Ahmed Aberqi (Fez)
Jaouad Bennouna (Fez)
Hicham Redwane (Settat)

EXISTENCE RESULT FOR A CLASS OF DOUBLY NONLINEAR PARABOLIC SYSTEMS

Abstract. We prove the existence of a renormalized solution to a class of doubly nonlinear parabolic systems.

1. Introduction. We consider the following nonlinear parabolic system:

$$
\left\{\begin{array}{l}
\frac{\partial b_{i}\left(x, u_{i}\right)}{\partial t}-\operatorname{div}\left(a\left(x, t, u_{i}, \nabla u_{i}\right)\right)+\operatorname{div}\left(\phi_{i}\left(x, t, u_{i}\right)\right) \tag{1.1}\\
\quad=f_{i}\left(x, u_{1}, u_{2}\right)-\operatorname{div}\left(F_{i}\right) \quad \text { in } Q_{T}, \\
u_{i}(x, t)=0 \quad \text { on } \partial \Omega \times(0, T), \\
b_{i}\left(x, u_{i}(x, 0)\right)=b_{i}\left(x, u_{0, i}(x)\right) \quad \text { in } \Omega,
\end{array}\right.
$$

where $i=1,2$.
In (1.1), Ω is a bounded domain of $\mathbb{R}^{N}(N \geq 2) ; T$ is a positive real number; $Q_{T}=\Omega \times(0, T) ;-\operatorname{div}\left(a\left(x, t, u_{i}, \nabla u_{i}\right)\right)$ is a Leray-Lions operator defined on $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) ; \phi_{i}\left(x, t, u_{i}\right)$ is a Carathéodory function (see assumptions (2.5)-(2.6) ; $b_{i}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for every $x \in \Omega, b_{i}(x, \cdot)$ is a strictly increasing C^{1}-function; $u_{0, i}$ is in $L^{1}(\Omega)$ with $b_{i}\left(\cdot, u_{0, i}\right)$ in $L^{1}(\Omega) ; f_{i}: \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function (see Assumptions H4); and $F_{i} \in\left(L^{p^{\prime}}(Q)\right)^{N}$.

Under our assumptions, problem (1.1) does not admit, in general, a weak solution since the terms $\phi_{i}\left(x, t, u_{i}\right)$ and $f_{i}\left(x, u_{1}, u_{2}\right)$ may not belong to $\left(L_{\mathrm{loc}}^{1}(Q)\right)^{N}$. In order to overcome this difficulty, we work in the framework of renormalized solutions (see Definition 3.1). This notion was introduced by R.-J. DiPerna and P.-L. Lions 7 for the study of the Boltzmann equation. It was adapted to the study of some nonlinear elliptic or parabolic problems in

[^0]fluid mechanics in [5]. In the case where $b(x, u)=u$, the existence of renormalized solutions for (1.1) has been established by R. Di Nardo et al. 6].

In the case where $\phi(x, t, u)=0$ and $f \in L^{1}\left(Q_{T}\right)$, the existence of renormalized solutions has been established by H. Redwane [12] in the classical Sobolev space; existence results have also been proved in [1], [9] in the case where $f_{i}\left(x, u_{1}, u_{2}\right)$ is replaced by $f-\operatorname{div}(g)$ where $f \in L^{1}(Q)$ and $g \in\left(L^{p^{\prime}}(Q)\right)^{N}$.

It is our purpose in this paper to generalize the result of [6] and prove the existence of a renormalized solution of system (1.1).

The plan of the paper is as follows: In Section 2 we give the basic assumptions. In Section 3 we give the definition of a renormalized solution of (1.1), and we establish (Theorem 3.1) the existence of such a solution.
2. Assumptions on data. Let Ω be a bounded open set in $\mathbb{R}^{N}(N \geq 2)$, T a positive real number, and $Q_{T}=\Omega \times(0, T)$.
2.1. Assumptions. Throughout this paper, we assume that the following assumptions hold true:

Assumption (H1). $b_{i}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for every $x \in \Omega, b_{i}(x, \cdot)$ is a strictly increasing $C^{1}(\mathbb{R})$-function with $b_{i}(x, 0)=0$ for any $k>0$, and there exists a constant $\lambda_{i}>0$ and functions $A_{k}^{i} \in L^{\infty}(\Omega)$ and $B_{k}^{i} \in L^{p}(\Omega)$ such that for almost every x in Ω,

$$
\begin{equation*}
\lambda_{i} \leq \frac{\partial b_{i}(x, s)}{\partial s} \leq A_{k}^{i}(x), \quad\left|\nabla_{x}\left(\frac{\partial b_{i}(x, s)}{\partial s}\right)\right| \leq B_{k}^{i}(x) \quad \forall|s| \leq k \tag{2.1}
\end{equation*}
$$

