KAOUTHER AMMAR (Madinah) JAOUAD BENNOUNA (Fès) HICHAM REDWANE (Settat)

EXISTENCE AND UNIQUENESS RESULT FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS WITH L^1 DATA

Abstract. We prove the existence and uniqueness of a renormalized solution for a class of nonlinear parabolic equations with no growth assumption on the nonlinearities.

1. Introduction. This paper is concerned with the initial-boundary value problem

$$(P) \quad \begin{cases} \frac{\partial b(x,u)}{\partial t} - \operatorname{div}(A(x,t)Du + \Phi(u)) + f(x,t,u) = 0 & \text{in } Q, \\ b(x,u)(t=0) = b(x,u_0) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \times (0,T), \end{cases}$$

where Ω is a bounded open set in \mathbb{R}^N $(N \ge 1)$, T is a positive real number, $Q \equiv \Omega \times (0,T)$, while the data $b(x,u_0)$ is in $L^1(\Omega)$. The matrix A(x,t) is a bounded symmetric and coercive matrix; b(x,s) is a strictly increasing C^1 -function of s (for every $x \in \Omega$) but which is not restricted by any growth condition with respect to s (see assumptions (2.1) and (2.2) of Section 2); f is a Carathéodory function in $Q \times \mathbb{R}$ and not controlled with respect to s. The function Φ is just assumed to be continuous in \mathbb{R} .

Note that a large number of papers have been devoted to the study of the existence and uniqueness of solutions of parabolic problems under various assumptions and in different contexts; for classical results see e.g. [8], [9], [10], [1]–[5], [12], [19], [20].

2. Assumptions on the data and definition of a renormalized solution. Let Ω be a bounded open set in \mathbb{R}^N $(N \ge 1)$, T > 0 and Q =

²⁰¹⁰ Mathematics Subject Classification: Primary 47A15; Secondary 46A32, 47D20. Key words and phrases: nonlinear parabolic equations, renormalized solutions.

- $\Omega \times (0,T)$. Assume that:
- (2.1) $b: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that for every $x \in \Omega$, b(x, s) is a strictly increasing C^1 -function of s, with b(x, 0) = 0;
- (2.2) for any K > 0, there exists $\lambda_K > 0$, a function A_K in $L^{\infty}(\Omega)$ and a function B_K in $L^2(\Omega)$ such that

$$\lambda_K \leq \frac{\partial b(x,s)}{\partial s} \leq A_K(x) \quad \text{and} \quad \left| \nabla_x \left(\frac{\partial b(x,s)}{\partial s} \right) \right| \leq B_K(x)$$

for almost every $x \in \Omega$ and every s such that $|s| \leq K$;

- (2.3) A(x,t) is a symmetric coercive matrix field with coefficients lying in $L^{\infty}(Q)$, i.e. $A(x,t) = (a_{ij}(x,t))_{1 \leq i,j \leq N}$ with $a_{ij}(\cdot, \cdot) \in L^{\infty}(Q)$ and $a_{ij}(x,t) = a_{ji}(x,t)$ a.e. in Q, for all i, j, and there exists $\alpha > 0$ such that $A(x,t)\xi \cdot \xi \geq \alpha |\xi|^2$ a.e. (x,t) in $Q, \forall \xi \in \mathbb{R}^N$;
- (2.4) $\Phi : \mathbb{R} \to \mathbb{R}^N$ is a continuous function;
- (2.5) $f: Q \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function;
- (2.6) for almost every $(x,t) \in Q$, and every $s \in \mathbb{R}$,

$$\operatorname{sign}(s)f(x,t,s) \ge 0$$
 and $f(x,t,0) = 0;$

- (2.7) $\max_{\{|s| < K\}} |f(x,t,s)| \in L^1(Q)$ for any K > 0;
- (2.8) u_0 is a measurable function such that $b(\cdot, u_0) \in L^1(\Omega)$.

