Abdelmoujib Benkirane (Fez) Fatimazahra Blali (Fez) Mohamed Sidi El Vally (Abha)

AN EXISTENCE THEOREM FOR A STRONGLY NONLINEAR ELLIPTIC PROBLEM IN MUSIELAK-ORLICZ SPACES

Abstract. We prove an existence result for some class of strongly nonlinear elliptic problems in the Musielak–Orlicz spaces $W^1L_{\varphi}(\Omega)$, under the assumption that the conjugate function of φ satisfies the Δ_2 -condition.

1. Introduction. Let Ω be an open subset of \mathbb{R}^n . This paper is concerned with the existence of solutions for strongly nonlinear elliptic problems of the form

(1.1)
$$A(u) + g(x, u, \nabla u) = f \quad \text{in } \Omega,$$

where A is a Leray-Lions operator: $A(u) = -\operatorname{div} a(x, u, \nabla u)$.

A. Benkirane and A. Elmahi [BE1] have proved the existence of a solution for problem (1.1) in the Orlicz–Sobolev space $W^1L_M(\Omega)$, assuming a sign condition and a natural growth condition on g.

A. Elmahi and D. Meskine [EM] have proved an existence theorem for problem (1.1) without assuming the Δ_2 -condition on M and its conjugate function.

In the main result of [BE1], M is supposed to satisfy the Δ_2 -condition and the domain Ω of \mathbb{R}^n is supposed to have the segment property in order to construct a complementary system $(W_0^1 L_M(\Omega), W_0^1 E_M(\Omega), W^{-1} L_{\overline{M}}(\Omega), W^{-1} E_{\overline{M}}(\Omega))$. It is our purpose in this paper to prove an existence result for the strongly nonlinear elliptic problem (1.1) in the setting of Musielak–Orlicz spaces $W^1 L_{\varphi}(\Omega)$, under the assumption that the conjugate function of φ satisfies the Δ_2 -condition.

²⁰¹⁰ Mathematics Subject Classification: Primary 35J57; Secondary 35J60.

For some other existence results for strongly nonlinear elliptic problems see [ABT, AHT].

2. Preliminaries. In this section we briefly list some definitions and facts about Musielak–Orlicz–Sobolev spaces [M].

Let Ω be an open subset of \mathbb{R}^n and let φ be a real-valued function defined in $\Omega \times \mathbb{R}_+$ and satisfying the following conditions:

(a) $\varphi(x, \cdot)$ is an N-function, i.e. convex, nondecreasing, continuous, $\varphi(x, 0) = 0, \ \varphi(x, t) > 0$ for all t > 0, and

$$\lim_{t\to 0} \sup_{x\in \Omega} \frac{\varphi(x,t)}{t} = 0, \quad \lim_{t\to \infty} \inf_{x\in \Omega} \frac{\varphi(x,t)}{t} = \infty,$$

(b) $\varphi(\cdot, t)$ is a measurable function.

Then φ is called a *Musielak–Orlicz function* and we put $\varphi_x(t) = \varphi(x, t)$.

Let $\psi(x, s) = \sup_{t \ge 0} \{st - \varphi(x, t)\}$ be the Musielak–Orlicz function complementary to φ in the sense of Young with respect to the variable s.

The Musielak–Orlicz function φ is said to satisfy the Δ_2 -condition if there exists k > 0 independent of $x \in \Omega$ and a nonnegative function hintegrable in Ω such that $\varphi(x, 2t) \leq k\varphi(x, t) + h(x)$ for large values of t.

We define the functional $\rho_{\varphi,\Omega}(u) = \int_{\Omega} \varphi(x, |u(x)|) dx$ and the Musielak– Orlicz space $L_{\varphi}(\Omega) = \{u : \Omega \to \mathbb{R} \text{ measurable} : \rho_{\varphi,\Omega}(|u(x)|/\lambda) < \infty, \lambda > 0\}.$

The closure in $L_{\varphi}(\Omega)$ of the bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_{\varphi}(\Omega)$. The space $E_{\varphi}(\Omega)$ is separable and $E_{\psi}(\Omega)^* = L_{\varphi}(\Omega)$ (see [M]).