Assumption (H2). $a: Q_{T} \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function such that, for any $k>0$, there exist ν_{k} and a function $h_{k} \in L^{p^{\prime}}\left(Q_{T}\right)$ with

$$
\begin{align*}
& |a(x, t, s, \xi)| \leq \nu_{k}\left(h_{k}(x, t)+|\xi|^{p-1}\right) \quad \forall|s| \leq k \tag{2.2}\\
& a(x, t, s, \xi) \xi \geq \alpha|\xi|^{p} \quad \text { with some } \alpha>0 \tag{2.3}\\
& (a(x, t, s, \xi)-a(x, t, s, \eta)(\xi-\eta)>0 \quad \text { when } \xi \neq \eta \tag{2.4}
\end{align*}
$$

Assumption (H3). $\phi_{i}: Q_{T} \times \mathbb{R} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function such that for almost every $(x, t) \in Q_{T}$ and every $s \in \mathbb{R}$,

$$
\begin{gather*}
\left|\phi_{i}(x, t, s)\right| \leq c_{i}(x, t)|s|^{\gamma} \tag{2.5}\\
c_{i} \in L^{\tau}\left(Q_{T}\right) \quad \text { with } \quad \tau=\frac{N+p}{p-1}, \quad \gamma=\frac{N+2}{N+p}(p-1) \tag{2.6}
\end{gather*}
$$

Assumption (H4). For $i=1,2, f_{i}: \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function with $f_{1}(x, 0, s)=f_{2}(x, s, 0)=0$ for a.e. $x \in \Omega$, and all $s \in \mathbb{R}$; and for almost every $x \in \Omega$, and every $s_{1}, s_{2} \in \mathbb{R}$,

$$
\operatorname{sign}\left(s_{i}\right) f_{i}\left(x, s_{1}, s_{2}\right) \geq 0
$$

The growth assumptions on f_{i} are as follows: for each $k>0$ there exist $\sigma_{k}>0$ and $F_{k} \in L^{1}(\Omega)$ such that

$$
\begin{equation*}
\left|f_{1}\left(x, s_{1}, s_{2}\right)\right| \leq F_{k}+\sigma_{k}\left|b_{2}\left(x, s_{2}\right)\right| \quad \text { a.e. } x \in \Omega, \forall\left|s_{1}\right| \leq k, \forall s_{2} \in \mathbb{R} \tag{2.7}
\end{equation*}
$$

and for each $k>0$ there exist $\mu_{k}>0$ and $G_{k} \in L^{1}(\Omega)$ such that

$$
\begin{equation*}
\left|f_{2}\left(x, s_{1}, s_{2}\right)\right| \leq G_{k}(x)+\mu_{k}\left|b_{1}\left(x, s_{1}\right)\right| \quad \text { a.e. } x \in \Omega, \forall\left|s_{2}\right| \leq k, \forall s_{1} \in \mathbb{R} \tag{2.8}
\end{equation*}
$$

Finally, $u_{0, i}$ is a measurable function such that $b_{i}\left(\cdot, u_{0, i}\right) \in L^{1}(\Omega)$ for $i=1,2$.
3. Main results. In this section, we study the existence of renormalized solutions to systems (1.1).

Definition 3.1. A couple of measurable functions $\left(u_{1}, u_{2}\right)$ defined on Q_{T} is called a renormalized solution of (1.1) if for $i=1,2$ the function u_{i} satisfies

$$
\begin{align*}
& b_{i}\left(x, u_{i}\right) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \tag{3.1}\\
& T_{k}\left(u_{i}\right) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \quad \text { for any } k>0 \\
& \lim _{n \rightarrow \infty} \frac{1}{n} \int_{\left\{(x, t) \in Q_{T}:\left|u_{i}(x, t)\right| \leq n\right\}} a\left(x, t, u_{i}, \nabla u_{i}\right) \nabla u_{i} d x d t=0
\end{align*}
$$

and for every function S in $W^{2, \infty}(\mathbb{R})$ which is piecewise C^{1} and such that S^{\prime} has compact support,

$$
\begin{array}{r}
\frac{\partial B_{i, S}\left(x, u_{i}\right)}{\partial t}-\operatorname{div}\left(a\left(x, t, u_{i}, \nabla u_{i}\right) S^{\prime}\left(u_{i}\right)\right)+S^{\prime \prime}\left(u_{i}\right) a\left(x, t, u_{i}, \nabla u_{i}\right) \nabla u_{i} \tag{3.4}\\
+\operatorname{div}\left(\phi_{i}\left(x, t, u_{i}\right) S^{\prime}\left(u_{i}\right)\right)-S^{\prime \prime}\left(u_{i}\right) \phi_{i}\left(x, t, u_{i}\right) \nabla u_{i} \\
=f_{i}\left(x, u_{1}, u_{2}\right) S^{\prime}\left(u_{i}\right)-\operatorname{div}\left(S^{\prime}\left(u_{i}\right) F_{i}\right)+S^{\prime \prime}\left(u_{i}\right) F_{i} \nabla u_{i} \quad \text { in } \mathcal{D}^{\prime}\left(Q_{T}\right)
\end{array}
$$