REMARK 2.1. As already mentioned in the introduction Problem (P) does not admit a weak solution under assumptions (2.1)–(2.8) since the growth of b(x, u), $\Phi(u)$ and f(x, t, u) is not controlled with respect to u.

Throughout, for any nonnegative real number K we denote by $T_K(r) = \min(K, \max(r, -K))$ the truncation function at height K. The definition of a renormalized solution for Problem (P) can be stated as follows.

DEFINITION 2.2. A measurable function u defined on Q is a *renormalized* solution of Problem (P) if

(2.9)
$$T_K(u) \in L^2(0,T; H^1_0(\Omega)) \ \forall K \ge 0 \ \text{and} \ b(x,u) \in L^\infty(0,T; L^1(\Omega)),$$

(2.10)
$$\int_{\{(t,x)\in Q; n\leq |u(x,t)|\leq n+1\}} A(x,t)DuDu\,dx\,dt\to 0 \quad \text{as } n\to\infty,$$

and if for every function S in $W^{2,\infty}(\mathbb{R})$ which is piecewise C^1 and such that S' has a compact support,

(2.11)
$$\frac{\partial b_S(x,u)}{\partial t} - \operatorname{div}(S'(u)A(x,t)Du) + S''(u)A(x,t)Du \cdot Du - \operatorname{div}(S'(u)\Phi(u)) + S''(u)\Phi(u)Du + f(x,t,u)S'(u) = 0 \text{ in } \mathcal{D}'(Q),$$

and

(2.12)
$$b_S(x,u)(t=0) = b_S(x,u_0)$$
 in Ω ,

where
$$b_S(x,r) = \int_0^r \frac{\partial b(x,s)}{\partial s} S'(s) \, ds.$$

REMARK 2.3. Note that due to (2.9) each term in (2.11) has a meaning in $L^1(Q) + L^2(0,T; H^{-1}(\Omega))$, and $\partial b_S(x,u)/\partial t$ belongs to $L^1(Q) + L^2(0,T; H^{-1}(\Omega))$. Due to the properties of S and (2.2), we see that $b_S(x,u)$ belongs to $L^2(0,T; H^1_0(\Omega))$, which implies that $b_S(x,u) \in C^0([0,T]; L^1(\Omega))$ (for a proof of this trace result see [18]), so that the initial condition (2.12) makes sense.

3. Existence result. This section is devoted to establishing the following existence theorem.

THEOREM 3.1. Under assumptions (2.4)–(2.8) there exists a renormalized solution u of Problem (P).

Proof. The proof is divided into three steps.

STEP 1: Approximate problem. Let us introduce the following regularization of the data: for $\varepsilon > 0$ fixed

- (3.1) $b_{\varepsilon}(x,s) = b(x, T_{1/\varepsilon}(s))$ a.e. in $\Omega, \forall s \in \mathbb{R}$.
- (3.2) Φ_{ε} is a Lipschitz-continuous bounded function from \mathbb{R} into \mathbb{R}^N such that Φ_{ε} uniformly converges to Φ on any compact subset of \mathbb{R} as $\varepsilon \to 0$.
- (3.3) $f^{\varepsilon}(x,t,s) = f(x,t,T_{1/\varepsilon}(s))$ a.e. in $Q, \forall s \in \mathbb{R}$.
- (3.4) $u_0^{\varepsilon} \in C_0^{\infty}(\Omega)$ and $b_{\varepsilon}(x, u_0^{\varepsilon}) \to b(x, u_0)$ in $L^1(\Omega)$ as $\varepsilon \to 0$.

