Kaouther Ammar (Madinah)
Jaouad Bennouna (Fès)
Hicham Redwane (Settat)

EXISTENCE AND UNIQUENESS RESULT FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS WITH L^{1} DATA

Abstract. We prove the existence and uniqueness of a renormalized solution for a class of nonlinear parabolic equations with no growth assumption on the nonlinearities.

1. Introduction. This paper is concerned with the initial-boundary value problem
$(P) \quad\left\{\begin{array}{l}\frac{\partial b(x, u)}{\partial t}-\operatorname{div}(A(x, t) D u+\Phi(u))+f(x, t, u)=0 \quad \text { in } Q, \\ b(x, u)(t=0)=b\left(x, u_{0}\right) \quad \text { in } \Omega, \\ u=0 \text { on } \partial \Omega \times(0, T),\end{array}\right.$
where Ω is a bounded open set in $\mathbb{R}^{N}(N \geq 1), T$ is a positive real number, $Q \equiv \Omega \times(0, T)$, while the data $b\left(x, u_{0}\right)$ is in $L^{1}(\Omega)$. The matrix $A(x, t)$ is a bounded symmetric and coercive matrix; $b(x, s)$ is a strictly increasing C^{1}-function of s (for every $x \in \Omega$) but which is not restricted by any growth condition with respect to s (see assumptions (2.1) and (2.2) of Section 2); f is a Carathéodory function in $Q \times \mathbb{R}$ and not controlled with respect to s. The function Φ is just assumed to be continuous in \mathbb{R}.

Note that a large number of papers have been devoted to the study of the existence and uniqueness of solutions of parabolic problems under various assumptions and in different contexts; for classical results see e.g. [8, 9], [10], [1]-[5], 12], [19], [20].
2. Assumptions on the data and definition of a renormalized solution. Let Ω be a bounded open set in $\mathbb{R}^{N}(N \geq 1), T>0$ and $Q=$

[^0]$\Omega \times(0, T)$. Assume that:
(2.1) $b: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for every $x \in \Omega$, $b(x, s)$ is a strictly increasing C^{1}-function of s, with $b(x, 0)=0$;
(2.2) for any $K>0$, there exists $\lambda_{K}>0$, a function A_{K} in $L^{\infty}(\Omega)$ and a function B_{K} in $L^{2}(\Omega)$ such that
$$
\lambda_{K} \leq \frac{\partial b(x, s)}{\partial s} \leq A_{K}(x) \quad \text { and } \quad\left|\nabla_{x}\left(\frac{\partial b(x, s)}{\partial s}\right)\right| \leq B_{K}(x)
$$
for almost every $x \in \Omega$ and every s such that $|s| \leq K$;
(2.3) $A(x, t)$ is a symmetric coercive matrix field with coefficients lying in $L^{\infty}(Q)$, i.e. $A(x, t)=\left(a_{i j}(x, t)\right)_{1 \leq i, j \leq N}$ with $a_{i j}(\cdot, \cdot) \in L^{\infty}(Q)$ and $a_{i j}(x, t)=a_{j i}(x, t)$ a.e. in Q, for all i, j, and there exists $\alpha>0$ such that $A(x, t) \xi \cdot \xi \geq \alpha|\xi|^{2}$ a.e. (x, t) in $Q, \forall \xi \in \mathbb{R}^{N}$;
(2.4) $\Phi: \mathbb{R} \rightarrow \mathbb{R}^{N}$ is a continuous function;
(2.5) $f: Q \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function;
(2.6) for almost every $(x, t) \in Q$, and every $s \in \mathbb{R}$,
$$
\operatorname{sign}(s) f(x, t, s) \geq 0 \quad \text { and } \quad f(x, t, 0)=0
$$
(2.7) $\max _{\{|s| \leq K\}}|f(x, t, s)| \in L^{1}(Q)$ for any $K>0$;
(2.8) u_{0} is a measurable function such that $b\left(\cdot, u_{0}\right) \in L^{1}(\Omega)$.

Remark 2.1. As already mentioned in the introduction Problem (P) does not admit a weak solution under assumptions (2. 1)-(2, 8) since the growth of $b(x, u), \Phi(u)$ and $f(x, t, u)$ is not controlled with respect to u.