and

$$
\begin{equation*}
B_{i, S}\left(x, u_{i}\right)(t=0)=B_{i, S}\left(x, u_{i, 0}\right) \quad \text { in } \Omega \tag{3.5}
\end{equation*}
$$

where $B_{i, S}(x, z)=\int_{0}^{z} \frac{\partial b_{i}(x, s)}{\partial s} S^{\prime}(s) d s$.
Equation (3.4) is formally obtained through pointwise multiplication of (1.1) by $S^{\prime}(u)$. However $a\left(x, t, u_{i}, \nabla u_{i}\right)$ and $\phi_{i}\left(x, t, u_{i}\right)$ do not in general make sense in (1.1). Recall that for a renormalized solution, due to (3.2), each term in (3.4) has a meaning in $L^{1}(Q)+L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$ (see e.g. [5]). We have

$$
\begin{equation*}
\frac{\partial B_{i, S}\left(x, u_{i}\right)}{\partial t} \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)+L^{1}(Q) \tag{3.6}
\end{equation*}
$$

Then (3.6) and (3.7) imply that $B_{i, S}\left(x, u_{i}\right)$ belongs to $C^{0}\left([0, T] ; L^{1}(\Omega)\right)$ (for a proof of this trace result see [11]), so that the initial condition (3.5) makes sense.

Main Theorem 3.2. Let $b\left(x, u_{0}\right) \in L^{1}(\Omega)$ and assume that (H1)-(H4) hold true. Then there exists a renormalized solution $\left(u_{1}, u_{2}\right)$ of problem (1.1) in the sense of Definition 3.1.

Proof. STEP 1. Let us introduce the following regularization of the data: for $i=1,2$ and $\epsilon>0$,

$$
\begin{align*}
& b_{i, \epsilon}(x, r)=b\left(x, T_{1 / \epsilon}(r)\right)+\epsilon r \quad \forall r \in \mathbb{R}, \tag{3.8}\\
& a_{\epsilon}(x, t, s, \xi)=a\left(x, t, T_{1 / \epsilon}(s), \xi\right) \quad \text { a.e. }(x, t) \in Q_{T}, \forall s \in \mathbb{R}, \forall \xi \in \mathbb{R}^{N}, \\
& \phi_{i, \epsilon}(x, t, r)=\phi_{i}\left(x, t, T_{1 / \epsilon}(r)\right) \quad \text { a.e. }(x, t) \in Q_{T}, \forall r \in \mathbb{R}, \\
& f_{1, \epsilon}\left(x, s_{1}, s_{2}\right)=f_{1}\left(x, T_{1 / \epsilon}\left(s_{1}\right), T_{1 / \epsilon}\left(s_{2}\right)\right) \quad \text { a.e. } x \in \Omega, \forall s_{1}, s_{2} \in \mathbb{R}, \\
& f_{2, \epsilon}\left(x, s_{1}, s_{2}\right)=f_{2}\left(x, T_{1 / \epsilon}\left(s_{1}\right), T_{1 / \epsilon}\left(s_{2}\right)\right) \quad \text { a.e. } x \in \Omega, \forall s_{1}, s_{2} \in \mathbb{R} .
\end{align*}
$$

Let $u_{i, 0 \epsilon} \in C_{0}^{\infty}(\Omega)$ be such that

$$
\begin{equation*}
b_{i, \epsilon}\left(x, u_{i, 0 \epsilon}\right) \rightarrow b_{i}\left(x, u_{i, 0}\right) \quad \text { strongly in } L^{1}(\Omega) \tag{3.12}
\end{equation*}
$$

In view of (3.8), for $i=1,2, b_{i, \epsilon}$ is a Carathéodory function and satisfies (2.1), so there exists $\lambda_{i}>0$ such that

$$
\lambda_{i}+\epsilon \leq \frac{\partial b_{i, \epsilon}(x, s)}{\partial s}, \quad\left|b_{i, \epsilon}(x, s)\right| \leq \max _{|s| \leq 1 / \epsilon}\left|b_{i}(x, s)\right| \quad \text { a.e. } x \in \Omega, \forall s \in \mathbb{R}
$$