Let us now consider the regularized problem

$$(P^{\varepsilon}) \quad \begin{cases} \frac{\partial b_{\varepsilon}(x,u^{\varepsilon})}{\partial t} - \operatorname{div}(A(x,t)Du^{\varepsilon} + \varPhi_{\varepsilon}(u^{\varepsilon})Du^{\varepsilon}) + f^{\varepsilon}(x,t,u^{\varepsilon}) = 0 & \text{in } Q, \\ b_{\varepsilon}(x,u^{\varepsilon})(t=0) = b_{\varepsilon}(x,u_{0}^{\varepsilon}) & \text{in } \Omega, \\ u^{\varepsilon} = 0 & \text{on } \partial\Omega \times (0,T), \end{cases}$$

Proving existence of a weak solution $u^{\varepsilon} \in L^2(0,T; H^1_0(\Omega))$ of (P^{ε}) is an easy task (see e.g. [15]).

STEP 2: A priori estimates. The estimates derived in this step rely on usual techniques for problems of type (P^{ε}) and we just sketch their proof (the reader is referred to [7], [10], [8] or [17] for elliptic versions of (P)). Using $T_K(u^{\varepsilon})$ as a test function in (P), we deduce that

(3.5)
$$T_K(u^{\varepsilon})$$
 is bounded in $L^2(0,T;H_0^1(\Omega))$

independently of ε for any $K \ge 0$. Proceeding as in [7], [10] for any $S \in W^{2,\infty}(\mathbb{R})$ such that S' is compact (supp $S' \subset [-K, K]$) we find that

- (3.6) $b_S(x, u^{\varepsilon})$ is bounded in $L^2(0, T; H^1_0(\Omega)),$
- (3.7) $\partial b_S(x, u^{\varepsilon})/\partial t$ is bounded in $L^1(Q) + L^2(0, T; H^{-1}(\Omega))$

independently of ε .

For any integer $n \geq 1$, using the admissible test function $\theta_n(u^{\varepsilon}) = T_{n+1}(u^{\varepsilon}) - T_n(u^{\varepsilon})$ in (P^{ε}) , we obtain for almost $t \in (0,T)$,

(3.8)
$$\int_{0}^{t} \int_{\Omega} A(x,t) Du^{\varepsilon} \cdot D\theta_{n}(u^{\varepsilon}) \, dx \, ds \leq \int_{\Omega} b_{\varepsilon,n}(x,u_{0}^{\varepsilon}) \, dx.$$

Again as in [7], [8] and [10], estimates (3.6) and (3.7) imply that, for a subsequence still indexed by ε ,

(3.9) $u^{\varepsilon} \to u$ almost everywhere in Q,

(3.10)
$$T_K(u^{\varepsilon}) \to T_K(u)$$
 weakly in $L^2(0,T;H^1_0(\Omega)),$

(3.11) $b_{\varepsilon}(x, u^{\varepsilon}) \to b(x, u)$ strongly in $L^{1}(Q)$,

(3.12)
$$\theta_n(u^{\varepsilon}) \rightharpoonup \theta_n(u)$$
 weakly in $L^2(0,T; H^1_0(\Omega)),$

as $\varepsilon \to 0$ for any K > 0 and any $n \ge 1$. We conclude that

$$(3.13) b(x,u) \in L^{\infty}(0,T;L^{1}(\Omega)),$$

and

(3.14)
$$\lim_{n \to \infty} \limsup_{\varepsilon \to 0} \int_{\{n \le |u^{\varepsilon}| \le n+1\}} A(x,t) DT_{n+1}(u^{\varepsilon}) \cdot DT_{n+1}(u^{\varepsilon}) \, dx \, dt = 0.$$

STEP 3: Time regularization. In this step we introduce, for $K \ge 0$ fixed, a time regularization of the function $T_K(u)$. This specific time regularization is defined as follows. Let $(v_0^{\mu})_{\mu}$ be a sequence of functions defined on Ω such that for all $\mu > 0$,

$$v_0^{\mu} \in L^{\infty}(\Omega) \cap H_0^1(\Omega), \ \|v_0^{\mu}\|_{L^{\infty}(\Omega)} \le K, \ v_0^{\mu} \to T_K(u_0), \ \lim_{\mu \to \infty} \frac{1}{\mu} \|v_0^{\mu}\|_{L^2(\Omega)} = 0.$$

