∩{|un|>(ε)}

|gn(x, un)| dx.

In view of (3.2) there exists η(ε) > 0 such that

(5.7)
�

E

|hl(ε)(x)| dx ≤ ε

2

for all E such that meas(E) < η(ε). Finally, by combining (5.6) and (5.7)
one easily sees that�

E

|gn(x, un)| dx ≤ ε for all E such that meas(E) < η(ε).

Step IV: The intermediate inequality. In this step, we shall prove that

for all ϕ ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω), we have
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(5.8)
�

Ω

a(x, un,∇ϕ)∇Tk(un − ϕ) dx+
�

Ω

gn(x, un)Tk(un − ϕ) dx

≤
�

Ω

fnTk(un − ϕ) dx+
�

Ω

F∇Tk(un − ϕ) dx.

We now choose Tk(un−ϕ) as a test function in (Pn), with ϕ in W
1,p(·)
0 (Ω)∩

L∞(Ω) and n large enough (n ≥ k + ‖ϕ‖∞), to obtain
�

Ω

a(x, Tn(un),∇un)∇Tk(un − ϕ) dx+
�

Ω

gn(x, un)Tk(un − ϕ) dx

=
�

Ω

a(x, un,∇un)∇Tk(un − ϕ) dx+
�

Ω

gn(x, un)Tk(un − ϕ) dx,

which implies that
�

Ω

a(x, un,∇un)∇Tk(un − ϕ) dx+
�

Ω

gn(x, un)Tk(un − ϕ) dx

=
�

Ω

fnTk(un − ϕ) dx+
�

Ω

F∇Tk(un − ϕ) dx.

Note that since n ≥ k + ‖ϕ‖∞, we have Tn(un) = un.

Adding and subtracting the term
	
Ω a(x, un,∇ϕ)∇Tk(un − ϕ) dx yields

(5.9)
�

Ω

a(x, un,∇un)∇Tk(un − ϕ) dx+
�

Ω

a(x, un,∇ϕ)∇Tk(un − ϕ) dx

−
�

Ω

a(x, un,∇ϕ)∇Tk(un − ϕ) dx+
�

Ω

gn(x, un)Tk(un − ϕ) dx

=
�

Ω

fnTk(un − ϕ) dx+
�

Ω

F∇Tk(un − ϕ) dx.

Thanks to the weak monotonicity condition (H2) and the definition of the
truncation function, we have

(5.10)
�

Ω

(a(x, un,∇un)− a(x, un,∇ϕ))∇Tk(un − ϕ) dx ≥ 0.

Combining (5.9) and (5.10), we obtain (5.8).

Step V: Passing to the limit. We shall prove that for ϕ ∈W 1,p(·)
0 (Ω) ∩

L∞(Ω), we have
�

Ω

a(x, u,∇ϕ)∇Tk(u− ϕ) dx+
�

Ω

g(x, u)Tk(u− ϕ) dx

≤
�

Ω

fTk(u− ϕ) dx+
�

Ω

F∇Tk(u− ϕ) dx.
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First, we claim that�

Ω

a(x, un,∇ϕ)∇Tk(un − ϕ) dx→
�

Ω

a(x, u,∇ϕ)∇Tk(u− ϕ) dx as n→∞.

Since TM (un) ⇀ TM (u) weakly in W
1,p(·)
0 (Ω), with M = k+ ‖ϕ‖∞, we have

(5.11) Tk(un − ϕ) ⇀ Tk(u− ϕ) weakly in W
1,p(·)
0 (Ω),

which gives

(5.12)
∂Tk
∂xi

(un−ϕ) ⇀
∂Tk
∂xi

(u−ϕ) weakly in Lp(·)(Ω) for all i = 1, . . . , N.

Now, thanks to (H1),

|ai(x, TM (un),∇ϕ)|p′(x) ≤
(
k(x) + |TM (un)|p(x)−1 + (γ0|∇ϕ|)p(x)−1

)p′(x)
,

thus

(5.13)

|ai(x, TM (un),∇ϕ)|p′(x) ≤ β
(
k(x)p

′(x) + |TM (un)|p(x) + γ
p(x)
0 |∇ϕ|p(x)

)
,

with γ0 = sup {|γ(s)| : |s| ≤ k + ‖ϕ‖∞}, and β a positive constant.

Now, since TM (un) ⇀ TM (u) weakly in W
1,p(·)
0 (Ω) and by (2.1), we have

TM (un)→ TM (u) strongly in Lp(·)(Ω).

