Ahmed Aberqi (Fez) Jaouad Bennouna (Fez) Hicham Redwane (Settat)

EXISTENCE RESULT FOR A CLASS OF DOUBLY NONLINEAR PARABOLIC SYSTEMS

Abstract. We prove the existence of a renormalized solution to a class of doubly nonlinear parabolic systems.

1. Introduction. We consider the following nonlinear parabolic system:

(1.1)
$$\begin{cases} \frac{\partial b_i(x, u_i)}{\partial t} - \operatorname{div}(a(x, t, u_i, \nabla u_i)) + \operatorname{div}(\phi_i(x, t, u_i)) \\ = f_i(x, u_1, u_2) - \operatorname{div}(F_i) & \text{in } Q_T, \\ u_i(x, t) = 0 & \text{on } \partial \Omega \times (0, T), \\ b_i(x, u_i(x, 0)) = b_i(x, u_{0,i}(x)) & \text{in } \Omega, \end{cases}$$

where i = 1, 2.

In (1.1), Ω is a bounded domain of \mathbb{R}^N $(N \geq 2)$; T is a positive real number; $Q_T = \Omega \times (0,T)$; $-\operatorname{div}(a(x,t,u_i,\nabla u_i))$ is a Leray–Lions operator defined on $L^p(0,T;W_0^{1,p}(\Omega))$; $\phi_i(x,t,u_i)$ is a Carathéodory function (see assumptions (2.5)–(2.6)); $b_i: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that for every $x \in \Omega$, $b_i(x, \cdot)$ is a strictly increasing C^1 -function; $u_{0,i}$ is in $L^1(\Omega)$ with $b_i(\cdot, u_{0,i})$ in $L^1(\Omega)$; $f_i: \Omega \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function (see Assumptions H4); and $F_i \in (L^{p'}(Q))^N$.

Under our assumptions, problem (1.1) does not admit, in general, a weak solution since the terms $\phi_i(x, t, u_i)$ and $f_i(x, u_1, u_2)$ may not belong to $(L^1_{\text{loc}}(Q))^N$. In order to overcome this difficulty, we work in the framework of renormalized solutions (see Definition 3.1). This notion was introduced by R.-J. DiPerna and P.-L. Lions [7] for the study of the Boltzmann equation. It was adapted to the study of some nonlinear elliptic or parabolic problems in

²⁰¹⁰ Mathematics Subject Classification: Primary 47A15; Secondary 46A32, 47D20. Key words and phrases: parabolic problems, Sobolev space, renormalized solutions.

fluid mechanics in [5]. In the case where b(x, u) = u, the existence of renormalized solutions for (1.1) has been established by R. Di Nardo et al. [6].

In the case where $\phi(x, t, u) = 0$ and $f \in L^1(Q_T)$, the existence of renormalized solutions has been established by H. Redwane [12] in the classical Sobolev space; existence results have also been proved in [1], [9] in the case where $f_i(x, u_1, u_2)$ is replaced by $f - \operatorname{div}(g)$ where $f \in L^1(Q)$ and $g \in (L^{p'}(Q))^N$.

It is our purpose in this paper to generalize the result of [6] and prove the existence of a renormalized solution of system (1.1).

The plan of the paper is as follows: In Section 2 we give the basic assumptions. In Section 3 we give the definition of a renormalized solution of (1.1), and we establish (Theorem 3.1) the existence of such a solution.

2. Assumptions on data. Let Ω be a bounded open set in \mathbb{R}^N $(N \ge 2)$, T a positive real number, and $Q_T = \Omega \times (0, T)$.

2.1. Assumptions. Throughout this paper, we assume that the following assumptions hold true:

ASSUMPTION (H1). $b_i : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that for every $x \in \Omega$, $b_i(x, \cdot)$ is a strictly increasing $C^1(\mathbb{R})$ -function with $b_i(x, 0) = 0$ for any k > 0, and there exists a constant $\lambda_i > 0$ and functions $A_k^i \in L^{\infty}(\Omega)$ and $B_k^i \in L^p(\Omega)$ such that for almost every x in Ω ,

(2.1)
$$\lambda_i \leq \frac{\partial b_i(x,s)}{\partial s} \leq A_k^i(x), \quad \left| \nabla_x \left(\frac{\partial b_i(x,s)}{\partial s} \right) \right| \leq B_k^i(x) \quad \forall |s| \leq k.$$

ASSUMPTION (H2). $a: Q_T \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function such that, for any k > 0, there exist ν_k and a function $h_k \in L^{p'}(Q_T)$ with

- (2.2) $|a(x,t,s,\xi)| \le \nu_k (h_k(x,t) + |\xi|^{p-1}) \quad \forall |s| \le k,$
- (2.3) $a(x,t,s,\xi)\xi \ge \alpha |\xi|^p$ with some $\alpha > 0$,

(2.4)
$$(a(x,t,s,\xi) - a(x,t,s,\eta)(\xi - \eta) > 0 \quad \text{when } \xi \neq \eta.$$

ASSUMPTION (H3). $\phi_i : Q_T \times \mathbb{R} \to \mathbb{R}^N$ is a Carathéodory function such that for almost every $(x, t) \in Q_T$ and every $s \in \mathbb{R}$,

