AN EXISTENCE THEOREM FOR A STRONGLY NONLINEAR ELLIPTIC PROBLEM IN MUSIELAK-ORLICZ SPACES

Abstract. We prove an existence result for some class of strongly nonlinear elliptic problems in the Musielak-Orlicz spaces $W^{1} L_{\varphi}(\Omega)$, under the assumption that the conjugate function of φ satisfies the Δ_{2}-condition.

1. Introduction. Let Ω be an open subset of \mathbb{R}^{n}. This paper is concerned with the existence of solutions for strongly nonlinear elliptic problems of the form

$$
\begin{equation*}
A(u)+g(x, u, \nabla u)=f \quad \text { in } \Omega, \tag{1.1}
\end{equation*}
$$

where A is a Leray-Lions operator: $A(u)=-\operatorname{div} a(x, u, \nabla u)$.
A. Benkirane and A. Elmahi BE1 have proved the existence of a solution for problem (1.1) in the Orlicz-Sobolev space $W^{1} L_{M}(\Omega)$, assuming a sign condition and a natural growth condition on g.
A. Elmahi and D. Meskine [EM] have proved an existence theorem for problem (1.1) without assuming the Δ_{2}-condition on M and its conjugate function.

In the main result of BE1, M is supposed to satisfy the Δ_{2}-condition and the domain Ω of \mathbb{R}^{n} is supposed to have the segment property in order to construct a complementary system $\left(W_{0}^{1} L_{M}(\Omega), W_{0}^{1} E_{M}(\Omega), W^{-1} L_{\bar{M}}(\Omega)\right.$, $\left.W^{-1} E_{\bar{M}}(\Omega)\right)$. It is our purpose in this paper to prove an existence result for the strongly nonlinear elliptic problem (1.1) in the setting of Musielak-Orlicz spaces $W^{1} L_{\varphi}(\Omega)$, under the assumption that the conjugate function of φ satisfies the Δ_{2}-condition.

[^0]For some other existence results for strongly nonlinear elliptic problems see ABT , AHT].
2. Preliminaries. In this section we briefly list some definitions and facts about Musielak-Orlicz-Sobolev spaces M].

Let Ω be an open subset of \mathbb{R}^{n} and let φ be a real-valued function defined in $\Omega \times \mathbb{R}_{+}$and satisfying the following conditions:
(a) $\varphi(x, \cdot)$ is an N-function, i.e. convex, nondecreasing, continuous, $\varphi(x, 0)=0, \varphi(x, t)>0$ for all $t>0$, and

$$
\lim _{t \rightarrow 0} \sup _{x \in \Omega} \frac{\varphi(x, t)}{t}=0, \quad \lim _{t \rightarrow \infty} \inf _{x \in \Omega} \frac{\varphi(x, t)}{t}=\infty
$$

(b) $\varphi(\cdot, t)$ is a measurable function.

Then φ is called a Musielak-Orlicz function and we put $\varphi_{x}(t)=\varphi(x, t)$.
Let $\psi(x, s)=\sup _{t \geq 0}\{s t-\varphi(x, t)\}$ be the Musielak-Orlicz function complementary to φ in the sense of Young with respect to the variable s.

The Musielak-Orlicz function φ is said to satisfy the Δ_{2}-condition if there exists $k>0$ independent of $x \in \Omega$ and a nonnegative function h integrable in Ω such that $\varphi(x, 2 t) \leq k \varphi(x, t)+h(x)$ for large values of t.

We define the functional $\varrho_{\varphi, \Omega}(u)=\int_{\Omega} \varphi(x,|u(x)|) d x$ and the MusielakOrlicz space $L_{\varphi}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R}\right.$ measurable : $\left.\varrho_{\varphi, \Omega}(|u(x)| / \lambda)<\infty, \lambda>0\right\}$.