Thus,

|ai(x, TM (un),∇ϕ)|p′(x) → |ai(x, TM (u),∇ϕ)|p′(x) a.e. in Ω,

and

β
(
k(x)p

′(x) + |TM (un)|p(x) + γ
p(x)
0 |∇ϕ|p(x)

)
→ β

(
k(x)p

′(x) + |TM (u)|p(x) + γ
p(x)
0 |∇ϕ|p(x)

)
,

a.e. in Ω. According to Vitali’s theorem, we deduce that

(5.14) ai(x, TM (un),∇ϕ)→ ai(x, TM (u),∇ϕ) strongly Lp
′(·)(Ω) as n→∞.

Combining (5.11), (5.14) and the fact that TM (un) = un (since M = k +
‖ϕ‖∞), one has

(5.15)�

Ω

a(x, un,∇ϕ)∇Tk(un − ϕ) dx→
�

Ω

a(x, u,∇ϕ)∇Tk(u− ϕ) dx as n→∞.

Secondly, we show that

(5.16)
�

Ω

fnTk(un − ϕ) dx→
�

Ω

fTk(u− ϕ) dx.

We have fnTk(un − ϕ) → fTk(u − ϕ) a.e. in Ω and |fnTk(un − ϕ)| ≤ k|fn|
and k|fn| → k|f | in L1(Ω). By using Vitali’s theorem a second time, we
obtain (5.16).
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Similarly thanks to (5.5), we can show that

(5.17)
�

Ω

gn(x, un)Tk(un − ϕ) dx→
�

Ω

g(x, u)Tk(u− ϕ) dx as n→∞.

In view of (5.12) and since F ∈
∏N
i=1 L

p′(·)(Ω), we obtain

(5.18)
�

Ω

F∇Tk(un − ϕ) dx→
�

Ω

F∇Tk(u− ϕ) dx as n→∞.

Thanks to (5.15), (5.16) and (5.18) we can pass to the limit in (5.8), so that

for all ϕ ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω), we deduce

(5.19)
�

Ω

a(x, u,∇ϕ)∇Tk(u− ϕ) dx+
�

Ω

g(x, u)Tk(u− ϕ) dx

≤
�

Ω

fTk(u− ϕ) dx+
�

Ω

F∇Tk(u− ϕ) dx.

Now we introduce an L1-version of the Minty lemma.

Lemma 5.3. Let u be a measurable function such that Tk(u) belongs to

W
1,p(·)
0 (Ω) for every k > 0. The following assertions are equivalent:

(i)
�

Ω

a(x, u,∇ϕ)∇Tk(u− ϕ) dx+
�

Ω

g(x, u)Tk(u− ϕ) dx

≤
�

Ω

fTk(u− ϕ) dx+
�

Ω

F∇Tk(u− ϕ) dx,

(ii)
�

Ω

a(x, u,∇u)∇Tk(u− ϕ) dx+
�

Ω

g(x, u)Tk(u− ϕ) dx

=
�

Ω

fTk(u− ϕ) dx+
�

Ω

F∇Tk(u− ϕ) dx,

for all ϕ ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω) and for all k > 0.

In view of Lemma 5.3, the proof of Theorem 5.1 is finished.

Proof of Lemma 5.3. (ii)⇒(i). This is easily proved by adding and sub-
tracting �

Ω

a(x, u,∇ϕ)∇Tk(u− ϕ) dx

and then using the weak monotonicity condition (H2).

(i)⇒(ii). Let h and k be positive real numbers, let λ ∈ ]−1, 1[ and ψ ∈
W

1,p(·)
0 (Ω) ∩ L∞(Ω). Choosing

ϕ = Th(u− λTk(u− ψ)) ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω)
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as a test function in (i), we have

(5.20) Ihk ≤ Jhk
with

Ihk =
�

Ω

a(x, u,∇Th(u− λTk(u− ψ)))∇Tk(u− Th(u− λTk(u− ψ))) dx

+
�

Ω

g(x, u)Tk(u− Th(u− λTk(u− ψ))) dx = I ′hk + I ′′hk,

and

Jhk =
�

Ω

fTk(u−Th(u−λTk(u−ψ))) dx+
�

Ω

F∇Tk(u−Th(u−λTk(u−ψ))) dx.

We set

Ahk = {x ∈ Ω : |u− Th(u− λTk(u− ψ))| ≤ k},

Bhk = {x ∈ Ω : |u− λTk(u− ψ)| ≤ h}.
Then we obtain

I ′hk =
�

Akh∩Bhk

a(x, u,∇Th(u− λTk(u−ψ)))∇Tk(u− Th(u− λTk(u−ψ))) dx

+
�

Akh∩BC
hk

a(x, u,∇Th(u− λTk(u− ψ)))∇Tk(u− Th(u− λTk(u− ψ))) dx

+
�

AC
kh

a(x, u,∇Th(u− λTk(u− ψ)))∇Tk(u− Th(u− λTk(u− ψ))) dx.