(2.5)
$$|\phi_i(x,t,s)| \le c_i(x,t)|s|^{\gamma},$$

(2.6)
$$c_i \in L^{\tau}(Q_T)$$
 with $\tau = \frac{N+p}{p-1}, \quad \gamma = \frac{N+2}{N+p}(p-1).$

ASSUMPTION (H4). For $i = 1, 2, f_i : \Omega \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function with $f_1(x, 0, s) = f_2(x, s, 0) = 0$ for a.e. $x \in \Omega$, and all $s \in \mathbb{R}$; and for almost every $x \in \Omega$, and every $s_1, s_2 \in \mathbb{R}$,

$$\operatorname{sign}(s_i)f_i(x, s_1, s_2) \ge 0.$$

The growth assumptions on f_i are as follows: for each k > 0 there exist $\sigma_k > 0$ and $F_k \in L^1(\Omega)$ such that

(2.7) $|f_1(x, s_1, s_2)| \leq F_k + \sigma_k |b_2(x, s_2)|$ a.e. $x \in \Omega, \forall |s_1| \leq k, \forall s_2 \in \mathbb{R};$ and for each k > 0 there exist $\mu_k > 0$ and $G_k \in L^1(\Omega)$ such that

(2.8) $|f_2(x,s_1,s_2)| \leq G_k(x) + \mu_k |b_1(x,s_1)|$ a.e. $x \in \Omega, \forall |s_2| \leq k, \forall s_1 \in \mathbb{R}$. Finally, $u_{0,i}$ is a measurable function such that $b_i(\cdot, u_{0,i}) \in L^1(\Omega)$ for i = 1, 2.

3. Main results. In this section, we study the existence of renormalized solutions to systems (1.1).

DEFINITION 3.1. A couple of measurable functions (u_1, u_2) defined on Q_T is called a *renormalized* solution of (1.1) if for i = 1, 2 the function u_i satisfies

(3.1)
$$b_i(x, u_i) \in L^{\infty}(0, T; L^1(\Omega)),$$

(3.2)
$$T_k(u_i) \in L^p(0,T; W_0^{1,p}(\Omega))$$
 for any $k > 0$,

(3.3)
$$\lim_{n \to \infty} \frac{1}{n} \int_{\{(x,t) \in Q_T : |u_i(x,t)| \le n\}} a(x,t,u_i,\nabla u_i) \nabla u_i \, dx \, dt = 0,$$

and for every function S in $W^{2,\infty}(\mathbb{R})$ which is piecewise C^1 and such that S' has compact support,

(3.4)
$$\frac{\partial B_{i,S}(x,u_i)}{\partial t} - \operatorname{div}(a(x,t,u_i,\nabla u_i)S'(u_i)) + S''(u_i)a(x,t,u_i,\nabla u_i)\nabla u_i + \operatorname{div}(\phi_i(x,t,u_i)S'(u_i)) - S''(u_i)\phi_i(x,t,u_i)\nabla u_i = f_i(x,u_1,u_2)S'(u_i) - \operatorname{div}(S'(u_i)F_i) + S''(u_i)F_i\nabla u_i \quad \text{in } \mathcal{D}'(Q_T),$$

and

(3.5)
$$B_{i,S}(x,u_i)(t=0) = B_{i,S}(x,u_{i,0}) \quad \text{in } \Omega,$$

where $B_{i,S}(x,z) = \int_0^z \frac{\partial b_i(x,s)}{\partial s} S'(s) \, ds.$

Equation (3.4) is formally obtained through pointwise multiplication of (1.1) by S'(u). However $a(x, t, u_i, \nabla u_i)$ and $\phi_i(x, t, u_i)$ do not in general make sense in (1.1). Recall that for a renormalized solution, due to (3.2), each term in (3.4) has a meaning in $L^1(Q) + L^{p'}(0, T; W^{-1,p'}(\Omega))$ (see e.g. [5]). We have

(3.6)
$$\frac{\partial B_{i,S}(x,u_i)}{\partial t} \in L^{p'}(0,T;W^{-1,p'}(\Omega)) + L^1(Q),$$

(3.7)
$$B_{i,S}(x,u_i) \in L^p(0,T;W_0^{1,p}(\Omega)).$$

Then (3.6) and (3.7) imply that $B_{i,S}(x, u_i)$ belongs to $C^0([0, T]; L^1(\Omega))$ (for a proof of this trace result see [11]), so that the initial condition (3.5) makes sense.

MAIN THEOREM 3.2. Let $b(x, u_0) \in L^1(\Omega)$ and assume that (H1)–(H4) hold true. Then there exists a renormalized solution (u_1, u_2) of problem (1.1) in the sense of Definition 3.1.