Let us consider the unique solution $T_K(u)_{\mu} \in L^{\infty}(Q) \cap L^2(0,T; H^1_0(\Omega))$ of

(3.15)
$$\frac{\partial T_K(u)_{\mu}}{\partial t} + \mu(T_K(u)_{\mu} - T_K(u)) = 0 \quad \text{in } \mathcal{D}'(Q),$$

(3.16)
$$T_K(u)_{\mu}(t=0) = v_0^{\mu}$$
 in Ω

We just recall here that (3.15)-(3.16) imply that $T_K(u)_{\mu} \to T_K(u)$ a.e. in Q and weakly- \star in $L^{\infty}(Q)$ and strongly in $L^2(0,T; H^1_0(\Omega))$ as $\mu \to \infty$. Let $h \in W^{1,\infty}(\mathbb{R}), h \ge 0$, with supp h compact. The main estimate is

LEMMA 3.2 (see [19]).

$$\limsup_{\mu \to \infty} \lim_{\varepsilon \to 0} \int_{0}^{T_s} \left\langle \frac{\partial b_{\varepsilon}(x, u^{\varepsilon})}{\partial t}, h(u^{\varepsilon}) (T_K(u^{\varepsilon}) - (T_K(u))_{\mu}) \right\rangle dt \, ds \ge 0$$

where \langle , \rangle denotes the duality pairing between $L^1(\Omega) + H^{-1}(\Omega)$ and $L^{\infty}(\Omega) \cap H^1_0(\Omega)$.

LEMMA 3.3 (see [19]). A subsequence of u^{ε} defined in Step 3 satisfies, for any $K \geq 0$,

$$\liminf_{\varepsilon \to 0} \int_{0}^{T} \int_{\Omega} \int_{\Omega} A(x,t) [DT_K(u^{\varepsilon}) - DT_K(u)] \cdot [DT_K(u^{\varepsilon}) - DT_K(u)] \, dx \, dt \, ds = 0,$$

and

$$T_K(u^{\varepsilon}) \to T_K(u)$$
 strongly in $L^2(0,T; H_0^1(\Omega))$ as $\varepsilon \to 0$.

Now, let S in $W^{2,\infty}(\mathbb{R})$ be such that S' has a compact support, say $\sup S' \subset [-K, K]$. Pointwise multiplication of the approximate equation (P^{ε}) by $S'(u^{\varepsilon})$ leads to

$$(3.17) \quad \frac{\partial b_{S}^{\varepsilon}(x,u^{\varepsilon})}{\partial t} - \operatorname{div}(S'(u^{\varepsilon})A(x,t)Du^{\varepsilon}) + S''(u^{\varepsilon})A(x,t)Du^{\varepsilon} \cdot Du^{\varepsilon} - \operatorname{div}(S'(u^{\varepsilon})\Phi_{\varepsilon}(u^{\varepsilon})) + S''(u^{\varepsilon})\Phi_{\varepsilon}(u^{\varepsilon})Du^{\varepsilon} + f^{\varepsilon}(x,t,u^{\varepsilon})S'(u^{\varepsilon}) = 0 \quad \text{in } \mathcal{D}'(Q),$$

where

$$b_{S}^{\varepsilon}(x,r) = \int_{0}^{r} \frac{\partial b_{\varepsilon}(x,s)}{\partial s} S'(s) \, ds.$$

Letting $\varepsilon \to 0$ in each term of (3.17), we conclude that u satisfies (2.11).