Throughout, for any nonnegative real number K we denote by $T_{K}(r)=$ $\min (K, \max (r,-K))$ the truncation function at height K. The definition of a renormalized solution for Problem (P) can be stated as follows.

Definition 2.2. A measurable function u defined on Q is a renormalized solution of Problem (P) if

$$
\begin{gather*}
T_{K}(u) \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \forall K \geq 0 \text { and } b(x, u) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \tag{2.9}\\
\int_{\{(t, x) \in Q ; n \leq|u(x, t)| \leq n+1\}} A(x, t) D u D u d x d t \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.10}
\end{gather*}
$$

and if for every function S in $W^{2, \infty}(\mathbb{R})$ which is piecewise C^{1} and such that S^{\prime} has a compact support,

$$
\begin{align*}
& \frac{\partial b_{S}(x, u)}{\partial t}-\operatorname{div}\left(S^{\prime}(u) A(x, t) D u\right)+S^{\prime \prime}(u) A(x, t) D u \cdot D u \tag{2.11}\\
& -\operatorname{div}\left(S^{\prime}(u) \Phi(u)\right)+S^{\prime \prime}(u) \Phi(u) D u+f(x, t, u) S^{\prime}(u)=0 \text { in } \mathcal{D}^{\prime}(Q)
\end{align*}
$$

and

$$
\begin{equation*}
b_{S}(x, u)(t=0)=b_{S}\left(x, u_{0}\right) \text { in } \Omega \tag{2.12}
\end{equation*}
$$

where $b_{S}(x, r)=\int_{0}^{r} \frac{\partial b(x, s)}{\partial s} S^{\prime}(s) d s$.

Remark 2.3. Note that due to (2.9) each term in 2.11 has a meaning in $L^{1}(Q)+L^{2}\left(0, T ; H^{-1}(\Omega)\right)$, and $\partial b_{S}(x, u) / \partial t$ belongs to $L^{1}(Q)+$ $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$. Due to the properties of S and (22), we see that $b_{S}(x, u)$ belongs to $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, which implies that $b_{S}(x, u) \in C^{0}\left([0, T] ; L^{1}(\Omega)\right)$ (for a proof of this trace result see [18]), so that the initial condition (2.12) makes sense.
3. Existence result. This section is devoted to establishing the following existence theorem.

Theorem 3.1. Under assumptions (2.4)-(2.8) there exists a renormalized solution u of Problem (P).

Proof. The proof is divided into three steps.
STEP 1: Approximate problem. Let us introduce the following regularization of the data: for $\varepsilon>0$ fixed
(3.1) $\left.b_{\varepsilon}(x, s)=b\left(x, T_{1 / \varepsilon}(s)\right)\right)$ a.e. in $\Omega, \forall s \in \mathbb{R}$.
(3.2) Φ_{ε} is a Lipschitz-continuous bounded function from \mathbb{R} into \mathbb{R}^{N} such that Φ_{ε} uniformly converges to Φ on any compact subset of \mathbb{R} as $\varepsilon \rightarrow 0$.
(3.3) $f^{\varepsilon}(x, t, s)=f\left(x, t, T_{1 / \varepsilon}(s)\right)$ a.e. in $Q, \forall s \in \mathbb{R}$.
(3.4) $u_{0}^{\varepsilon} \in C_{0}^{\infty}(\Omega)$ and $b_{\varepsilon}\left(x, u_{0}^{\varepsilon}\right) \rightarrow b\left(x, u_{0}\right)$ in $L^{1}(\Omega)$ as $\varepsilon \rightarrow 0$.

Let us now consider the regularized problem
$\left(P^{\varepsilon}\right) \quad\left\{\begin{array}{l}\frac{\partial b_{\varepsilon}\left(x, u^{\varepsilon}\right)}{\partial t}-\operatorname{div}\left(A(x, t) D u^{\varepsilon}+\Phi_{\varepsilon}\left(u^{\varepsilon}\right) D u^{\varepsilon}\right)+f^{\varepsilon}\left(x, t, u^{\varepsilon}\right)=0 \quad \text { in } Q, \\ b_{\varepsilon}\left(x, u^{\varepsilon}\right)(t=0)=b_{\varepsilon}\left(x, u_{0}^{\varepsilon}\right) \quad \text { in } \Omega, \\ u^{\varepsilon}=0 \quad \text { on } \partial \Omega \times(0, T),\end{array}\right.$
Proving existence of a weak solution $u^{\varepsilon} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ of $\left(P^{\varepsilon}\right)$ is an easy task (see e.g. [15]).