Proof. STEP 1. Let us introduce the following regularization of the data: for i = 1, 2 and $\epsilon > 0$,

(3.8)
$$b_{i,\epsilon}(x,r) = b(x,T_{1/\epsilon}(r)) + \epsilon r \quad \forall r \in \mathbb{R},$$

$$(3.9) \quad a_{\epsilon}(x,t,s,\xi) = a(x,t,T_{1/\epsilon}(s),\xi) \quad \text{a.e.} \ (x,t) \in Q_T, \, \forall s \in \mathbb{R}, \, \forall \xi \in \mathbb{R}^N,$$

$$(3.10) \quad \phi_{i,\epsilon}(x,t,r) = \phi_i(x,t,T_{1/\epsilon}(r)) \quad \text{a.e.} \ (x,t) \in Q_T, \, \forall r \in \mathbb{R},$$

(3.11)
$$\begin{aligned} f_{1,\epsilon}(x,s_1,s_2) &= f_1(x,T_{1/\epsilon}(s_1),T_{1/\epsilon}(s_2)) & \text{a.e. } x \in \Omega, \, \forall s_1,s_2 \in \mathbb{R}, \\ f_{2,\epsilon}(x,s_1,s_2) &= f_2(x,T_{1/\epsilon}(s_1),T_{1/\epsilon}(s_2)) & \text{a.e. } x \in \Omega, \, \forall s_1,s_2 \in \mathbb{R}. \end{aligned}$$

Let $u_{i,0\epsilon} \in C_0^{\infty}(\Omega)$ be such that

(3.12)
$$b_{i,\epsilon}(x, u_{i,0\epsilon}) \to b_i(x, u_{i,0})$$
 strongly in $L^1(\Omega)$.

In view of (3.8), for $i = 1, 2, b_{i,\epsilon}$ is a Carathéodory function and satisfies (2.1), so there exists $\lambda_i > 0$ such that

$$\lambda_i + \epsilon \leq \frac{\partial b_{i,\epsilon}(x,s)}{\partial s}, \quad |b_{i,\epsilon}(x,s)| \leq \max_{|s| \leq 1/\epsilon} |b_i(x,s)| \quad \text{ a.e. } x \in \Omega, \, \forall s \in \mathbb{R}.$$

Let us now consider the regularized problem

(3.13)
$$\begin{cases} \frac{\partial b_{i,\epsilon}(x, u_{i,\epsilon})}{\partial t} - \operatorname{div}(a_{\epsilon}(x, t, u_{i,\epsilon}, \nabla u_{i,\epsilon})) + \operatorname{div}(\phi_{i,\epsilon}(x, t, u_{i,\epsilon})) \\ = f_{i,\epsilon}(x, u_1, u_2) - \operatorname{div}(F_i) \quad \text{in } Q_T, \\ u_{i,\epsilon}(x, t) = 0 \quad \text{on } \partial \Omega \times (0, T), \\ b_{i,\epsilon}(x, u_{i,\epsilon})(t = 0) = b_{i,\epsilon}(x, u_{i,0\epsilon}) \quad \text{in } \Omega. \end{cases}$$

In view of (2.7)–(2.8), there exist $F_{1,\epsilon}, F_{2,\epsilon} \in L^1(\Omega)$ and $\sigma_{\epsilon}, \mu_{\epsilon} > 0$ such that

$$\begin{aligned} |f_{1,\epsilon}(x,s_1,s_2)| &\leq F_{1,\epsilon}(x) + \sigma_{\epsilon} \max_{|s| \leq 1/\epsilon} |b_i(x,s)| \quad \text{a.e. } x \in \Omega, \, \forall s_1, s_2 \in \mathbb{R}, \\ |f_{2,\epsilon}(x,s_1,s_2)| &\leq F_{2,\epsilon}(x) + \mu_{\epsilon} \max_{|s| \leq 1/\epsilon} |b_i(x,s)| \quad \text{a.e. } x \in \Omega, \, \forall s_1, s_2 \in \mathbb{R}. \end{aligned}$$

Hence, proving the existence of a weak solution $u_{i,\epsilon} \in L^p(0,T; W_0^{1,p}(\Omega))$ of (3.13) is an easy task (see e.g. [10], [8]).

STEP 2. The estimates derived in this step rely on standard techniques for problems of type (3.13), and we just sketch their proof (referring the reader to [4]) for the elliptic version. Let $\tau_1 \in (0, T)$ and t fixed in $(0, \tau_1)$. For i = 1, 2, using $T_k(u_{i,\epsilon})\chi_{(0,t)}$ as a test function in (3.13), we integrate over $(0, \tau_1)$, and by the condition (2.5) we have

$$(3.14) \qquad \int_{\Omega} B_{i,k}^{\epsilon}(x, u_{i,\epsilon}(t)) \, dx + \int_{Q_t} a_{\epsilon}(x, t, u_{i,\epsilon}, \nabla u_{i,\epsilon}) \nabla T_k(u_{i,\epsilon}) \, dx \, ds$$
$$\leq \int_{Q_t} c(x, t) |u_{i,\epsilon}|^{\gamma} |\nabla T_k(u_{i,\epsilon})| \, dx \, ds + \int_{Q_t} f_{i,\epsilon}(x, u_1^{\epsilon}, u_2^{\epsilon}) T_k(u_{i,\epsilon}) \, dx \, ds$$
$$+ \int_{\Omega} B_k^{i,\epsilon}(x, u_{i,0}^{\epsilon}) \, dx + \int_{Q_t} F_i \nabla T_k(u_i^{\epsilon}) \, dx \, ds$$

where $B_{i,k}^{\epsilon}(x,r) = \int_0^r T_k(s) \frac{\partial b_{i,\epsilon}(x,s)}{\partial s} ds$. Due to the definition of $B_{i,k}^{\epsilon}$ we have

(3.15)
$$0 \leq \int_{\Omega} B_{i,k}^{\epsilon}(x, u_{i,0\epsilon}) dx \leq k \int_{\Omega} |b_{i,\epsilon}(x, u_{i,0\epsilon})| dx$$
$$= k \|b_i(x, u_{i,0\epsilon})\|_{L^1(\Omega)} \quad \forall k > 0.$$