The closure in $L_{\varphi}(\Omega)$ of the bounded measurable functions with compact support in $\bar{\Omega}$ is denoted by $E_{\varphi}(\Omega)$. The space $E_{\varphi}(\Omega)$ is separable and $E_{\psi}(\Omega)^{*}=L_{\varphi}(\Omega)$ (see $\left.\bar{M}\right]$).
$W^{1} L_{\varphi}(\Omega)$ (resp. $W^{1} E_{\varphi}(\Omega)$) is the space of all functions u such that u and its distributional derivatives of order 1 lie in $L_{\varphi}(\Omega)$ (resp. $E_{\varphi}(\Omega)$). Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with nonnegative integers $\alpha_{i},|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$, and let $D^{\alpha} u$ denote the distributional derivatives. We set

$$
\bar{\varrho}_{\varphi, \Omega}(u)=\sum_{|\alpha| \leq 1} \varrho_{\varphi, \Omega}\left(D^{\alpha} u\right), \quad\|u\|_{1, \varphi, \Omega}=\inf \left\{\lambda>0: \bar{\varrho}_{\varphi, \Omega}(u / \lambda) \leq 1\right\}
$$

The spaces $W^{1} L_{\varphi}(\Omega)$ and $W^{1} E_{\varphi}(\Omega)$ can be identified with subspaces of the product of $n+1$ copies of $L_{\varphi}(\Omega)$. Denoting this product by ΠL_{φ}, we will use the weak topologies $\sigma\left(\Pi L_{\varphi}, \Pi E_{\psi}\right)$ and $\sigma\left(\Pi L_{\varphi}, \Pi L_{\psi}\right)$.

Let $W^{-1} L_{\psi}(\Omega)$ (resp. $\left.W^{-1} E_{\psi}(\Omega)\right)$ denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\psi}(\Omega)\left(\right.$ resp. $\left.E_{\psi}(\Omega)\right)$.

If ψ satisfies the Δ_{2}-condition, then the space $\mathcal{D}(\Omega)$ is dense in $W_{0}^{1} L_{\varphi}(\Omega)$ for the topology $\sigma\left(\Pi L_{\varphi}, \Pi L_{\psi}\right)$ (see [BS, Corollary 1]).

Lemma 2.1. Let Ω be an open subset of \mathbb{R}^{N} of finite measure. Let φ, ψ and ϕ be Musielak functions such that $\phi \ll \psi$, and let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a

Carathéodory function such that for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$,

$$
\begin{equation*}
|f(x, s)| \leq c(x)+k_{1} \psi_{x}^{-1} \varphi\left(x, k_{2}|s|\right) \tag{2.1}
\end{equation*}
$$

where k_{1}, k_{2} are positive real constants and $c \in E_{\phi}(\Omega)$. Then the Nemytskiu operator N_{f} defined by $N_{f}(u)(x)=f(x, u(x))$ is strongly continuous from

$$
P\left(E_{\varphi}(\Omega), 1 / k_{2}\right)=\left\{u \in L_{\varphi}(\Omega): d\left(u, E_{\varphi}(\Omega)\right)<1 / k_{2}\right\}
$$

into $E_{\phi}(\Omega)$.
3. Main results. Let Ω be a bounded open subset of \mathbb{R}^{n}. Let φ be a Musielak-Orlicz function, and ψ the Musielak-Orlicz function complementary (or conjugate) to φ. We assume here that ψ satisfies the Δ_{2}-condition near infinity, and let γ be a Musielak-Orlicz function such that $\gamma \ll \varphi$.

Let $A: D(A) \subset W_{0}^{1} L_{\varphi}(\Omega) \rightarrow W^{-1} L_{\psi}(\Omega)$ be a mapping (not defined everywhere) given by $A(u)=-\operatorname{div} a(x, u, \nabla u)$ where:
$\left(A_{1}\right) a: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a Carathéodory function,
$\left(A_{2}\right)$ for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$ and $\xi \in \mathbb{R}^{n}$

$$
|a(x, s, \xi)| \leq c(x)+k_{1} \psi_{x}^{-1}\left(\gamma\left(x, k_{2}|s|\right)\right)+k_{3} \psi_{x}^{-1}\left(\varphi\left(x, k_{4}|\xi|\right)\right),
$$

for some $c \in E_{\psi}(\Omega)$, and $k_{1}, k_{2}, k_{3}, k_{4} \geq 0$,
$\left(A_{3}\right)$ for each $x \in \Omega$, and all $s \in \mathbb{R}, \xi, \xi^{*} \in \mathbb{R}^{n}$ with $\xi \neq \xi^{*}$,

$$
\left[a(x, s, \xi)-a\left(x, s, \xi^{*}\right)\right]\left[\xi-\xi^{*}\right]>0
$$