Step 2: A priori estimates. The estimates derived in this step rely on usual techniques for problems of type $\left(P^{\varepsilon}\right)$ and we just sketch their proof (the reader is referred to [7], [10], [8] or [17] for elliptic versions of (P)). Using $T_{K}\left(u^{\varepsilon}\right)$ as a test function in (P), we deduce that

$$
\begin{equation*}
T_{K}\left(u^{\varepsilon}\right) \text { is bounded in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \tag{3.5}
\end{equation*}
$$

independently of ε for any $K \geq 0$. Proceeding as in [7], 10] for any $S \in$ $W^{2, \infty}(\mathbb{R})$ such that S^{\prime} is compact $\left(\operatorname{supp} S^{\prime} \subset[-K, K]\right)$ we find that

$$
\begin{equation*}
b_{S}\left(x, u^{\varepsilon}\right) \text { is bounded in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), \tag{3.6}
\end{equation*}
$$

independently of ε.

For any integer $n \geq 1$, using the admissible test function $\theta_{n}\left(u^{\varepsilon}\right)=$ $T_{n+1}\left(u^{\varepsilon}\right)-T_{n}\left(u^{\varepsilon}\right)$ in $\left(P^{\varepsilon}\right)$, we obtain for almost $t \in(0, T)$,

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega} A(x, t) D u^{\varepsilon} \cdot D \theta_{n}\left(u^{\varepsilon}\right) d x d s \leq \int_{\Omega} b_{\varepsilon, n}\left(x, u_{0}^{\varepsilon}\right) d x . \tag{3.8}
\end{equation*}
$$

Again as in [7, [8] and [10, estimates (3.6) and (3.7) imply that, for a subsequence still indexed by ε,

$$
\begin{array}{ll}
u^{\varepsilon} \rightarrow u & \text { almost everywhere in } Q, \\
T_{K}\left(u^{\varepsilon}\right) \rightarrow T_{K}(u) & \text { weakly in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), \\
b_{\varepsilon}\left(x, u^{\varepsilon}\right) \rightarrow b(x, u) & \text { strongly in } L^{1}(Q), \\
\theta_{n}\left(u^{\varepsilon}\right) \rightarrow \theta_{n}(u) & \text { weakly in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), \tag{3.12}
\end{array}
$$

as $\varepsilon \rightarrow 0$ for any $K>0$ and any $n \geq 1$. We conclude that

$$
\begin{equation*}
b(x, u) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right), \tag{3.13}
\end{equation*}
$$

and
(3.14) $\lim _{n \rightarrow \infty} \limsup _{\varepsilon \rightarrow 0} \int_{\left\{n \leq\left|u^{\varepsilon}\right| \leq n+1\right\}} A(x, t) D T_{n+1}\left(u^{\varepsilon}\right) \cdot D T_{n+1}\left(u^{\varepsilon}\right) d x d t=0$.

STEP 3: Time regularization. In this step we introduce, for $K \geq 0$ fixed, a time regularization of the function $T_{K}(u)$. This specific time regularization is defined as follows. Let $\left(v_{0}^{\mu}\right)_{\mu}$ be a sequence of functions defined on Ω such that for all $\mu>0$,

$$
v_{0}^{\mu} \in L^{\infty}(\Omega) \cap H_{0}^{1}(\Omega),\left\|v_{0}^{\mu}\right\|_{L^{\infty}(\Omega)} \leq K, v_{0}^{\mu} \rightarrow T_{K}\left(u_{0}\right), \lim _{\mu \rightarrow \infty} \frac{1}{\mu}\left\|v_{0}^{\mu}\right\|_{L^{2}(\Omega)}=0 .
$$