Using (3.14) and (2.3) and (3.11) we obtain

$$\begin{split} \int_{\Omega} B_{i,k}^{\epsilon}(x, u_{i,\epsilon}(t)) \, dx &+ \alpha \int_{Q_t} |\nabla T_k(u_{i,\epsilon})|^p \, dx \, ds \\ &\leq \int_{Q_t} c(x,t) |u_{i,\epsilon}|^{\gamma} |\nabla T_k(u_{i,\epsilon})| \, ds \, dx \\ &+ k(\|b_i(x, u_{i,0\epsilon})\|_{L^1(\Omega)} + \|f_{i,\epsilon}\|_{L^1(Q_T)}) + \int_{Q_t} F_i \nabla T_k(u_{i,\epsilon}) \, dx \, ds. \end{split}$$

Let $M_i = \sup_{\epsilon} \|f_{i,\epsilon}\|_{L^1(Q_T)} + \|b_i(x, u_{i,0\epsilon})\|_{L^1(\Omega)}$. Note that

$$B_{i,k}^{\epsilon}(x,s) = \int_{0}^{s} T_{k}(\sigma) \frac{\partial b_{i,\epsilon}(x,\sigma)}{\partial \sigma} \, d\sigma \ge \frac{\lambda_{i}+\epsilon}{2} |T_{k}(s)|^{2} > \frac{\lambda_{i}}{2} |T_{k}(s)|^{2}.$$

We deduce from (3.14) and (3.15) that

$$(3.16) \qquad \frac{\lambda_i}{2} \int_{\Omega} |T_k(u_{i,\epsilon})|^2 \, dx + \alpha \int_{Q_t} |\nabla T_k(u_{i,\epsilon})|^p \, dx \, ds$$
$$\leq M_i k + \int_{Q_t} c_i(x,t) |u_{i,\epsilon}|^\gamma |\nabla T_k(u_{i,\epsilon})| \, dx \, ds + \int_{Q_t} F_i \nabla T_k(u_{i,\epsilon}) \, dx \, ds.$$

By the Gagliardo–Nirenberg and Young inequalities we have

$$(3.17) \qquad \int_{Q_t} c_i(x,t) |u_{i,\epsilon}|^{\gamma} |\nabla T_k(u_{i,\epsilon})| \, dx \, ds$$

$$\leq C_i \frac{\gamma}{N+2} ||c_i(x,t)||_{L^{\tau}(Q_{\tau_1})} \sup_{t \in (0,\tau_1)} \int_{\Omega} |T_k(u_{i,\epsilon})|^2 \, dx$$

$$+ C_i \frac{N+2-\gamma}{N+2} ||c_i(x,t)||_{L^{\tau}(Q_{\tau_1})} \Big(\int_{Q_{\tau_1}} |\nabla T_k(u_{i,\epsilon})|^p \, dx \, ds \Big)^{(\frac{1}{p} + \frac{N\gamma}{(N+2)p})\frac{N+2}{N+2-\gamma}}.$$

Since $\gamma = \frac{(N+2)}{N+p}(p-1)$, by using (3.16) and (3.17) we obtain

$$\begin{split} \frac{\lambda_i}{2} & \int_{\Omega} |T_k(u_{i,\epsilon})|^2 \, dx + \alpha \int_{Q_t} |\nabla T_k(u_{i,\epsilon})|^p \, dx \, ds \\ & \leq M_i k + C_i \frac{\gamma}{N+2} \|c_i(x,t)\|_{L^{\tau}(Q_{\tau_1})} \sup_{t \in (0,\tau_1)} \int_{\Omega} |T_k(u_{i,\epsilon})|^2 \, dx \\ & + \left(\frac{\alpha}{p}\right)^{-(p-1)} \|F_i\|_{(L^{p'}(Q))^N} \\ & + C_i \frac{N+2-\gamma}{N+2} \|c_i(x,t)\|_{L^{\tau}(Q_{\tau_1})} \int_{Q_{\tau_1}} |\nabla T_k(u_{i,\epsilon})|^p \, dx \, ds \\ & + \frac{\alpha}{p} \int_{Q_t} |\nabla T_k(u_{i,\epsilon})|^p \, dx \, ds, \end{split}$$

which is equivalent to

$$\left(\frac{\lambda_i}{2} - C_i \frac{\gamma}{N+2} \|c_i(x,t)\|_{L^{\tau}(Q_{\tau_1})}\right) \sup_{t \in (0,\tau_1)} \int_{\Omega} |T_k(u_{i,\epsilon})|^2 \, dx + \alpha \int_{Q_{\tau_1}} |\nabla T_k(u_{i,\epsilon})|^p \, dx \, ds \\ - \left(C_i \frac{N+2-\gamma}{N+2} \|c_i(x,t)\|_{L^{\tau}(Q_{\tau_1})} + \frac{\alpha}{p}\right) \int_{Q_{\tau_1}} |\nabla T_k(u_{i,\epsilon})|^p \, dx \, ds \le M_i k.$$