 $W^1L_{\varphi}(\Omega)$ (resp. $W^1E_{\varphi}(\Omega)$) is the space of all functions u such that uand its distributional derivatives of order 1 lie in $L_{\varphi}(\Omega)$ (resp. $E_{\varphi}(\Omega)$). Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ with nonnegative integers α_i , $|\alpha| = \alpha_1 + \cdots + \alpha_n$, and let $D^{\alpha}u$ denote the distributional derivatives. We set

$$\overline{\varrho}_{\varphi,\Omega}(u) = \sum_{|\alpha| \le 1} \varrho_{\varphi,\Omega}(D^{\alpha}u), \quad \|u\|_{1,\varphi,\Omega} = \inf\{\lambda > 0 : \overline{\varrho}_{\varphi,\Omega}(u/\lambda) \le 1\}.$$

The spaces $W^1L_{\varphi}(\Omega)$ and $W^1E_{\varphi}(\Omega)$ can be identified with subspaces of the product of n + 1 copies of $L_{\varphi}(\Omega)$. Denoting this product by ΠL_{φ} , we will use the weak topologies $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$ and $\sigma(\Pi L_{\varphi}, \Pi L_{\psi})$.

Let $W^{-1}L_{\psi}(\Omega)$ (resp. $W^{-1}E_{\psi}(\Omega)$) denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\psi}(\Omega)$ (resp. $E_{\psi}(\Omega)$).

If ψ satisfies the Δ_2 -condition, then the space $\mathcal{D}(\Omega)$ is dense in $W_0^1 L_{\varphi}(\Omega)$ for the topology $\sigma(\Pi L_{\varphi}, \Pi L_{\psi})$ (see [BS, Corollary 1]).

LEMMA 2.1. Let Ω be an open subset of \mathbb{R}^N of finite measure. Let φ , ψ and ϕ be Musielak functions such that $\phi \ll \psi$, and let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function such that for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$,

(2.1) $|f(x,s)| \le c(x) + k_1 \psi_x^{-1} \varphi(x,k_2|s|),$

where k_1, k_2 are positive real constants and $c \in E_{\phi}(\Omega)$. Then the Nemytskii operator N_f defined by $N_f(u)(x) = f(x, u(x))$ is strongly continuous from

$$P(E_{\varphi}(\Omega), 1/k_2) = \{ u \in L_{\varphi}(\Omega) : d(u, E_{\varphi}(\Omega)) < 1/k_2 \}$$

into $E_{\phi}(\Omega)$.

3. Main results. Let Ω be a bounded open subset of \mathbb{R}^n . Let φ be a Musielak–Orlicz function, and ψ the Musielak–Orlicz function complementary (or conjugate) to φ . We assume here that ψ satisfies the Δ_2 -condition near infinity, and let γ be a Musielak–Orlicz function such that $\gamma \ll \varphi$.

Let $A : D(A) \subset W_0^1 L_{\varphi}(\Omega) \to W^{-1} L_{\psi}(\Omega)$ be a mapping (not defined everywhere) given by $A(u) = -\operatorname{div} a(x, u, \nabla u)$ where:

 $(A_1) \ a: \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is a Carathéodory function,

 (A_2) for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$ and $\xi \in \mathbb{R}^n$

$$|a(x,s,\xi)| \le c(x) + k_1 \psi_x^{-1}(\gamma(x,k_2|s|)) + k_3 \psi_x^{-1}(\varphi(x,k_4|\xi|)),$$

for some $c \in E_{\psi}(\Omega)$, and $k_1, k_2, k_3, k_4 \ge 0$,

(A₃) for each $x \in \Omega$, and all $s \in \mathbb{R}, \xi, \xi^* \in \mathbb{R}^n$ with $\xi \neq \xi^*$,

$$a(x, s, \xi) - a(x, s, \xi^*)][\xi - \xi^*] > 0,$$

(A₄) $a(x, s, \xi) \cdot \xi \ge \alpha \cdot \varphi(x, |\xi|/\lambda)$ for some $\alpha, \lambda > 0$.