Let us consider the unique solution $T_{K}(u)_{\mu} \in L^{\infty}(Q) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ of

$$
\begin{align*}
& \frac{\partial T_{K}(u)_{\mu}}{\partial t}+\mu\left(T_{K}(u)_{\mu}-T_{K}(u)\right)=0 \quad \text { in } \mathcal{D}^{\prime}(Q), \tag{3.15}\\
& T_{K}(u)_{\mu}(t=0)=v_{0}^{\mu} \quad \text { in } \Omega \tag{3.16}
\end{align*}
$$

We just recall here that (3.15)-(3.16) imply that $T_{K}(u)_{\mu} \rightarrow T_{K}(u)$ a.e. in Q and weakly- \star in $L^{\infty}(Q)$ and strongly in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ as $\mu \rightarrow \infty$. Let $h \in W^{1, \infty}(\mathbb{R}), h \geq 0$, with $\operatorname{supp} h$ compact. The main estimate is

Lemma 3.2 (see [19).

$$
\limsup _{\mu \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{s}\left\langle\frac{\partial b_{\varepsilon}\left(x, u^{\varepsilon}\right)}{\partial t}, h\left(u^{\varepsilon}\right)\left(T_{K}\left(u^{\varepsilon}\right)-\left(T_{K}(u)\right)_{\mu}\right)\right\rangle d t d s \geq 0
$$

where \langle,$\rangle denotes the duality pairing between L^{1}(\Omega)+H^{-1}(\Omega)$ and $L^{\infty}(\Omega) \cap$ $H_{0}^{1}(\Omega)$.

Lemma 3.3 (see [19]). A subsequence of u^{ε} defined in Step 3 satisfies, for any $K \geq 0$,

$$
\liminf _{\varepsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} A(x, t)\left[D T_{K}\left(u^{\varepsilon}\right)-D T_{K}(u)\right] \cdot\left[D T_{K}\left(u^{\varepsilon}\right)-D T_{K}(u)\right] d x d t d s=0
$$

and

$$
T_{K}\left(u^{\varepsilon}\right) \rightarrow T_{K}(u) \quad \text { strongly in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \text { as } \varepsilon \rightarrow 0
$$

Now, let S in $W^{2, \infty}(\mathbb{R})$ be such that S^{\prime} has a compact support, say supp $S^{\prime} \subset[-K, K]$. Pointwise multiplication of the approximate equation $\left(P^{\varepsilon}\right)$ by $S^{\prime}\left(u^{\varepsilon}\right)$ leads to

$$
\begin{align*}
& (3.17) \quad \frac{\partial b_{S}^{\varepsilon}\left(x, u^{\varepsilon}\right)}{\partial t}-\operatorname{div}\left(S^{\prime}\left(u^{\varepsilon}\right) A(x, t) D u^{\varepsilon}\right)+S^{\prime \prime}\left(u^{\varepsilon}\right) A(x, t) D u^{\varepsilon} \cdot D u^{\varepsilon} \tag{3.17}\\
& -\operatorname{div}\left(S^{\prime}\left(u^{\varepsilon}\right) \Phi_{\varepsilon}\left(u^{\varepsilon}\right)\right)+S^{\prime \prime}\left(u^{\varepsilon}\right) \Phi_{\varepsilon}\left(u^{\varepsilon}\right) D u^{\varepsilon}+f^{\varepsilon}\left(x, t, u^{\varepsilon}\right) S^{\prime}\left(u^{\varepsilon}\right)=0 \text { in } \mathcal{D}^{\prime}(Q)
\end{align*}
$$ where

$$
b_{S}^{\varepsilon}(x, r)=\int_{0}^{r} \frac{\partial b_{\varepsilon}(x, s)}{\partial s} S^{\prime}(s) d s
$$