$\left(A_{4}\right) a(x, s, \xi) \cdot \xi \geq \alpha \cdot \varphi(x,|\xi| / \lambda)$ for some $\alpha, \lambda>0$.
Furthermore, let $g: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a Carathéodory function such that for a.e. $x \in \Omega$ and all $s \in \mathbb{R}, \xi \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \left(G_{1}\right) g(x, s, \xi) \cdot s \geq 0 \\
& \left(G_{2}\right)|g(x, s, \xi)| \leq b(|s|)\left(c^{\prime}(x)+\varphi\left(x,|\xi| / \lambda^{\prime}\right)\right),
\end{aligned}
$$

where $b: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and non-decreasing function and $c^{\prime}(x)$ is a given non-negative function in $L^{1}(\Omega)$ and $\lambda^{\prime}>0$. Finally, we assume that

$$
\begin{equation*}
f \in W E_{\psi}^{-1}(\Omega) \tag{3.1}
\end{equation*}
$$

Consider the following elliptic problem with Dirichlet boundary condition:

$$
\left\{\begin{array}{l}
u \in W_{0}^{1} L_{\varphi}(\Omega), g(x, u, \nabla u) \in L^{1}(\Omega), g(x, u, \nabla u) u \in L^{1}(\Omega), \tag{3.2}\\
\int_{\Omega} a(x, u, \nabla u) \nabla v d x+\int_{\Omega} g(x, u, \nabla u) v d x=\langle f, v\rangle, \\
\text { for all } v \in W_{0}^{1} L_{\varphi}(\Omega) \cap L^{\infty}(\Omega) \text { and for } v=u .
\end{array}\right.
$$

We shall prove the following existence theorem:
Main Theorem 3.1. Assume that conditions $\left(A_{1}\right)-\left(A_{4}\right),\left(G_{1}\right),\left(G_{2}\right)$ and (3.1) hold true. Then there exists a solution u of problem (3.2).

Proof. Step 1. Consider the sequence of approximate equations

$$
\begin{equation*}
u_{n} \in W_{0}^{1} L_{\varphi}(\Omega), \quad A\left(u_{n}\right)+g_{n}\left(x, u_{n}, \nabla u_{n}\right)=f \quad \text { in } \mathcal{D}^{\prime}(\Omega) \tag{3.3}
\end{equation*}
$$

where $n \in \mathbb{N}^{*}$ and

$$
g_{n}(x, s, \xi)=\frac{g(x, s, \xi)}{1+(1 / n)|g(x, s, \xi)|} .
$$

Note that $g_{n}(x, s, \xi) \cdot s \geq 0,\left|g_{n}(x, s, \xi)\right| \leq|g(x, s, \xi)|$ and $\left|g_{n}(x, s, \xi)\right| \leq n$.
Since $g_{n}(x, s, \xi)$ is bounded for any fixed $n>0$, there exists a solution u_{n} of (3.3) (see [BS, Theorem 1, Theorem 5 and Remark 1]).

Using in (3.3) the test function u_{n} we get

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x \leq\left\langle f, u_{n}\right\rangle . \tag{3.4}
\end{equation*}
$$

By Theorems 1 and 5 of [BS],

$$
\begin{align*}
& \left(u_{n}\right) \text { is bounded in } W_{0}^{1} L_{\varphi}(\Omega) \text { and } \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) d x \leq C_{1}, \tag{3.5}\\
& a\left(x, u_{n}, \nabla u_{n}\right) \text { is bounded in }\left(L_{\psi}(\Omega)\right)^{n}, \tag{3.6}\\
& \int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) \cdot u_{n} d x \leq C_{2} . \tag{3.7}
\end{align*}
$$