Furthermore, let $g: \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ be a Carathéodory function such that for a.e. $x \in \Omega$ and all $s \in \mathbb{R}, \xi \in \mathbb{R}^n$,

$$\begin{array}{ll} (G_1) & g(x,s,\xi) \cdot s \geq 0, \\ (G_2) & |g(x,s,\xi)| \leq b(|s|)(c'(x) + \varphi(x,|\xi|/\lambda')), \end{array}$$

where $b : \mathbb{R} \to \mathbb{R}$ is a continuous and non-decreasing function and c'(x) is a given non-negative function in $L^1(\Omega)$ and $\lambda' > 0$. Finally, we assume that (3.1) $f \in WE_{ab}^{-1}(\Omega)$.

(3.2)
$$\begin{cases} u \in W_0^1 L_{\varphi}(\Omega), \ g(x, u, \nabla u) \in L^1(\Omega), \ g(x, u, \nabla u)u \in L^1(\Omega), \\ \int_{\Omega} a(x, u, \nabla u)\nabla v \, dx + \int_{\Omega} g(x, u, \nabla u)v \, dx = \langle f, v \rangle, \\ \int_{\Omega} for \ \text{all} \ v \in W_0^1 L_{\varphi}(\Omega) \cap L^{\infty}(\Omega) \ \text{and for} \ v = u. \end{cases}$$

We shall prove the following existence theorem:

MAIN THEOREM 3.1. Assume that conditions $(A_1)-(A_4)$, (G_1) , (G_2) and (3.1) hold true. Then there exists a solution u of problem (3.2).

A. Benkirane et al.

Proof. Step 1. Consider the sequence of approximate equations

(3.3) $u_n \in W_0^1 L_{\varphi}(\Omega), \quad A(u_n) + g_n(x, u_n, \nabla u_n) = f \quad \text{ in } \mathcal{D}'(\Omega),$ where $n \in \mathbb{N}^*$ and

$$g_n(x, s, \xi) = \frac{g(x, s, \xi)}{1 + (1/n)|g(x, s, \xi)|}.$$

Note that $g_n(x,s,\xi) \cdot s \ge 0$, $|g_n(x,s,\xi)| \le |g(x,s,\xi)|$ and $|g_n(x,s,\xi)| \le n$.

Since $g_n(x, s, \xi)$ is bounded for any fixed n > 0, there exists a solution u_n of (3.3) (see [BS, Theorem 1, Theorem 5 and Remark 1]).

Using in (3.3) the test function u_n we get

(3.4)
$$\int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla u_n \, dx \le \langle f, u_n \rangle.$$

By Theorems 1 and 5 of [BS],

(3.5)
$$(u_n)$$
 is bounded in $W_0^1 L_{\varphi}(\Omega)$ and $\int_{\Omega} a(x, u_n, \nabla u_n) dx \le C_1$,

(3.6)
$$a(x, u_n, \nabla u_n)$$
 is bounded in $(L_{\psi}(\Omega))^n$,

(3.7)
$$\int_{\Omega} g_n(x, u_n, \nabla u_n) \cdot u_n \, dx \le C_2.$$

Passing to a subsequence if necessary, we can assume that

$$u_n \rightharpoonup u$$
 weakly in $W_0^1 L_{\varphi}(\Omega)$ for $\sigma(\Pi L_{\varphi}, \Pi E_{\psi}) = \sigma(\Pi L_{\varphi}, \Pi L_{\psi}).$

Then

(3.8)
$$u_n \to u$$
 strongly in E_{φ} and $u_n \to u$ a.e. in Ω .

Step 2. Let $\phi(t) = t \exp(\gamma t^2), \gamma > 0$. It is easy to see that when $\gamma \ge (b(k)K/2\alpha)^2$ one has

$$\phi'(t) - (b(k)K/\alpha)|\phi(t)| \ge 1/2, \quad \forall t \in \mathbb{R},$$

where K > 0 is a constant which will be specified later.