Since ∇Tk(u − Th(u − λTk(u − ψ))) is different from zero only on Akh, we
have

(5.21)
�

AC
kh

a(x, u,∇Th(u−λTk(u−ψ)))∇Tk(u−Th(u−λTk(u−ψ))) dx = 0.

Moreover, if x ∈ BC
hk, we have ∇Th(u − λTk(u − ψ)) = 0 and using the

coercivity condition (H3), we deduce that

(5.22) �

Akh∩BC
hk

a(x, u,∇Th(u− λTk(u− ψ)))∇Tk(u− Th(u− λTk(u− ψ))) dx

=
�

Akh∩BC
hk

a(x, u, 0)∇Tk(u− Th(u− λTk(u− ψ))) dx = 0.

From (5.21) and (5.22), we obtain

I ′hk =
�

Akh∩Bhk

a(x, u,∇Th(u−λTk(u−ψ)))∇Tk(u−Th(u−λTk(u−ψ))) dx.
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Letting h→∞, and |λ| ≤ 1, we have

Akh → {x : |λ| |Tk(u− ψ)| ≤ k} = Ω,

Bhk → Ω, which implies Akh ∩Bhk → Ω.

By using Lebesgue’s dominated convergence theorem, we conclude that

lim
h→∞

�

Akh∩Bhk

a(x, u,∇Th(u−λTk(u−ψ)))∇Tk(u−Th(u−λTk(u−ψ))) dx

= λ
�

Ω

a(x, u,∇(u− λTk(u− ψ))∇Tk(u− ψ) dx,

which implies that

lim
h→∞

I ′hk = λ
�

Ω

a(x, u,∇(u− λTk(u− ψ))∇Tk(u− ψ) dx.

Moreover, it is easy to see that

lim
h→∞

�

Ω

g(x, u)Tk(u− Th(u− λTk(u− ψ))) dx = λ
�

Ω

g(x, u)Tk(u− ψ) dx,

which implies that

lim
h→+∞

Ihk = λ
�

Ω

a(x, u,∇(u− λTk(u− ψ))∇Tk(u− ψ) dx(5.23)

+ λ
�

Ω

g(x, u)Tk(u− ψ) dx.

On the other hand,

Jhk =
�

Ω

fTk(u−Th(u−λTk(u−ψ))) dx+
�

Ω

F∇Tk(u−Th(u−λTk(u−ψ))) dx.

Thus,

lim
h→∞

�

Ω

fTk(u−Th(u−λTk(u−ψ))) dx+
�

Ω

F∇Tk(u−Th(u−λTk(u−ψ))) dx

= λ
�

Ω

fTk(u− ψ) dx+ λ
�

Ω

F∇Tk(u− ψ) dx,

which implies that

(5.24) lim
h→∞

Jhk = λ
�

Ω

fTk(u− ψ) dx+ λ
�

Ω

F∇Tk(u− ψ) dx.

Using (5.23), (5.24) and passing to the limit in (5.20), we obtain

λ
( �
Ω

a(x, u,∇(u− λTk(u− ψ)∇Tk(u− ψ) dx+
�

Ω

g(x, u)Tk(u− ψ) dx
)

≤ λ
( �
Ω

fTk(u− ψ) dx+
�

Ω

F∇Tk(u− ψ) dx
)
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for every ψ ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω), and for k > 0. Choosing λ > 0, dividing

both sides by λ, and then letting λ tend to zero, we obtain

(5.25)
�

Ω

a(x, u,∇u)∇Tk(u− ϕ) dx+
�

Ω

g(x, u)Tk(u− ψ) dx

≤
�

Ω

fTk(u− ϕ) dx+
�

Ω

F∇Tk(u− ϕ) dx.

Doing the same for λ < 0, we obtain

(5.26)
�

Ω

a(x, u,∇u)∇Tk(u− ϕ) dx+
�

Ω

g(x, u)Tk(u− ψ) dx

≥
�

Ω

fTk(u− ϕ) dx+
�

Ω

F∇Tk(u− ϕ) dx.

Combining (5.25) and (5.26), we conclude that

(5.27)
�

Ω

a(x, u,∇u)∇Tk(u− ϕ) dx+
�

Ω

g(x, u)Tk(u− ψ) dx

=
�

Ω

fTk(u− ϕ) dx+
�

Ω

F∇Tk(u− ϕ) dx.

This completes the proof of Lemma 5.3.
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