Passing to a subsequence if necessary, we can assume that

$$
u_{n} \rightharpoonup u \quad \text { weakly in } W_{0}^{1} L_{\varphi}(\Omega) \text { for } \sigma\left(\Pi L_{\varphi}, \Pi E_{\psi}\right)=\sigma\left(\Pi L_{\varphi}, \Pi L_{\psi}\right) .
$$

Then

$$
\begin{equation*}
u_{n} \rightarrow u \text { strongly in } E_{\varphi} \text { and } u_{n} \rightarrow u \quad \text { a.e. in } \Omega . \tag{3.8}
\end{equation*}
$$

Step 2. Let $\phi(t)=t \exp \left(\gamma t^{2}\right), \gamma>0$. It is easy to see that when $\gamma \geq$ $(b(k) K / 2 \alpha)^{2}$ one has

$$
\phi^{\prime}(t)-(b(k) K / \alpha)|\phi(t)| \geq 1 / 2, \quad \forall t \in \mathbb{R},
$$

where $K>0$ is a constant which will be specified later.
Take $z_{n}=T_{k}\left(u_{n}\right)-T_{k}(u)$ and use $v_{n}=\phi\left(z_{n}\right) \in W_{0}^{1} L_{\varphi}(\Omega)$ as a test function in (3.3) to get

$$
\left\langle A\left(u_{n}\right), v_{n}\right\rangle+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) v_{n} d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

since $v_{n} \rightharpoonup 0$ weakly in $W_{0}^{1} L_{\varphi}(\Omega)$ for $\sigma\left(\Pi L_{\varphi}, \Pi E_{\psi}\right)=\sigma\left(\Pi L_{\varphi}, \Pi L_{\psi}\right)$, as is easily seen.

Below we denote by $\varepsilon_{i}(n)(i=1,2, \ldots)$ various sequences of real numbers which tend to 0 as $n \rightarrow \infty$.

Since $g_{n}\left(x, u_{n}(x), \nabla u_{n}(x)\right) v_{n}(x) \geq 0$ on the subset $\left\{x \in \Omega:\left|u_{n}(x)\right|>k\right\}$, we have

$$
\begin{equation*}
\left\langle A\left(u_{n}\right), v_{n}\right\rangle+\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) v_{n} d x \leq \varepsilon_{1}(n) \tag{3.9}
\end{equation*}
$$

Fix a real number $r>0$, define $\Omega_{r}=\left\{x \in \Omega:\left|\nabla T_{k}(u(x))\right| \leq r\right\}$ and denote by χ_{r} the characteristic function of Ω_{r}.

Taking $s \geq r$ we have

$$
\begin{align*}
0 & \leq \int_{\Omega_{r}}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n}, \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \tag{3.10}\\
& \leq \int_{\Omega_{s}}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n}, \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
& \leq \int_{\Omega}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\left\langle A\left(u_{n}\right), v_{n}\right\rangle= & \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(z_{n}\right) d x \\
= & \int_{\Omega} a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] \phi^{\prime}\left(z_{n}\right) d x \\
& -\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}(u) \phi^{\prime}\left(z_{n}\right) d x \\
& +\int_{\Omega} a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}(u) \chi_{s} \phi^{\prime}\left(z_{n}\right) d x
\end{aligned}
$$

Then

$$
\begin{align*}
\left\langle A\left(u_{n}\right), v_{n}\right\rangle & =\int_{\Omega}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\right] \tag{3.11}\\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] \phi^{\prime}\left(z_{n}\right) d x \\
& -\int_{\Omega} a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}(u) \chi_{\Omega \backslash \Omega_{s}} \phi^{\prime}\left(z_{n}\right) d x \\
+ & \int_{\Omega} a\left(x, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] \phi^{\prime}\left(z_{n}\right) d x
\end{align*}
$$

Denoting by $\chi_{G_{n}}$ the characteristic function of $G_{n}=\left\{\left|u_{n}(x)\right|>k\right\}$, the second term on the right-hand side of (3.11) reads

$$
-\int_{\Omega}\left[a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, 0\right)\right] \chi_{G_{n}} \nabla T_{k}(u) \phi^{\prime}\left(z_{n}\right) d x
$$

this tends to 0 since $\chi_{G_{n}} \nabla T_{k}(u) \phi^{\prime}\left(z_{n}\right) \rightarrow 0$ strongly in $\left(E_{\varphi}(\Omega)\right)^{n}$ by Le-
besgue's theorem while $a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, 0\right)$ is bounded in $\left(L_{\psi}(\Omega)\right)^{n}$ by (3.6) and $\left(A_{1}\right)$.