Take $z_n = T_k(u_n) - T_k(u)$ and use $v_n = \phi(z_n) \in W_0^1 L_{\varphi}(\Omega)$ as a test function in (3.3) to get

$$\langle A(u_n), v_n \rangle + \int_{\Omega} g_n(x, u_n, \nabla u_n) v_n \, dx \to 0 \quad \text{as } n \to \infty$$

since $v_n \to 0$ weakly in $W_0^1 L_{\varphi}(\Omega)$ for $\sigma(\Pi L_{\varphi}, \Pi E_{\psi}) = \sigma(\Pi L_{\varphi}, \Pi L_{\psi})$, as is easily seen.

Below we denote by $\varepsilon_i(n)$ (i = 1, 2, ...) various sequences of real numbers which tend to 0 as $n \to \infty$.

Since $g_n(x, u_n(x), \nabla u_n(x))v_n(x) \ge 0$ on the subset $\{x \in \Omega : |u_n(x)| > k\}$, we have

(3.9)
$$\langle A(u_n), v_n \rangle + \int_{\{|u_n| \le k\}} g_n(x, u_n, \nabla u_n) v_n \, dx \le \varepsilon_1(n).$$

Fix a real number r > 0, define $\Omega_r = \{x \in \Omega : |\nabla T_k(u(x))| \le r\}$ and denote by χ_r the characteristic function of Ω_r .

Taking $s \ge r$ we have

$$(3.10)$$

$$0 \leq \int_{\Omega_r} [a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u))] [\nabla T_k(u_n) - \nabla T_k(u)] dx$$

$$\leq \int_{\Omega_s} [a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u))] [\nabla T_k(u_n) - \nabla T_k(u)] dx$$

$$\leq \int_{\Omega} [a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u)\chi_s)] [\nabla T_k(u_n) - \nabla T_k(u)\chi_s] dx$$

On the other hand,

$$\langle A(u_n), v_n \rangle = \int_{\Omega} a(x, u_n, \nabla u_n) [\nabla T_k(u_n) - \nabla T_k(u)] \phi'(z_n) \, dx$$

$$= \int_{\Omega} a(x, u_n, \nabla T_k(u_n)) [\nabla T_k(u_n) - \nabla T_k(u)\chi_s] \phi'(z_n) \, dx$$

$$- \int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_k(u) \phi'(z_n) \, dx$$

$$+ \int_{\Omega} a(x, u_n, \nabla T_k(u_n)) \nabla T_k(u)\chi_s \phi'(z_n) \, dx.$$

Then

$$(3.11) \quad \langle A(u_n), v_n \rangle = \int_{\Omega} [a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u)\chi_s)] \\ \times [\nabla T_k(u_n) - \nabla T_k(u)\chi_s] \phi'(z_n) \, dx \\ - \int_{\Omega} a(x, u_n, \nabla T_k(u_n)) \, \nabla T_k(u)\chi_{\Omega \setminus \Omega_s} \, \phi'(z_n) \, dx \\ + \int_{\Omega} a(x, u_n, \nabla T_k(u)\chi_s) [\nabla T_k(u_n) - \nabla T_k(u)\chi_s] \, \phi'(z_n) \, dx.$$

Denoting by χ_{G_n} the characteristic function of $G_n = \{|u_n(x)| > k\}$, the second term on the right-hand side of (3.11) reads

$$-\int_{\Omega} [a(x, u_n, \nabla u_n) - a(x, u_n, 0)] \chi_{G_n} \nabla T_k(u) \phi'(z_n) \, dx;$$

this tends to 0 since $\chi_{G_n} \nabla T_k(u) \phi'(z_n) \to 0$ strongly in $(E_{\varphi}(\Omega))^n$ by Le-

besgue's theorem while $a(x, u_n, \nabla u_n) - a(x, u_n, 0)$ is bounded in $(L_{\psi}(\Omega))^n$ by (3.6) and (A_1) .