As a consequence, an Aubin type lemma (see e.g. [21, Corollary 4]) implies that $b_S(x, u^{\varepsilon})$ lies in a compact subset of $C^0([0, T]; W^{-1,s}(\Omega))$ for any $s < \inf(2, N/(N-1))$. It follows that, on one hand, $b_S(x, u^{\varepsilon})(t=0)$ $= b_S(x, u_0^{\varepsilon})$ converges to $b_S(x, u)(t=0)$ strongly in $W^{-1,s}(\Omega)$. On the other hand, (3.4) and the smoothness of S imply that $b_S(x, u_0^{\varepsilon})$ converges to $b_S(x, u)(t=0)$ strongly in $L^q(\Omega)$ for all $q < \infty$. Then we conclude that $b_S(x, u)(t=0) = b_S(x, u_0)$ in Ω . By Steps 1–3, the proof of Theorem 3.1 is complete.

4. Comparison principle and uniqueness result. This section is concerned with a comparison principle (and a uniqueness result) for renormalized solutions in the case where f(x, t, u) is independent of u. We establish the following theorem.

THEOREM 4.1. Assume that assumptions (2.1)-(2.4) and (2.8) hold true and moreover that:

(4.1) for any K > 0, there exists $\beta_K > 0$ such that

$$\left|\frac{\partial b(x,z_1)}{\partial s} - \frac{\partial b(x,z_2)}{\partial s}\right| \le \beta_K |z_1 - z_2|$$

for almost every x in Ω , and all z_1 and z_2 such that $|z_1|, |z_2| \leq K$, (4.2) Φ is a locally Lipschitz-continuous function on \mathbb{R} , (4.3) $f_1, f_2 \in L^1(Q)$. Let u_1 and u_2 be renormalized solutions corresponding to the data (f_1, u_0^1) and (f_2, u_0^2) for the problem (i = 1, 2)

$$(P_i) \quad \begin{cases} \frac{\partial b(x,u_i)}{\partial t} - \operatorname{div}(A(x,t)Du_i + \Phi(u_i)) = f_i(x,t) & \text{in } Q, \\ b(x,u_i)(t=0) = b(x,u_0^i) & \text{in } \Omega, \\ u_i = 0 & \text{on } \partial\Omega \times (0,T). \end{cases}$$

If $f_1 \leq f_2$ and $u_0^1 \leq u_0^2$ a.e., then $u_1 \leq u_2$ a.e. in Q.

Sketch of the proof. Here we just give an idea of how $u_1 \leq u_2$ can be obtained following the outline of [20]. Let us introduce a specific S in (2.11). For all n > 0, let $S_n \in C^1(\mathbb{R})$ be defined by $S'_n(r) = 1$ for $|r| \leq n$, $S'_n(r) = n + 1 - |r|$ for $n \leq |r| \leq n + 1$ and $S'_n(r) = 0$ for $|r| \geq n + 1$. Taking $S = S_n$ in (2.11) yields

(4.4)
$$\frac{\partial b_{S_n}(x, u_i)}{\partial t} - \operatorname{div}(S'_n(u_i)A(x, t)Du_i) + S''(u_i)A(x, t)Du_iDu_i - \operatorname{div}(\Phi_{S_n}(u_i)) = f_i S'_n(u_i) \quad \text{in } \mathcal{D}'(Q)$$

for i = 1, 2 with $b_{S_n}(x, r) = \int_0^r \frac{\partial b(x, s)}{\partial s} S'_n(s) ds$.

We use $\frac{1}{\sigma}T_{\sigma}^{+}(b_{S_n}(x, u_1) - b_{S_n}(x, u_2))$ as a test function in the difference of equations (4.4) for u_1 and u_2 to get