Since $\left|a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)\right| \leq\left|a\left(x, u_{n}, \nabla u_{n}\right)\right|+\left|a\left(x, u_{n}, 0\right)\right|$ it follows that $a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)$ is bounded in $\left(L_{\psi}(\Omega)\right)^{n}$ for $\sigma\left(\Pi L_{\psi}, \Pi E_{\varphi}\right)$, for some $h \in$ $\left(L_{\psi}(\Omega)\right)^{n}$.

We deduce that the third term on the right-hand side of (3.11) tends to

$$
-\int_{\Omega \backslash \Omega_{s}} a(x, u, 0) \nabla T_{k}(u) d x
$$

since $a\left(x, u_{n}, \nabla T_{k}(u) \chi_{s}\right)$ tends strongly to $a\left(x, u, \nabla T_{k}(u) \chi_{s}\right)$ in $\left(E_{\psi}(\Omega)\right)^{n}$ by Lemma 2.1 while $\nabla T_{k}\left(u_{n}\right)$ tends weakly to $\nabla T_{k}(u)$ by (3.8).

This implies that

$$
\begin{align*}
\left\langle A\left(u_{n}\right), v_{n}\right\rangle= & \int_{\Omega}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\right] \tag{3.12}\\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] \phi^{\prime}\left(z_{n}\right) d x \\
& +\int_{\Omega \backslash \Omega_{s}}(a(x, u, 0)-h) \nabla T_{k}(u) d x+\varepsilon_{2}(n)
\end{align*}
$$

We now turn to the second term of the left-hand side of (3.9):

$$
\begin{aligned}
\left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) v_{n} d x\right| & \leq \int_{\left\{\left|u_{n}\right| \leq k\right\}} b(k)\left(c^{\prime}(x)+\varphi\left(x, \frac{\left|\nabla u_{n}\right|}{\lambda^{\prime}}\right)\right)\left|v_{n}\right| d x \\
& \leq \varepsilon_{3}(n)+b(k) \int_{\Omega} \varphi\left(x, \frac{\left|\nabla T_{k}\left(u_{n}\right)\right|}{\lambda^{\prime}}\right)\left|v_{n}\right| d x
\end{aligned}
$$

since $\left(v_{n}\right)$ is bounded in $L^{\infty}(\Omega)$ and $v_{n} \rightarrow 0$ a.e in Ω.
Using $\left(A_{4}\right)$ we can write

$$
\begin{align*}
& \left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) v_{n} d x\right| \tag{3.13}\\
& \leq \\
& \leq \varepsilon_{3}(n)+\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right)\left|v_{n}\right| d x \\
& = \\
& \varepsilon_{3}(n)+\frac{b(k)}{\alpha} \int_{\Omega}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\right] \\
& \quad \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right]\left|v_{n}\right| d x \\
& \quad \\
& \quad+\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}(u) \chi_{s}\left|v_{n}\right| d x \\
& \quad+\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right]\left|v_{n}\right| d x .
\end{align*}
$$

The second term on the right-hand side of (3.13) tends to 0 since $a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)$ is bounded in $\left(L_{\psi}(\Omega)\right)^{n}$ while $\nabla T_{k}(u) \chi_{s}\left|v_{n}\right|$ tends strongly to 0 in $\left(E_{\varphi(\Omega)}\right)^{n}$ by Lebesgue's theorem.

The third term on the right-hand side of (3.13 tends to 0 since $a\left(x, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\left|v_{n}\right|$ tends strongly to 0 in $\left(E_{\psi}(\Omega)\right)^{n}$ by condition $\left(A_{2}\right)$ while $\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}$ is bounded in $\left(L_{\varphi}(\Omega)\right)^{n}$.