Since $|a(x, u_n, \nabla T_k(u_n))| \leq |a(x, u_n, \nabla u_n)| + |a(x, u_n, 0)|$ it follows that $a(x, u_n, \nabla T_k(u_n))$ is bounded in $(L_{\psi}(\Omega))^n$ for $\sigma(\Pi L_{\psi}, \Pi E_{\varphi})$, for some $h \in (L_{\psi}(\Omega))^n$.

We deduce that the third term on the right-hand side of (3.11) tends to

$$-\int_{\Omega\setminus\Omega_s} a(x,u,0)\nabla T_k(u)\,dx$$

since $a(x, u_n, \nabla T_k(u)\chi_s)$ tends strongly to $a(x, u, \nabla T_k(u)\chi_s)$ in $(E_{\psi}(\Omega))^n$ by Lemma 2.1 while $\nabla T_k(u_n)$ tends weakly to $\nabla T_k(u)$ by (3.8).

This implies that

$$(3.12) \qquad \langle A(u_n), v_n \rangle = \int_{\Omega} [a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u)\chi_s)] \\ \times [\nabla T_k(u_n) - \nabla T_k(u)\chi_s]\phi'(z_n) \, dx \\ + \int_{\Omega \setminus \Omega_s} (a(x, u, 0) - h)\nabla T_k(u) \, dx + \varepsilon_2(n).$$

We now turn to the second term of the left-hand side of (3.9):

$$\left| \int_{\{|u_n| \le k\}} g_n(x, u_n, \nabla u_n) v_n \, dx \right| \le \int_{\{|u_n| \le k\}} b(k) \left(c'(x) + \varphi \left(x, \frac{|\nabla u_n|}{\lambda'} \right) \right) |v_n| \, dx$$
$$\le \varepsilon_3(n) + b(k) \int_{\Omega} \varphi \left(x, \frac{|\nabla T_k(u_n)|}{\lambda'} \right) |v_n| \, dx$$

since (v_n) is bounded in $L^{\infty}(\Omega)$ and $v_n \to 0$ a.e in Ω .

Using (A_4) we can write

$$(3.13) \qquad \left| \int_{\{|u_n| \le k\}} g_n(x, u_n, \nabla u_n) v_n \, dx \right|$$

$$\leq \varepsilon_3(n) + \frac{b(k)}{\alpha} \int_{\Omega} a(x, u_n, \nabla T_k(u_n)) \nabla T_k(u_n) |v_n| \, dx$$

$$= \varepsilon_3(n) + \frac{b(k)}{\alpha} \int_{\Omega} [a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u)\chi_s)]$$

$$\times [\nabla T_k(u_n) - \nabla T_k(u)\chi_s] |v_n| \, dx$$

$$+ \frac{b(k)}{\alpha} \int_{\Omega} a(x, u_n, \nabla T_k(u_n)) \nabla T_k(u)\chi_s |v_n| \, dx$$

$$+ \frac{b(k)}{\alpha} \int_{\Omega} a(x, u_n, \nabla T_k(u)\chi_s) [\nabla T_k(u_n) - \nabla T_k(u)\chi_s] |v_n| \, dx.$$

The second term on the right-hand side of (3.13) tends to 0 since $a(x, u_n, \nabla T_k(u_n))$ is bounded in $(L_{\psi}(\Omega))^n$ while $\nabla T_k(u)\chi_s|v_n|$ tends strongly to 0 in $(E_{\varphi(\Omega)})^n$ by Lebesgue's theorem.

The third term on the right-hand side of (3.13) tends to 0 since $a(x, u_n, \nabla T_k(u)\chi_s)|v_n|$ tends strongly to 0 in $(E_{\psi}(\Omega))^n$ by condition (A_2) while $\nabla T_k(u_n) - \nabla T_k(u)\chi_s$ is bounded in $(L_{\varphi}(\Omega))^n$.