Letting $\varepsilon \rightarrow 0$ in each term of (3.17), we conclude that u satisfies (2.11).
As a consequence, an Aubin type lemma (see e.g. [21, Corollary 4]) implies that $b_{S}\left(x, u^{\varepsilon}\right)$ lies in a compact subset of $C^{0}\left([0, T] ; W^{-1, s}(\Omega)\right)$ for any $s<\inf (2, N /(N-1))$. It follows that, on one hand, $b_{S}\left(x, u^{\varepsilon}\right)(t=0)$ $=b_{S}\left(x, u_{0}^{\varepsilon}\right)$ converges to $b_{S}(x, u)(t=0)$ strongly in $W^{-1, s}(\Omega)$. On the other hand, (3, 4) and the smoothness of S imply that $b_{S}\left(x, u_{0}^{\varepsilon}\right)$ converges to $b_{S}(x, u)(t=0)$ strongly in $L^{q}(\Omega)$ for all $q<\infty$. Then we conclude that $b_{S}(x, u)(t=0)=b_{S}\left(x, u_{0}\right)$ in Ω. By Steps $1-3$, the proof of Theorem 3.1 is complete.
4. Comparison principle and uniqueness result. This section is concerned with a comparison principle (and a uniqueness result) for renormalized solutions in the case where $f(x, t, u)$ is independent of u. We establish the following theorem.

Theorem 4.1. Assume that assumptions (2, 1)-(2, 4) and (2, 8) hold true and moreover that:
(4.1) for any $K>0$, there exists $\beta_{K}>0$ such that

$$
\left|\frac{\partial b\left(x, z_{1}\right)}{\partial s}-\frac{\partial b\left(x, z_{2}\right)}{\partial s}\right| \leq \beta_{K}\left|z_{1}-z_{2}\right|
$$

for almost every x in Ω, and all z_{1} and z_{2} such that $\left|z_{1}\right|,\left|z_{2}\right| \leq K$,
(4.2) Φ is a locally Lipschitz-continuous function on \mathbb{R},
(4.3) $f_{1}, f_{2} \in L^{1}(Q)$.

Let u_{1} and u_{2} be renormalized solutions corresponding to the data $\left(f_{1}, u_{0}^{1}\right)$ and $\left(f_{2}, u_{0}^{2}\right)$ for the problem $(i=1,2)$
$\left(P_{i}\right) \quad\left\{\begin{array}{l}\frac{\partial b\left(x, u_{i}\right)}{\partial t}-\operatorname{div}\left(A(x, t) D u_{i}+\Phi\left(u_{i}\right)\right)=f_{i}(x, t) \quad \text { in } Q, \\ b\left(x, u_{i}\right)(t=0)=b\left(x, u_{0}^{i}\right) \quad \text { in } \Omega, \\ u_{i}=0 \quad \text { on } \partial \Omega \times(0, T) .\end{array}\right.$
If $f_{1} \leq f_{2}$ and $u_{0}^{1} \leq u_{0}^{2}$ a.e., then $u_{1} \leq u_{2}$ a.e. in Q.
Sketch of the proof. Here we just give an idea of how $u_{1} \leq u_{2}$ can be obtained following the outline of [20]. Let us introduce a specific S in (2.11). For all $n>0$, let $S_{n} \in C^{1}(\mathbb{R})$ be defined by $S_{n}^{\prime}(r)=1$ for $|r| \leq n, S_{n}^{\prime}(r)=$ $n+1-|r|$ for $n \leq|r| \leq n+1$ and $S_{n}^{\prime}(r)=0$ for $|r| \geq n+1$. Taking $S=S_{n}$ in (2.11) yields

$$
\begin{align*}
& \frac{\partial b_{S_{n}}\left(x, u_{i}\right)}{\partial t}-\operatorname{div}\left(S_{n}^{\prime}\left(u_{i}\right) A(x, t) D u_{i}\right)+S^{\prime \prime}\left(u_{i}\right) A(x, t) D u_{i} D u_{i} \tag{4.4}\\
&-\operatorname{div}\left(\Phi_{S_{n}}\left(u_{i}\right)\right)=f_{i} S_{n}^{\prime}\left(u_{i}\right) \quad \text { in } \mathcal{D}^{\prime}(Q)
\end{align*}
$$

for $i=1,2$ with $b_{S_{n}}(x, r)=\int_{0}^{r} \frac{\partial b(x, s)}{\partial s} S_{n}^{\prime}(s) d s$.
We use $\frac{1}{\sigma} T_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right)$ as a test function in the difference of equations (4.4) for u_{1} and u_{2} to get