If we choose τ_1 such that

$$\frac{\lambda_i}{2} - C_i \frac{\gamma}{N+2} \|c_i(x,t)\|_{L^{\tau}(Q_{\tau_1})} \ge 0,$$

$$\frac{\alpha}{p'} - C_i \frac{N+2-\gamma}{N+2} \|c_i(x,t)\|_{L^{\tau}(Q_{\tau_1})} \ge 0,$$

then, denoting by C_i the minimum of

$$\frac{\lambda_i(N+2)}{2\gamma \|c_i(x,t)\|_{L^{\tau}(Q_{\tau_1})}} \quad \text{and} \quad \frac{\alpha(N+2)}{p'(N+2-\gamma)\|c_i(x,t)\|_{L^{\tau}(Q_{\tau_1})}},$$

we obtain

(3.18)
$$\sup_{t \in (0,\tau_1)} \int_{\Omega} |T_k(u_{i,\epsilon})|^2 \, dx + \int_{Q_{\tau_1}} |\nabla T_k(u_{i,\epsilon})|^p \, dx \, dt \le C_i M_i k.$$

Then, by (3.18) and Lemma 3.1 ([1], [6]), we conclude that $T_k(u_{i,\epsilon})$ is bounded in $L^p(0,T; W_0^{1,p}(\Omega))$ independently of ϵ for any $k \geq 0$, so there exists a subsequence still denoted by $u_{i,\epsilon}$ such that

(3.19)
$$T_k(u_{i,\epsilon}) \rightharpoonup H_{i,k} \quad \text{weakly in } L^p(0,T;W_0^{1,p}(\Omega)).$$

LEMMA 3.3 (see [1]). We have

$$(3.20) u_{i,\epsilon} \to u_i a.e. Q_T, b_i(x,u_i) \in L^{\infty}(0,T;L^1(\Omega)),$$

200

where u_i is a measurable function defined on Q_T for i = 1, 2. Moreover,

(3.21)
$$\lim_{n \to \infty} \limsup_{\epsilon \to 0} \frac{1}{n} \int_{\{|u_{i,\epsilon}| \le n\}} a(x, t, u_{i,\epsilon}, \nabla u_{i,\epsilon}) \nabla u_{i,\epsilon} \, dx \, dt = 0.$$

STEP 4. In this step we prove that the weak limit $X_{i,k}$ of $a(x, t, T_k(u_{i,\epsilon}), \nabla T_k(u_{i,\epsilon}))$ can be identified with $a(x, t, T_k(u_i), \nabla T_k(u_i))$, for i = 1, 2. To prove this we recall the following lemma (see [1]):

LEMMA 3.4. For
$$i = 1, 2, a$$
 subsequence of $u_{i,\epsilon}$ satisfies, for any $k \ge 0$,

$$\lim_{\epsilon \to 0} \sup_{Q_T} \int_0^t a(x, s, u_{i,\epsilon}, \nabla T_k(u_{i,\epsilon})) \nabla T_k(u_{i,\epsilon}) \, ds \, dx \, dt$$

$$\leq \int_{Q_T} \int_0^t X_{i,k} \nabla T_k(u_i) \, dx \, ds \, dt,$$

$$\lim_{\epsilon \to 0} \int_{Q_T} \int_0^t \left(a(x, t, T_k(u_{i,\epsilon}), \nabla T_k(u_{i,\epsilon})) - a(x, t, T_k(u_{i,\epsilon}), \nabla T_k(u_i)) \right) \times (\nabla T_k(u_{i,\epsilon}) - \nabla T_k(u_i)) = 0,$$
(3.22) $X_{i,k} = a(x, t, T_k(u_i), \nabla T_k(u_i))$ a.e. in Q_T ,

and as ϵ tends to 0,

$$(3.23) \quad a(x,t,T_k(u_{i,\epsilon}),\nabla T_k(u_{i,\epsilon}))\nabla T_k(u_{i,\epsilon}) \rightharpoonup a(x,t,T_k(u_i),\nabla T_k(u_i))\nabla T_k(u_i)$$

weakly in $L^1(Q_T)$.

Proof. For i = 1, 2, we introduce a time regularization of $T_k(u_i)$ for k > 0 in order to apply the monotonicity method. This regularization was introduced for the first time by R. Landes [9]. Let v_0^{μ} be a sequence of functions in $L^{\infty}(\Omega) \cap W_0^{1,p}(\Omega)$ such that $\|v_0^{\mu}\|_{L^{\infty}(\Omega)} \leq k$ for all $\mu > 0$ and v_0^{μ} converges to $T_k(u_0)$ a.e. in Ω and $\frac{1}{\mu} \|v_0^{\mu}\|_{L^p(\Omega)}$ converges to 0. For $k \geq 0$ and $\mu > 0$, we use the sequence $(T_k(u))_{\mu}$ as approximation of $T_k(u)$. We define the regularization in time of the function $T_k(u)$ by

$$(T_k(u))_{\mu}(x,t) = \mu \int_{-\infty}^t e^{\mu(s-t)} T_k(u(x,s)) \, ds,$$

extending $T_k(u)$ by 0 for s < 0. It is differentiable for a.e. $t \in (0,T)$ with

$$|(T_k(u))_{\mu}(x,t)| \le k(1 - e^{-\mu t}) < k \quad \text{a.e. in } Q,$$
$$\frac{\partial (T_k(u))_{\mu}}{\partial t} + \mu((T_k(u))_{\mu} - T_k(u)) = 0 \quad \text{in } \mathcal{D}'(\Omega),$$