We deduce that

$$(3.14) \qquad \left| \int_{\{|u_n| \le k\}} g_n(x, u_n, \nabla u_n) v_n \, dx \right|$$

$$\leq \varepsilon_4(n) + \frac{b(k)}{\alpha} \int_{\Omega} [a(x, u_n, \nabla u_n) - a(x, u_n, \nabla T_k(u)\chi_s)] \times [\nabla T_k(u_n) - \nabla T_k(u)\chi_s] |v_n| \, dx.$$

Combining (3.9), (3.12) and (3.14) we obtain

$$\begin{split} \int_{\Omega} & \left[a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u)\chi_s)\right] \\ & \times \left[\nabla T_k(u_n) - \nabla T_k(u)\chi_s\right] \left(\phi'(z_n) - \frac{b(k)}{\alpha} |\phi(z_n)|\right) dx \\ & \leq \varepsilon_5(n) - \int_{\Omega \setminus \Omega_s} (a(x, u, 0) - h)\nabla T_k(u) \, dx, \end{split}$$

which gives, by using the inequality $\phi'(t) - (b(k)K/\alpha)|\phi(t)| \ge 1/2$,

$$\int_{\Omega} [a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u)\chi_s)] [\nabla T_k(u_n) - \nabla T_k(u)\chi_s] dx$$

$$\leq 2\varepsilon_5(n) - 2 \int_{\Omega \setminus \Omega_s} (a(x, u, 0) - h) \nabla T_k(u) dx.$$

Using (3.10) yields

$$\int_{\Omega_r} [a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u))] [\nabla T_k(u_n) - \nabla T_k(u)] dx$$

$$\leq 2\varepsilon_5(n) - 2 \int_{\Omega \setminus \Omega_s} (a(x, u, 0) - h) \nabla T_k(u) dx.$$

This implies that

$$\begin{split} 0 &\leq \limsup_{n \to \infty} \int_{\Omega_r} [a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u))] [\nabla T_k(u_n) - \nabla T_k(u)] \, dx \\ &\leq 2 \int_{\Omega \setminus \Omega_s} (a(x, u, 0) - h) \nabla T_k(u) \, dx. \end{split}$$

Using the fact that $(a(x, u, 0) - h)\nabla T_k(u) \in L^1(\Omega)$ and letting $s \to \infty$ we

get

$$\int_{\Omega_r} [a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u))] [\nabla T_k(u_n) - \nabla T_k(u)] \, dx \to 0.$$

Passing to a subsequence if necessary, we can assume that

 $[a(x, u_n, \nabla T_k(u_n)) - a(x, u_n, \nabla T_k(u))][\nabla T_k(u_n) - \nabla T_k(u)] \to 0$ a.e. in Ω_r . As in [BE2], we deduce that there exists a subsequence, still denoted by u_n , such that

$$\nabla u_n \to \nabla u$$
 a.e. in Ω .

Step 3. We shall prove that $g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u)$ strongly in $L^1(\Omega)$ by using Vitali's theorem.

To prove that $g_n(x, u_n, \nabla u_n)$ are uniformly equi-integrable in Ω , let $E \subset \Omega$ be a measurable subset of Ω . We have, for any m > 0,

$$\int_{E} |g_n(x, u_n, \nabla u_n)| \, dx \leq \int_{E \cap \{|u_n| \leq m\}} |g_n(x, u_n, \nabla u_n)| \, dx$$
$$+ \int_{E \cap \{|u_n| > m\}} |g_n(x, u_n, \nabla u_n)| \, dx$$

Moreover,

$$\begin{split} &\int_{E\cap\{|u_n|\leq m\}} |g_n(x,u_n,\nabla u_n)| \, dx \leq \int_{E\cap\{|u_n|\leq m\}} |b(m)| \left[c'(x) + \varphi\left(x,\frac{|\nabla u_n|}{\lambda'}\right) \right] dx \\ &\leq b(m) \int_E c'(x) \, dx + \frac{b(m)}{\alpha} \int_E a(x,u_n,\nabla T_m(u_n)) \nabla T_m(u_n) \, dx \\ &\leq b(m) \int_E c'(x) \, dx + \frac{b(m)}{\alpha} \left[2\varepsilon_5(n) + 2 \int_{\Omega \setminus \Omega_s} (a(x,u,0) - h) \nabla T_m(u) \, dx \right] \\ &\quad + \frac{b(m)}{\alpha} \int_E a(x,u_n,\nabla T_m(u_n)) \nabla T_m(u) \chi_s \, dx \\ &\quad + \frac{b(m)}{\alpha} \int_E a(x,u_n,\nabla T_m(u) \chi_s) [\nabla T_m(u_n) - \nabla T_m(u) \chi_s] \, dx. \end{split}$$