$$
\begin{array}{r}
\frac{1}{\sigma} \int_{0}^{T} \int_{0}^{t}\left\langle\frac{\partial\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right)}{\partial t}, T_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right)\right\rangle d s d t+A_{n}^{\sigma} \tag{4.5}\\
=B_{n}^{\sigma}+C_{n}^{\sigma}+D_{n}^{\sigma}
\end{array}
$$

for any $\sigma>0, n>0$, where

$$
\begin{aligned}
A_{n}^{\sigma}= & \frac{1}{\sigma} \int_{0}^{T} \int_{0}^{t} \int_{\Omega}\left[S_{n}^{\prime}\left(u_{1}\right) A(t, x) D u_{1}-S_{n}^{\prime}\left(u_{2}\right) A(t, x) D u_{2}\right] \\
& \cdot D T_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right) d x d s d t \\
B_{n}^{\sigma}= & \frac{1}{\sigma} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} S_{n}^{\prime \prime \prime}\left(u_{1}\right) A(x, t) D u_{1} D u_{1} T_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right) d x d s d t \\
- & \frac{1}{\sigma} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} S_{n}^{\prime \prime}\left(u_{2}\right) A(x, t) D u_{2} D u_{2} T_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right) d x d s d t \\
C_{n}^{\sigma} & =\frac{1}{\sigma} \int_{0}^{T} \int_{0}^{t} \int_{\Omega}\left[\Phi_{S_{n}}\left(u_{1}\right)-\Phi_{S_{n}}\left(u_{2}\right)\right] D T_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right) d x d s d t \\
D_{n}^{\sigma} & =\frac{1}{\sigma} \int_{0}^{T} \int_{0}^{t} \int_{\Omega}\left[f_{1} S_{n}^{\prime}\left(u_{1}\right)-f_{2} S_{n}^{\prime}\left(u_{2}\right)\right] T_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right) d x d s d t
\end{aligned}
$$

We will pass to the limit in (4.5) as $\sigma \rightarrow 0$ and then $n \rightarrow \infty$. Upon application of Lemma 2.4 of [11], the first term on the right hand side of (4.5) is

$$
\begin{align*}
& \text { (4.6) } \frac{1}{\sigma} \int_{0}^{T} \int_{0}^{t}\left\langle\frac{\partial\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right)}{\partial t}, T_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right)\right\rangle d s d t \tag{4.6}\\
& =\frac{1}{\sigma} \int_{Q} \tilde{T}_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right) d x d t-\frac{T}{\sigma} \int_{\Omega} \tilde{T}_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{0}^{1}\right)-b_{S_{n}}\left(x, u_{0}^{2}\right)\right) d x
\end{align*}
$$

where $\tilde{T}_{\sigma}^{+}(t)=\int_{0}^{t} T_{\sigma}^{+}(s) d s$. Due to the assumption $u_{0}^{1} \leq u_{0}^{2}$ a.e. in Ω and the monotone character of $b_{S_{n}}(x, \cdot)$ and $T_{\sigma}(\cdot)$, we have

$$
\begin{equation*}
\int_{\Omega} \tilde{T}_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{0}^{1}\right)-b_{S_{n}}\left(x, u_{0}^{2}\right)\right) d x=0 . \tag{4.7}
\end{equation*}
$$

It follows from (4.5)-4.7) that

$$
\begin{equation*}
\frac{1}{\sigma} \int_{Q} \tilde{T}_{\sigma}^{+}\left(b_{S_{n}}\left(x, u_{1}\right)-b_{S_{n}}\left(x, u_{2}\right)\right) d x d t+A_{n}^{\sigma}=B_{n}^{\sigma}+C_{n}^{\sigma}+D_{n}^{\sigma} \tag{4.8}
\end{equation*}
$$

for any $\sigma>0$ and any $n>0$. We need the following lemma (see [20])
Lemma 4.2. We have

$$
\begin{array}{ll}
\liminf _{n \rightarrow \infty} \liminf _{\sigma \rightarrow 0} A_{n}^{\sigma} \geq 0, & \liminf _{n \rightarrow \infty} \liminf _{\sigma \rightarrow 0} B_{n}^{\sigma}=0 \\
\liminf _{\sigma \rightarrow 0} C_{n}^{\sigma}=0, & \liminf _{n \rightarrow \infty} \limsup _{\sigma \rightarrow 0} D_{n}^{\sigma} \leq 0 \tag{4.9}
\end{array}
$$