We deduce that

$$
\begin{align*}
& \left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) v_{n} d x\right| \tag{3.14}\\
& \leq \varepsilon_{4}(n)+\frac{b(k)}{\alpha} \int_{\Omega}\left[a\left(x, u_{n}, \nabla u_{n}\right)\right. \\
& \left.-a\left(x, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\right] \\
&
\end{align*}
$$

Combining (3.9), (3.12) and (3.14) we obtain

$$
\begin{aligned}
& \int_{\Omega}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\right] \\
& \left.\qquad \begin{array}{l}
\quad \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right]\left(\phi^{\prime}\left(z_{n}\right)-\frac{b(k)}{\alpha}\left|\phi\left(z_{n}\right)\right|\right) d x \\
\leq
\end{array}\right)=\varepsilon_{5}(n)-\int_{\Omega \backslash \Omega_{s}}(a(x, u, 0)-h) \nabla T_{k}(u) d x
\end{aligned}
$$

which gives, by using the inequality $\phi^{\prime}(t)-(b(k) K / \alpha)|\phi(t)| \geq 1 / 2$,

$$
\begin{aligned}
\int_{\Omega}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n},\right.\right. & \left.\left.\nabla T_{k}(u) \chi_{s}\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x \\
& \leq 2 \varepsilon_{5}(n)-2 \int_{\Omega \backslash \Omega_{s}}(a(x, u, 0)-h) \nabla T_{k}(u) d x
\end{aligned}
$$

Using (3.10) yields

$$
\begin{aligned}
\int_{\Omega_{r}}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n},\right.\right. & \left.\left.\nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
& \leq 2 \varepsilon_{5}(n)-2 \int_{\Omega \backslash \Omega_{s}}(a(x, u, 0)-h) \nabla T_{k}(u) d x
\end{aligned}
$$

This implies that

$$
\begin{aligned}
0 & \leq \limsup _{n \rightarrow \infty} \int_{\Omega_{r}}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n}, \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
& \leq 2 \int_{\Omega \backslash \Omega_{s}}(a(x, u, 0)-h) \nabla T_{k}(u) d x
\end{aligned}
$$

Using the fact that $(a(x, u, 0)-h) \nabla T_{k}(u) \in L^{1}(\Omega)$ and letting $s \rightarrow \infty$ we
get

$$
\int_{\Omega_{r}}\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n}, \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \rightarrow 0
$$

Passing to a subsequence if necessary, we can assume that $\left[a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, u_{n}, \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \rightarrow 0 \quad$ a.e. in Ω_{r}. As in [BE2], we deduce that there exists a subsequence, still denoted by u_{n}, such that

$$
\nabla u_{n} \rightarrow \nabla u \quad \text { a.e. in } \Omega .
$$

Step 3. We shall prove that $g_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow g(x, u, \nabla u)$ strongly in $L^{1}(\Omega)$ by using Vitali's theorem.

To prove that $g_{n}\left(x, u_{n}, \nabla u_{n}\right)$ are uniformly equi-integrable in Ω, let $E \subset \Omega$ be a measurable subset of Ω. We have, for any $m>0$,

$$
\begin{aligned}
\int_{E}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq & \int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \\
& +\int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}|b(m)|\left[c^{\prime}(x)+\varphi\left(x, \frac{\left|\nabla u_{n}\right|}{\lambda^{\prime}}\right)\right] d x \\
& \leq b(m) \int_{E} c^{\prime}(x) d x+\frac{b(m)}{\alpha} \int_{E} a\left(x, u_{n}, \nabla T_{m}\left(u_{n}\right)\right) \nabla T_{m}\left(u_{n}\right) d x \\
& \leq b(m) \int_{E} c^{\prime}(x) d x+\frac{b(m)}{\alpha}\left[2 \varepsilon_{5}(n)+2 \int_{\Omega \backslash \Omega_{s}}(a(x, u, 0)-h) \nabla T_{m}(u) d x\right] \\
& \quad+\frac{b(m)}{\alpha} \int_{E} a\left(x, u_{n}, \nabla T_{m}\left(u_{n}\right)\right) \nabla T_{m}(u) \chi_{s} d x \\
& \quad+\frac{b(m)}{\alpha} \int_{E} a\left(x, u_{n}, \nabla T_{m}(u) \chi_{s}\right)\left[\nabla T_{m}\left(u_{n}\right)-\nabla T_{m}(u) \chi_{s}\right] d x
\end{aligned}
$$