We claim that $a(x, u_n, \nabla T_m(u_n)) \nabla T_m(u) \chi_s \to a(x, u, \nabla T_m(u)) \nabla T_m(u) \chi_s$ and $a(x, u_n, \nabla T_m(u) \chi_s) [\nabla T_m(u_n)) - \nabla T_m(u) \chi_s] \to a(x, u, 0) \nabla T_m(u) \chi_{\Omega \setminus \Omega_s}$ strongly in $L^1(\Omega)$. To prove this claim we can use Lemma 2.4 of [BE1].

Let $\varepsilon > 0$. We have

$$\int_{E \cap \{|u_n| > m\}} |g_n(x, u_n, \nabla u_n)| \, dx \le \frac{1}{m} \int_{\Omega} g_n(x, u_n, \nabla u_n) u_n \, dx \le \frac{C_2}{m}$$

182

Thus for m sufficiently large, we can write

$$\int_{E \cap \{|u_n| > m\}} |g_n(x, u_n, \nabla u_n)| \, dx \le \frac{\varepsilon}{2}, \quad \forall n.$$

Furthermore, there exists $n_0 > 0$ such that $2(b(m)/\alpha)\varepsilon_5(n) \le \varepsilon/10$ for all $n \ge n_0$, and there exists s large such that

$$2\frac{b(m)}{\alpha} \int_{\Omega \setminus \Omega_s} (a(x, u, 0) - h) \nabla T_m(u) \, dx \le \frac{\varepsilon}{10}$$

There exists $\delta_1 > 0$ such that $|E| < \delta_1$ implies

$$\frac{b(m)}{\alpha} \int_{E} a(x, u, \nabla T_{m}(u)) \nabla T_{m}(u) \chi_{s} \, dx \leq \frac{\varepsilon}{10}, \quad \forall n,$$

$$\frac{b(m)}{\alpha} \int_{E} a(x, u_{n}, \nabla T_{m}(u) \chi_{s}) [\nabla T_{m}(u_{n}) - \nabla T_{m}(u) \chi_{s}] \, dx \leq \frac{\varepsilon}{10}, \quad \forall n,$$

$$b(m) \int_{E} c'(x) \, dx \leq \frac{\varepsilon}{10}.$$

Thus when $|E| < \delta_1$ one has $\int_{E \cap \{|u_n| \le m\}} |g_n(x, u_n, \nabla u_n)| dx \le \varepsilon/2$ for all $n \ge n_0$. Consequently, $|E| < \delta_1$ implies $\int_E |g_n(x, u_n, \nabla u_n)| dx \le \varepsilon$ for all $n \ge n_0$. But $\int_E |g_n(x, u_n, \nabla u_n)| dx \le n_0|E|$ for all $n < n_0$. Thus $|E| < \delta = \inf(\delta_1, \varepsilon/n_0)$ implies $\int_E |g_n(x, u_n, \nabla u_n)| dx \le \varepsilon$ for all n. This shows that $g_n(x, u_n, \nabla u_n)$ are uniformly equi-integrable in Ω . Applying Vitali's theorem yields $g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u)$ strongly in $L^1(\Omega)$.

Going back to the approximate equation (3.3), one has

(3.15)
$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla v \, dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) v \, dx = \langle f, v \rangle$$
$$\forall v \in W_0^1 L_{\varphi}(\Omega) \cap L^{\infty}(\Omega).$$

Note that $a(x, u_n, \nabla u_n) \rightarrow a(x, u, \nabla u)$ weakly in $(L_{\psi}(\Omega))^n$ for $\sigma(\Pi L_{\psi}, \Pi E_{\varphi})$ by Lemma 2 of [BS].