In view of 4.7$)-\sqrt{4.9}$ we have $\int_{Q}\left(b\left(x, u_{1}\right)-b\left(x, u_{2}\right)\right)^{+} d x d t \leq 0$, so that $b\left(x, u_{1}\right) \leq b\left(x, u_{2}\right)$ a.e. in Q, which in turn implies that $u_{1} \leq u_{2}$ a.e. in Q, and Theorem 4.1 is established.

References

[1] Y. Akdim, J. Bennouna, A. Bouajaja, M. Mekkour and H. Redwane, Entropy unilateral solutions for strongly nonlinear parabolic problems without sign condition and via a sequence of penalized equations, Int. J. Math. Statist. 12 (2012), 113-134.
[2] Y. Akdim, J. Bennouna, M. Mekkour and H. Redwane, Existence of a renormalised solution for a class of nonlinear degenerated parabolic problems with L^{1} data, J. Partial Differential Equations 26 (2013), 76-98.
[3] Y. Akdim, J. Bennouna, M. Mekkour and H. Redwane, Existence of renormalized solutions for parabolic equations without the sign condition and with three unbounded nonlinearities, Appl. Math. (Warsaw) 39 (2012), 1-22.
[4] K. Ammar, Renormalized entropy solutions for degenerate nonlinear evolution problems, Electron. J. Differential Equations, 2009, no. 147, 32 pp.
[5] K. Ammar and H. Redwane, Nonlinear degenerate diffusion problems with a singularity, Differential Equations Appl. 3 (2011), 85-112.
[6] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.-L. Vázquez, An L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa 22 (1995), 241-273.
[7] D. Blanchard and F. Murat, Renormalised solutions of nonlinear parabolic problems with L^{1} data. Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 1137-1152.
[8] D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations 177 (2001), 331-374.
[9] D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Differential Equations 210 (2005), 383-428.
[10] D. Blanchard and H. Redwane, Renormalized solutions of nonlinear parabolic evolution problems, J. Math. Pures Appl. 77 (1998), 117-151.
[11] L. Boccardo, F. Murat and J.-P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. 152 (1988), 183-196.
[12] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999), 269-361.
[13] R.-J. Di Perna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321-366.
[14] R. Landes, On the existence of weak solutions for quasilinear parabolic initialboundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 217-237.
[15] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969.
[16] J.-P. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Oxford Univ. Press, 1996.
[17] F. Murat, Soluciones renormalizadas de EDP elipticas non lineales, Cours à l'Université de Séville, Publication R93023, Laboratoire d'Analyse Numérique, Paris VI, 1993.
[18] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. 177 (1999), 143-172.
[19] H. Redwane, Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, Adv. Dynam. Systems Appl. 2 (2007), 241-264.
[20] H. Redwane, Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities, Rend. Mat. Appl. (7) 28 (2008), 189-200.
[21] J. Simon, Compact sets in $L^{p}(0, T ; B)$, Ann. Mat. Pura Appl. 146 (1987), 65-96.

Kaouther Ammar
Department of Mathematics
Faculty of Sciences
Taibah University
344 Al Madinah Al Munawara, Saudi Arabia
E-mail: kaoutherammar4@googlemail.com
Hicham Redwane
Faculté des Sciences Juridiques,
Économiques et Sociales
Université Hassan 1
B.P. 764, Settat, Morocco

E-mail: redwane_hicham@yahoo.fr

Jaouad Bennouna
Laboratoire LAMA
Faculté des Sciences Dhar-Mahraz
Département de Mathématiques
Université Sidi Mohamed Ben Abdellah
B.P. 1796 Atlas

Fès, Morocco
E-mail: jbennouna@hotmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 47A15; Secondary 46A32, 47D20.
 Key words and phrases: nonlinear parabolic equations, renormalized solutions.