We claim that $a\left(x, u_{n}, \nabla T_{m}\left(u_{n}\right)\right) \nabla T_{m}(u) \chi_{s} \rightarrow a\left(x, u, \nabla T_{m}(u)\right) \nabla T_{m}(u) \chi_{s}$ and $\left.a\left(x, u_{n}, \nabla T_{m}(u) \chi_{s}\right)\left[\nabla T_{m}\left(u_{n}\right)\right)-\nabla T_{m}(u) \chi_{s}\right] \rightarrow a(x, u, 0) \nabla T_{m}(u) \chi_{\Omega \backslash \Omega_{s}}$ strongly in $L^{1}(\Omega)$. To prove this claim we can use Lemma 2.4 of BE1].

Let $\varepsilon>0$. We have

$$
\int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \frac{1}{m} \int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) u_{n} d x \leq \frac{C_{2}}{m}
$$

Thus for m sufficiently large, we can write

$$
\int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \frac{\varepsilon}{2}, \quad \forall n
$$

Furthermore, there exists $n_{0}>0$ such that $2(b(m) / \alpha) \varepsilon_{5}(n) \leq \varepsilon / 10$ for all $n \geq n_{0}$, and there exists s large such that

$$
2 \frac{b(m)}{\alpha} \int_{\Omega \backslash \Omega_{s}}(a(x, u, 0)-h) \nabla T_{m}(u) d x \leq \frac{\varepsilon}{10}
$$

There exists $\delta_{1}>0$ such that $|E|<\delta_{1}$ implies

$$
\begin{aligned}
& \frac{b(m)}{\alpha} \int_{E} a\left(x, u, \nabla T_{m}(u)\right) \nabla T_{m}(u) \chi_{s} d x \leq \frac{\varepsilon}{10}, \quad \forall n \\
& \frac{b(m)}{\alpha} \int_{E} a\left(x, u_{n}, \nabla T_{m}(u) \chi_{s}\right)\left[\nabla T_{m}\left(u_{n}\right)-\nabla T_{m}(u) \chi_{s}\right] d x \leq \frac{\varepsilon}{10}, \quad \forall n \\
& b(m) \int_{E} c^{\prime}(x) d x \leq \frac{\varepsilon}{10}
\end{aligned}
$$

Thus when $|E|<\delta_{1}$ one has $\int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \varepsilon / 2$ for all $n \geq n_{0}$. Consequently, $|E|<\delta_{1}$ implies $\int_{E}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \varepsilon$ for all $n \geq n_{0}$. But $\int_{E}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq n_{0}|E|$ for all $n<n_{0}$. Thus $|E|<$ $\delta=\inf \left(\delta_{1}, \varepsilon / n_{0}\right)$ implies $\int_{E}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \varepsilon$ for all n. This shows that $g_{n}\left(x, u_{n}, \nabla u_{n}\right)$ are uniformly equi-integrable in Ω. Applying Vitali's theorem yields $g_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow g(x, u, \nabla u)$ strongly in $L^{1}(\Omega)$.

Going back to the approximate equation (3.3), one has

$$
\begin{align*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla v d x+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) v d x & =\langle f, v\rangle \tag{3.15}\\
\forall v & \in W_{0}^{1} L_{\varphi}(\Omega) \cap L^{\infty}(\Omega)
\end{align*}
$$

Note that $a\left(x, u_{n}, \nabla u_{n}\right) \rightharpoonup a(x, u, \nabla u)$ weakly in $\left(L_{\psi}(\Omega)\right)^{n}$ for $\sigma\left(\Pi L_{\psi}, \Pi E_{\varphi}\right)$ by Lemma 2 of [BS].