(4.5)

$$\frac{1}{\sigma} \int_{0}^{T} \int_{0}^{t} \left\langle \frac{\partial (b_{S_n}(x, u_1) - b_{S_n}(x, u_2))}{\partial t}, T_{\sigma}^+(b_{S_n}(x, u_1) - b_{S_n}(x, u_2)) \right\rangle ds \, dt + A_n^{\sigma} = B_n^{\sigma} + C_n^{\sigma} + D_n^{\sigma}$$

for any
$$\sigma > 0$$
, $n > 0$, where

$$A_n^{\sigma} = \frac{1}{\sigma} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} [S'_n(u_1)A(t,x)Du_1 - S'_n(u_2)A(t,x)Du_2] \\ \cdot DT_{\sigma}^+(b_{S_n}(x,u_1) - b_{S_n}(x,u_2)) \, dx \, ds \, dt$$

$$B_n^{\sigma} = \frac{1}{\sigma} \int_{0}^{T} \int_{\Omega} \int_{\Omega} S''_n(u_1)A(x,t)Du_1Du_1T_{\sigma}^+(b_{S_n}(x,u_1) - b_{S_n}(x,u_2)) \, dx \, ds \, dt$$

$$- \frac{1}{\sigma} \int_{0}^{T} \int_{\Omega} \int_{\Omega} S''_n(u_2)A(x,t)Du_2Du_2T_{\sigma}^+(b_{S_n}(x,u_1) - b_{S_n}(x,u_2)) \, dx \, ds \, dt,$$

$$C_n^{\sigma} = \frac{1}{\sigma} \int_{0}^{T} \int_{\Omega} \int_{\Omega} [\Phi_{S_n}(u_1) - \Phi_{S_n}(u_2)]DT_{\sigma}^+(b_{S_n}(x,u_1) - b_{S_n}(x,u_2)) \, dx \, ds \, dt,$$

$$D_n^{\sigma} = \frac{1}{\sigma} \int_{0}^{T} \int_{\Omega} \int_{\Omega} [f_1S'_n(u_1) - f_2S'_n(u_2)]T_{\sigma}^+(b_{S_n}(x,u_1) - b_{S_n}(x,u_2)) \, dx \, ds \, dt.$$

We will pass to the limit in (4.5) as $\sigma \to 0$ and then $n \to \infty$. Upon application of Lemma 2.4 of [11], the first term on the right hand side of (4.5) is

$$(4.6) \quad \frac{1}{\sigma} \int_{0}^{T} \int_{0}^{t} \left\langle \frac{\partial (b_{S_n}(x, u_1) - b_{S_n}(x, u_2))}{\partial t}, T_{\sigma}^+(b_{S_n}(x, u_1) - b_{S_n}(x, u_2)) \right\rangle ds \, dt \\ = \frac{1}{\sigma} \int_{Q} \tilde{T}_{\sigma}^+(b_{S_n}(x, u_1) - b_{S_n}(x, u_2)) \, dx \, dt - \frac{T}{\sigma} \int_{\Omega} \tilde{T}_{\sigma}^+(b_{S_n}(x, u_0^1) - b_{S_n}(x, u_0^2)) \, dx \, dt$$

where $\tilde{T}^+_{\sigma}(t) = \int_0^t T^+_{\sigma}(s) \, ds$. Due to the assumption $u_0^1 \leq u_0^2$ a.e. in Ω and the monotone character of $b_{S_n}(x, \cdot)$ and $T_{\sigma}(\cdot)$, we have

(4.7)
$$\int_{\Omega} \tilde{T}_{\sigma}^{+}(b_{S_{n}}(x, u_{0}^{1}) - b_{S_{n}}(x, u_{0}^{2})) dx = 0$$

It follows from (4.5)-(4.7) that

(4.8)
$$\frac{1}{\sigma} \int_{Q} \tilde{T}_{\sigma}^{+}(b_{S_{n}}(x, u_{1}) - b_{S_{n}}(x, u_{2})) dx dt + A_{n}^{\sigma} = B_{n}^{\sigma} + C_{n}^{\sigma} + D_{n}^{\sigma}$$

for any $\sigma > 0$ and any n > 0. We need the following lemma (see [20])