Letting $n \to \infty$ in (3.15), we get

(3.16)
$$\int_{\Omega} a(x, u, \nabla u) \nabla v \, dx + \int_{\Omega} g_n(x, u, \nabla u) v \, dx = \langle f, v \rangle$$

This equality also holds for v = u.

Indeed, taking $v = T_k(u) \in W_0^1 L_{\varphi}(\Omega) \cap L^{\infty}(\Omega)$ in (3.16), one has

$$\int_{\Omega} a(x, u, \nabla u) \nabla T_k(u) \, dx + \int_{\Omega} g(x, u, \nabla u) T_k(u) \, dx = \langle f, T_k(u) \rangle.$$

From (3.7) we deduce by Fatou's Lemma that $g(x, u, \nabla u)u \in L^1(\Omega)$.

Observe that $T_k(u) \to u$ in $W_0^1 L_{\varphi}(\Omega)$ for modular convergence and a.e. in Ω when $k \to \infty$. A. Benkirane et al.

Note also that $|g(x, u, \nabla u)T_k(u)| \leq g(x, u, \nabla u)u \in L^1(\Omega)$. Hence, by Lebesgue's theorem, letting $k \to \infty$ we obtain

$$\int_{\Omega} a(x, u, \nabla u) \nabla u \, dx + \int_{\Omega} g(x, u, \nabla u) u \, dx = \langle f, u \rangle.$$

This completes the proof of Theorem 3.1.

EXAMPLE 3.2. As an application of this result, we can treat the following model problem:

$$\begin{cases} -\Delta_{\varphi} u + u\varphi(x, |\nabla u|) = f & \text{on } \Omega, \\ u = 0 & \text{in } \partial\Omega, \end{cases}$$

where Δ_{φ} is the φ -Laplacian operator $\Delta_{\varphi} u = \operatorname{div} \left(\frac{a(x, |\nabla u|)}{|\nabla u|} \nabla u \right)$ and where a is the derivative of φ with respect to t. The second member f is supposed to lie in the dual space $W^{-1}E_{\psi}(\Omega)$ where ψ is the Musielak–Orlicz conjugate to φ .

References

- [ABT] L. Aharouch, J. Bennouna and A. Touzani, Existence of renormalized solution of some elliptic problems in Orlicz spaces, Rev. Mat. Complut. 22 (2009), 91–110.
- [AHT] E. Azroul, H. Hjiaj and A. Touzani, Existence and regularity of entropy solutions for strongly nonlinear p(x)-elliptic equations, Electron. J. Differential Equations 2013, no. 68, 27 pp.
- [BE1] A. Benkirane and A. Elmahi, An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Anal. 36 (1999), 11–24.
- [BE2] A. Benkirane and A. Elmahi, Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal. 28 (1997), 1769–1784.
- [BS] A. Benkirane and M. Sidi El Vally, An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 57–75.
- [EM] A. Elmahi and D. Meskine, Existence of solutions for elliptic equations having natural growth terms in Orlicz spaces, Abstr. Appl. Anal. (2004), 1031–1045.
- [M] J. Musielak, Modular Spaces and Orlicz Spaces, Lecture Notes in Math. 1034, Springer, 1983.

Abdelmoujib Benkirane, Fatimazahra Blali	Mohamed Sidi El Vally
Laboratory LAMA Department of Mathematics	Department of Mathematics
Faculty of Sciences Dhar El Mahraz	Faculty of Sciences
University Sidi Mohamed Ben Abdellah	King Khalid University
B.P. 1796 Atlas	Abha 61413, Kingdom of Saudi Arabia
Fez, Morocco	E-mail: med.medvall@gmail.com
E-mail: abd.benkirane@gmail.com	
fatimazahra.blali@gmail.com	

Received on 25.2.2014; revised version on 18.7.2014

(2223)