Letting $n \rightarrow \infty$ in 3.15, we get

$$
\begin{equation*}
\int_{\Omega} a(x, u, \nabla u) \nabla v d x+\int_{\Omega} g_{n}(x, u, \nabla u) v d x=\langle f, v\rangle \tag{3.16}
\end{equation*}
$$

This equality also holds for $v=u$.
Indeed, taking $v=T_{k}(u) \in W_{0}^{1} L_{\varphi}(\Omega) \cap L^{\infty}(\Omega)$ in 3.16, one has

$$
\int_{\Omega} a(x, u, \nabla u) \nabla T_{k}(u) d x+\int_{\Omega} g(x, u, \nabla u) T_{k}(u) d x=\left\langle f, T_{k}(u)\right\rangle
$$

From (3.7) we deduce by Fatou's Lemma that $g(x, u, \nabla u) u \in L^{1}(\Omega)$.
Observe that $T_{k}(u) \rightarrow u$ in $W_{0}^{1} L_{\varphi}(\Omega)$ for modular convergence and a.e. in Ω when $k \rightarrow \infty$.

Note also that $\left|g(x, u, \nabla u) T_{k}(u)\right| \leq g(x, u, \nabla u) u \in L^{1}(\Omega)$.
Hence, by Lebesgue's theorem, letting $k \rightarrow \infty$ we obtain

$$
\int_{\Omega} a(x, u, \nabla u) \nabla u d x+\int_{\Omega} g(x, u, \nabla u) u d x=\langle f, u\rangle
$$

This completes the proof of Theorem 3.1.
Example 3.2. As an application of this result, we can treat the following model problem:

$$
\begin{cases}-\Delta_{\varphi} u+u \varphi(x,|\nabla u|)=f & \text { on } \Omega \\ u=0 & \text { in } \partial \Omega\end{cases}
$$

where Δ_{φ} is the φ-Laplacian operator $\Delta_{\varphi} u=\operatorname{div}\left(\frac{a(x,|\nabla u|)}{|\nabla u|} \nabla u\right)$ and where a is the derivative of φ with respect to t. The second member f is supposed to lie in the dual space $W^{-1} E_{\psi}(\Omega)$ where ψ is the Musielak-Orlicz conjugate to φ.

References

[ABT] L. Aharouch, J. Bennouna and A. Touzani, Existence of renormalized solution of some elliptic problems in Orlicz spaces, Rev. Mat. Complut. 22 (2009), 91-110.
[AHT] E. Azroul, H. Hjiaj and A. Touzani, Existence and regularity of entropy solutions for strongly nonlinear $p(x)$-elliptic equations, Electron. J. Differential Equations 2013, no. 68, 27 pp.
[BE1] A. Benkirane and A. Elmahi, An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Anal. 36 (1999), 11-24.
[BE2] A. Benkirane and A. Elmahi, Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal. 28 (1997), 1769-1784.
[BS] A. Benkirane and M. Sidi El Vally, An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 57-75.
[EM] A. Elmahi and D. Meskine, Existence of solutions for elliptic equations having natural growth terms in Orlicz spaces, Abstr. Appl. Anal. (2004), 1031-1045.
[M] J. Musielak, Modular Spaces and Orlicz Spaces, Lecture Notes in Math. 1034, Springer, 1983.

Abdelmoujib Benkirane, Fatimazahra Blali
Laboratory LAMA Department of Mathematics
Faculty of Sciences Dhar El Mahraz
University Sidi Mohamed Ben Abdellah
B.P. 1796 Atlas

Fez, Morocco
E-mail: abd.benkirane@gmail.com
fatimazahra.blali@gmail.com

Mohamed Sidi El Vally Department of Mathematics Faculty of Sciences King Khalid University
Abha 61413, Kingdom of Saudi Arabia
E-mail: med.medvall@gmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 35J57; Secondary 35J60.
 Key words and phrases: Musielak-Orlicz-Sobolev spaces, nonlinear elliptic problem.