LEMMA 4.2. We have

(4.9)
$$\lim_{n \to \infty} \inf_{\sigma \to 0} A_n^{\sigma} \ge 0, \quad \lim_{n \to \infty} \inf_{\sigma \to 0} B_n^{\sigma} = 0, \\ \lim_{\sigma \to 0} \inf_{\sigma \to 0} C_n^{\sigma} = 0, \quad \lim_{n \to \infty} \inf_{\sigma \to 0} \lim_{\sigma \to 0} D_n^{\sigma} \le 0.$$

In view of (4.7)–(4.9) we have $\int_Q (b(x, u_1) - b(x, u_2))^+ dx dt \leq 0$, so that $b(x, u_1) \leq b(x, u_2)$ a.e. in Q, which in turn implies that $u_1 \leq u_2$ a.e. in Q, and Theorem 4.1 is established.

References

- Y. Akdim, J. Bennouna, A. Bouajaja, M. Mekkour and H. Redwane, Entropy unilateral solutions for strongly nonlinear parabolic problems without sign condition and via a sequence of penalized equations, Int. J. Math. Statist. 12 (2012), 113–134.
- [2] Y. Akdim, J. Bennouna, M. Mekkour and H. Redwane, Existence of a renormalised solution for a class of nonlinear degenerated parabolic problems with L¹ data, J. Partial Differential Equations 26 (2013), 76–98.
- [3] Y. Akdim, J. Bennouna, M. Mekkour and H. Redwane, Existence of renormalized solutions for parabolic equations without the sign condition and with three unbounded nonlinearities, Appl. Math. (Warsaw) 39 (2012), 1–22.
- K. Ammar, Renormalized entropy solutions for degenerate nonlinear evolution problems, Electron. J. Differential Equations, 2009, no. 147, 32 pp.
- K. Ammar and H. Redwane, Nonlinear degenerate diffusion problems with a singularity, Differential Equations Appl. 3 (2011), 85–112.
- [6] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.-L. Vázquez, An L¹-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa 22 (1995), 241–273.

K. Ammar et al.

- [7] D. Blanchard and F. Murat, Renormalised solutions of nonlinear parabolic problems with L¹ data. Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 1137–1152.
- [8] D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations 177 (2001), 331–374.
- D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Differential Equations 210 (2005), 383–428.
- [10] D. Blanchard and H. Redwane, *Renormalized solutions of nonlinear parabolic evo*lution problems, J. Math. Pures Appl. 77 (1998), 117–151.
- [11] L. Boccardo, F. Murat and J.-P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. 152 (1988), 183–196.
- J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999), 269–361.
- [13] R.-J. Di Perna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321–366.
- [14] R. Landes, On the existence of weak solutions for quasilinear parabolic initialboundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 217–237.
- [15] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969.
- [16] J.-P. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Oxford Univ. Press, 1996.
- [17] F. Murat, Soluciones renormalizadas de EDP elipticas non lineales, Cours à l'Université de Séville, Publication R93023, Laboratoire d'Analyse Numérique, Paris VI, 1993.
- [18] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. 177 (1999), 143–172.
- [19] H. Redwane, Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, Adv. Dynam. Systems Appl. 2 (2007), 241–264.
- [20] H. Redwane, Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities, Rend. Mat. Appl. (7) 28 (2008), 189–200.
- [21] J. Simon, Compact sets in $L^p(0,T;B)$, Ann. Mat. Pura Appl. 146 (1987), 65–96.

Kaouther Ammar Department of Mathematics Faculty of Sciences Taibah University 344 Al Madinah Al Munawara, Saudi Arabia E-mail: kaoutherammar4@googlemail.com Jaouad Bennouna Laboratoire LAMA Faculté des Sciences Dhar-Mahraz Département de Mathématiques Université Sidi Mohamed Ben Abdellah B.P. 1796 Atlas Fès, Morocco E-mail: jbennouna@hotmail.com

Hicham Redwane Faculté des Sciences Juridiques, Économiques et Sociales Université Hassan 1 B.P. 764, Settat, Morocco E-mail: redwane_hicham@yahoo.fr

> Received on 25.2.2014; revised version on 18.7.2014

(2232)