Note that $(T_k(u))_{\mu} \to T_k(u)$ a.e. in Q_T , weakly-* in $L^{\infty}(Q)$ and strongly in $L^p(0,T; W_0^p(\Omega))$ as $\mu \to \infty$ and

 $\|(T_k(u))_{\mu}\|_{L^{\infty}(Q)} \leq \max(\|(T_k(u))\|_{L^{\infty}(Q)}, \|\nu_0^{\mu}\|_{L^{\infty}(\Omega)}) \leq k, \quad \forall \mu > 0, \, \forall k > 0.$ LEMMA 3.5 (see H. Redwane [12]). Let $k \geq 0$ be fixed. Let S be an

increasing $C^{\infty}(\mathbb{R})$ -function such that S(r) = r for $|r| \leq k$, and $\operatorname{supp} S'$ is compact. Then

$$\liminf_{\mu \to \infty} \inf_{\epsilon \to 0} \iint_{0}^{T} \int_{0}^{t} \left\langle \frac{\partial b_{i,\epsilon}(x, u_{i,\epsilon})}{\partial t}, S'(u_{i,\epsilon}) \left(T_k(u_{i,\epsilon}) - (T_k(u_i))_{\mu} \right) \right\rangle \ge 0,$$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between $L^1(\Omega) + W^{-1,p'}(\Omega)$ and $L^{\infty}(\Omega) \cap W^{1,p}(\Omega)$.

Let S_n be a sequence of increasing C^{∞} -functions such that

$$S_n(r) = r \quad \text{for } |r| \le n, \quad \text{supp } S'_n \subset [-(n+1), n+1],$$
$$\|S''_n\|_{L^{\infty}(\mathbb{R})} \le 1 \quad \text{for any } n \ge 1.$$

For i = 1, 2, we use the sequence $(T_k(u_i))_{\mu}$ of approximations of $T_k(u_i)$, and plug the test function $S'_n(u_{i,\epsilon})(T_k(u_{i,\epsilon}) - (T_k(u_i))_{\mu})$ in (3.4) for $n, \mu > 0$. For fixed $k \ge 0$, let $W^{\epsilon}_{\mu} = T_k(u_{i,\epsilon}) - (T_k(u_i))_{\mu}$. Upon integration over (0, t) and then over (0, T) we obtain

$$(3.24) \qquad \iint_{0}^{T} \int_{0}^{t} \left\langle \frac{\partial b_{i,\epsilon}(x, u_{i,\epsilon})}{\partial t}, S'_{n}(u_{i,\epsilon}) W_{\mu}^{\epsilon} \right\rangle ds dt \\ + \int_{Q_{T}} \int_{0}^{t} a_{\epsilon}(x, s, u_{i,\epsilon}, \nabla u_{i,\epsilon}) S'_{n}(u_{i,\epsilon}) \nabla W_{\mu}^{\epsilon} ds dt dx \\ + \int_{Q_{T}} \int_{0}^{t} a_{\epsilon}(x, s, u_{i,\epsilon}, \nabla u_{i,\epsilon}) S''_{n}(u_{i,\epsilon}) \nabla u_{i,\epsilon} \nabla W_{\mu}^{\epsilon} ds dt dx \\ - \int_{Q_{T}} \int_{0}^{t} \phi_{i,\epsilon}(x, s, u_{i,\epsilon}) S'_{n}(u_{i,\epsilon}) \nabla W_{\mu}^{\epsilon} ds dt dx \\ - \int_{Q_{T}} \int_{0}^{t} S''_{n}(u_{i,\epsilon}) \phi_{i,\epsilon}(x, s, u_{i,\epsilon}) \nabla u_{i,\epsilon} \nabla W_{\mu}^{\epsilon} ds dt dx \\ = \int_{Q_{T}} \int_{0}^{t} f_{i,\epsilon} S'_{n}(u_{i,\epsilon}) W_{\mu}^{\epsilon} dx ds dt + \int_{Q_{T}} \int_{0}^{t} F_{i} S''_{n}(u_{i,\epsilon}) \nabla W_{\mu}^{\epsilon} ds dt dx \\ + \int_{Q_{T}} \int_{0}^{t} F_{i} S''_{n}(u_{i,\epsilon}) \nabla u_{i,\epsilon} \nabla W_{\mu}^{\epsilon} ds dt dx.$$

We pass to the limit in (3.24) as $\epsilon \to 0, \mu \to \infty$ and then $n \to \infty$ for k fixed. We use Lemma 3.5 and proceeding as in [4], [12], we conclude that

$$\begin{split} \liminf_{\mu \to \infty} \lim_{\epsilon \to 0} \prod_{0}^{T} \int_{0}^{t} \left\langle \frac{\partial b_{i,\epsilon}(x, u_{i,\epsilon})}{\partial t}, W_{\mu}^{\epsilon} \right\rangle ds \, dt \geq 0 \quad \text{ for any } n \geq k, \\ \lim_{n \to \infty} \lim_{\mu \to \infty} \sup_{\epsilon \to 0} \prod_{Q_{T}} \int_{0}^{t} a_{\epsilon}(x, t, u_{i,\epsilon}, \nabla u_{i,\epsilon}) S_{n}''(u_{i,\epsilon}) \nabla u_{i,\epsilon} \nabla W_{\mu}^{\epsilon} \, ds \, dt \, dx = 0, \\ \lim_{\mu \to \infty} \lim_{\epsilon \to 0} \prod_{Q_{T}} \int_{0}^{t} f_{i,\epsilon} S_{n}'(u_{i,\epsilon}) W_{\mu}^{\epsilon} \, ds \, dt \, dx = 0, \\ \lim_{\mu \to \infty} \int_{Q_{T}} \int_{0}^{t} F_{i} S_{n}'(u_{i,\epsilon}) \nabla W_{\mu}^{\epsilon} \, ds \, dt \, dx = 0, \\ \lim_{\mu \to \infty} \int_{Q_{T}} \int_{0}^{t} F_{i} S_{n}''(u_{i,\epsilon}) \nabla u_{i,\epsilon} W_{\mu}^{\epsilon} \, ds \, dt \, dx = 0, \end{split}$$

and finally,

(3.25)
$$\lim_{\mu \to \infty} \lim_{\epsilon \to 0} \iint_{Q_T} \oint_{0}^{t} \phi_{i,\epsilon}(x, t, u_{i,\epsilon}) S'_n(u_{i,\epsilon}) \nabla W^{\epsilon}_{\mu} \, ds \, dt \, dx = 0,$$

(3.26)
$$\lim_{\mu \to \infty} \lim_{\epsilon \to 0} \iint_{Q_T} \int_{0}^{t} S''_n(u_{\epsilon}) \phi_{i,\epsilon}(x, t, u_{i,\epsilon}) \nabla u_{i,\epsilon} \nabla W^{\epsilon}_{\mu} \, ds \, dt \, dx = 0.$$

For the proof of (3.25) and (3.26) the reader is referred to [1]; here (3.22)and (3.23) are used. Note that, letting $\epsilon \to 0$ in (3.21) and using (3.23) shows that u satisfies (3.3).

Now we want to prove that u satisfies (3.4). Let S be a function in $W^{2,\infty}(\mathbb{R})$ such that supp $S' \subset [-k,k]$ where k is a positive real number. Pointwise multiplication of (3.13) by $S'(u_{\epsilon})$ leads to

$$(3.27) \qquad \frac{\partial B_{i,S}^{\epsilon}(x, u_{i,\epsilon})}{\partial t} - \operatorname{div} \left(a_{\epsilon}(x, t, u_{i,\epsilon}, \nabla u_{i,\epsilon}) S'(u_{i,\epsilon}) \right) + S''(u_{i,\epsilon}) a(x, t, u_{i,\epsilon}, \nabla u_{i,\epsilon}) \nabla u_{i,\epsilon} + \operatorname{div} \left(\phi_{i,\epsilon}(x, t, u_{i,\epsilon}) S'(u_{i,\epsilon}) \right) - S''(u_{i,\epsilon}) \phi_{i,\epsilon}(x, t, u_{i,\epsilon}) \nabla u_{i,\epsilon} = f_{i,\epsilon} S'(u_{i,\epsilon}) - \operatorname{div} (F_i S'(u_{i,\epsilon})) + S''(u_{i,\epsilon}) F_i \nabla u_{i,\epsilon} \quad \text{in } \mathcal{D}'(Q_T),$$

where $B_{i,S}^{\epsilon}(x,r) = \int_0^r \frac{\partial b_{i,\epsilon}(x,s)}{\partial s} S'(s) \, ds$. In what follows we let $\epsilon \to 0$ in each term of (3.27). Since $u_{i,\epsilon}$ converging to u_i a.e. in Q_T implies that $B_{i,S}^{\epsilon}(x, u_{i,\epsilon})$ converges to $B_{i,S}(x, u_i)$ a.e. in Q_T and weakly-* in $L^{\infty}(Q_T)$, it follows that $\partial B_{i,S}^{\epsilon}(x, u_{i,\epsilon})/\partial t$ converges to $\partial B_{i,S}(x, u_i)/\partial t$ in $\mathcal{D}'(Q_T)$. We observe that $a_{\epsilon}(x, t, u_{i,\epsilon}, \nabla u_{i,\epsilon})S'(u_{i,\epsilon})$ can be identified with $a(x, t, T_k(u_{i,\epsilon}), \nabla T_k(u_{i,\epsilon}))S'(u_{i,\epsilon})$ for $\epsilon \leq 1/k$, so using the pointwise convergence of $u_{i,\epsilon}$ to u_i in Q_T , and the weak convergence of $T_k(u_{i,\epsilon})$ to $T_k(u_i)$ in $L^p(0, T; W_0^{1,p}(\Omega))$, we get

$$a_{\epsilon}(x, t, u_{i,\epsilon}, \nabla u_{i,\epsilon}) S'(u_{i,\epsilon}) \rightharpoonup a(x, t, T_k(u_i), \nabla T_k(u_i)) S'(u_i) \quad \text{in } L^{p'}(Q_T),$$

and

 $S''(u_{i,\epsilon})a_{\epsilon}(x,t,u_{i,\epsilon},\nabla u_{i,\epsilon})\nabla u_{i,\epsilon} \rightharpoonup S''(u_i)a(x,t,T_k(u_i),\nabla T_k(u_i))\nabla T_k(u_i)$ in $L^1(Q_T)$. Furthermore, since

$$\phi_{i,\epsilon}(x,t,u_{i,\epsilon})S'(u_{i,\epsilon}) = \phi_{i,\epsilon}(x,t,T_k(u_{i,\epsilon}))S'(u_{i,\epsilon})$$

a.e. in Q_T , by (3.10) we obtain

$$|\phi_{i,\epsilon}(x,t,T_k(u_{i,\epsilon}))S'(u_{i,\epsilon})| \le |c_i(x,t)|k^{\gamma}$$

It follows that

$$\phi_{i,\epsilon}(x,t,T_k(u_{i,\epsilon}))S'(u_{i,\epsilon}) \to \phi_i(x,t,T_k(u_i))S'(u_i)$$
 strongly in $L^{p'}(Q_T)$.

In a similar way

$$S''(u_{i,\epsilon})\phi_{i,\epsilon}(x,t,u_{i,\epsilon})\nabla u_{i,\epsilon} = S''(T_k(u_{i,\epsilon}))\phi_{i,\epsilon}(x,t,T_k(u_{i,\epsilon}))\nabla T_k(u_{i,\epsilon})$$

a.e. in Q_T . Using the weak convergence of $T_k(u_{i,\epsilon})$ in $L^p(0,T; W_0^{1,p}(\Omega))$ it is possible to prove that

$$S''(u_{i,\epsilon})\phi_{\epsilon}(x,t,u_{i,\epsilon})\nabla u_{i,\epsilon} \to S''(u_i)\phi_i(x,t,u_i)\nabla u_i \quad \text{in } L^1(Q_T),$$

and $S''(u_{i,\epsilon})F_i \nabla u_{i,\epsilon} \to S''(u_i)F_i \nabla u_i$ in $L^1(Q_T)$. Since $|S'(u_{i,\epsilon})| \leq C$, it follows that $F_i S''(u_{i,\epsilon}) \to F_i S''(u_i)$ strongly in $L^{p'}(Q_T)$. Finally by (3.11) we deduce that $f_{\epsilon}S'(u_{i,\epsilon}) \to f_i S'(u_i)$ in $L^1(Q_T)$.

Now, it remains to prove that $B_{i,S}(x, u_i)$ satisfies the initial condition $B_{i,S}(x, u_i)(t = 0) = B_{i,S}(x, u_{i,0})$ in Ω . To this end, first note that $B_S^{\epsilon}(x, u_{\epsilon})$ is bounded in $L^p(0, T; W_0^{1,p}(\Omega))$. Secondly the above consideration of the behavior of the terms of this equation shows that $\partial B_{i,S}^{\epsilon}(x, u_{i,\epsilon})/\partial t$ is bounded in $L^1(Q_T) + L^{p'}(0, T; W^{-1,p'}(\Omega))$. As a consequence, $B_{i,S}^{\epsilon}(u_{i,\epsilon})(t = 0) = B_{i,S}^{\epsilon}(x, u_{i,0\epsilon})$ converges to $B_{i,S}(x, u_i)(t = 0)$ strongly in $L^1(\Omega)$ (for a proof of this trace result see [11]). Finally, the smoothness of S implies that $B_{i,S}(x, u_i)(t = 0) = B_{i,S}(x, u_{i,0})$ in Ω . The proof of Theorem 3.1 is complete.

References

 A. Aberqi, J. Bennouna, M. Mekkour and H. Redwane, Existence of renormalized solution for a nonlinear parabolic problems with lower order terms, Int. J. Math. Anal. 7 (2013), 1323–1340.

- [2] L. Aharouch, E. Azroul and A. Benkirane, Existence of solutions for degenerated problems in L¹ having lower order terms with natural growth, Portugal. Math. 65 (2008), 95–120.
- [3] L. Aharouch, A. Benkirane, J. Bennouna and A. Touzani, Existence and uniqueness of solutions of some nonlinear equations in Orlicz spaces and weighted Sobolev spaces, in: Recent Developments in Nonlinear Analysis, World Sci., 2010, 170–180.
- [4] D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations 177 (2001), 331–374.
- [5] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, *Renormalized solutions of elliptic equations with general measure data*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 741–808.
- [6] R. Di Nardo, F. Feo and O. Guibé, Existence result for nonlinear parabolic equations with lower order terms, Anal. Appl. (Singap.) 9 (2011), 161–186.
- [7] R.-J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321–366.
- [8] A. El Hachimi and H. Elouardi, Attractors for a class of doubly nonlinear parabolic systems, Electron. J. Qualit. Differential Equations 2006, no. 1, 15 pp.
- R. Landes, On the existence of weak solutions for quasilinear parabolic initialboundary problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 217–237.
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969.
- [11] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. 177 (1999), 143–172.
- [12] H. Redwane, Existence of a solution for a class of a parabolic equations with three unbounded nonlinearities, Adv. Dynam. Systems Appl. 2 (2007), 241–264.

Ahmed Aberqi, Jaouad Bennouna	Hicham Redwane
Laboratory LAMA, Department of Mathematics	Faculté des Sciences Juridiques,
Faculty of Sciences Dhar El Mahraz	Économiques et Sociales
Sidi Mohamed Ben Abdellah University	Université Hassan 1
P.O. Box 1796 Atlas, Fez, Morocco	B.P. 784, Settat, Morocco
E-mail: aberqi_ahmed@yahoo.fr	E-mail: redwane_hicham@yahoo.fr
jbennouna@hotmail.com	

Received on 25.2.2014; revised version on 18.7.2014 (2226)