Let us now consider the regularized problem

$$
\left\{\begin{array}{l}
\frac{\partial b_{i, \epsilon}\left(x, u_{i, \epsilon}\right)}{\partial t}-\operatorname{div}\left(a_{\epsilon}\left(x, t, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right)\right)+\operatorname{div}\left(\phi_{i, \epsilon}\left(x, t, u_{i, \epsilon}\right)\right) \tag{3.13}\\
=f_{i, \epsilon}\left(x, u_{1}, u_{2}\right)-\operatorname{div}\left(F_{i}\right) \quad \text { in } Q_{T}, \\
u_{i, \epsilon}(x, t)=0 \quad \text { on } \partial \Omega \times(0, T), \\
b_{i, \epsilon}\left(x, u_{i, \epsilon}\right)(t=0)=b_{i, \epsilon}\left(x, u_{i, 0 \epsilon}\right) \quad \text { in } \Omega
\end{array}\right.
$$

In view of (2.7)-2.8), there exist $F_{1, \epsilon}, F_{2, \epsilon} \in L^{1}(\Omega)$ and $\sigma_{\epsilon}, \mu_{\epsilon}>0$ such that

$$
\begin{aligned}
& \left|f_{1, \epsilon}\left(x, s_{1}, s_{2}\right)\right| \leq F_{1, \epsilon}(x)+\sigma_{\epsilon} \max _{|s| \leq 1 / \epsilon}\left|b_{i}(x, s)\right| \quad \text { a.e. } x \in \Omega, \forall s_{1}, s_{2} \in \mathbb{R} \\
& \left|f_{2, \epsilon}\left(x, s_{1}, s_{2}\right)\right| \leq F_{2, \epsilon}(x)+\mu_{\epsilon} \max _{|s| \leq 1 / \epsilon}\left|b_{i}(x, s)\right| \quad \text { a.e. } x \in \Omega, \forall s_{1}, s_{2} \in \mathbb{R}
\end{aligned}
$$

Hence, proving the existence of a weak solution $u_{i, \epsilon} \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ of (3.13) is an easy task (see e.g. [10], [8]).

Step 2. The estimates derived in this step rely on standard techniques for problems of type (3.13), and we just sketch their proof (referring the reader to [4]) for the elliptic version. Let $\tau_{1} \in(0, T)$ and t fixed in $\left(0, \tau_{1}\right)$. For $i=1,2$, using $T_{k}\left(u_{i, \epsilon}\right) \chi_{(0, t)}$ as a test function in 3.13$)$, we integrate over $\left(0, \tau_{1}\right)$, and by the condition 2.5 we have

$$
\begin{align*}
& \int_{\Omega} B_{i, k}^{\epsilon}\left(x, u_{i, \epsilon}(t)\right) d x+\int_{Q_{t}} a_{\epsilon}\left(x, t, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right) \nabla T_{k}\left(u_{i, \epsilon}\right) d x d s \tag{3.14}\\
& \leq \int_{Q_{t}} c(x, t)\left|u_{i, \epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right| d x d s+\int_{Q_{t}} f_{i, \epsilon}\left(x, u_{1}^{\epsilon}, u_{2}^{\epsilon}\right) T_{k}\left(u_{i, \epsilon}\right) d x d s \\
& \quad+\int_{\Omega} B_{k}^{i, \epsilon}\left(x, u_{i, 0}^{\epsilon}\right) d x+\int_{Q_{t}} F_{i} \nabla T_{k}\left(u_{i}^{\epsilon}\right) d x d s
\end{align*}
$$

where $B_{i, k}^{\epsilon}(x, r)=\int_{0}^{r} T_{k}(s) \frac{\partial b_{i, \epsilon}(x, s)}{\partial s} d s$. Due to the definition of $B_{i, k}^{\epsilon}$ we have

$$
\begin{align*}
0 \leq \int_{\Omega} B_{i, k}^{\epsilon}\left(x, u_{i, 0 \epsilon}\right) d x & \leq k \int_{\Omega}\left|b_{i, \epsilon}\left(x, u_{i, 0 \epsilon}\right)\right| d x \tag{3.15}\\
& =k\left\|b_{i}\left(x, u_{i, 0 \epsilon}\right)\right\|_{L^{1}(\Omega)} \quad \forall k>0 .
\end{align*}
$$

Using (3.14) and (2.3) and (3.11) we obtain

$$
\begin{aligned}
& \int_{\Omega} B_{i, k}^{\epsilon}\left(x, u_{i, \epsilon}(t)\right) d x+\alpha \int_{Q_{t}}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right|^{p} d x d s \\
& \quad \leq \int_{Q_{t}} c(x, t)\left|u_{i, \epsilon} \gamma^{\gamma}\right| \nabla T_{k}\left(u_{i, \epsilon}\right) \mid d s d x \\
& \quad+k\left(\left\|b_{i}\left(x, u_{i, 0 \epsilon}\right)\right\|_{L^{1}(\Omega)}+\left\|f_{i, \epsilon}\right\|_{L^{1}\left(Q_{T}\right)}\right)+\int_{Q_{t}} F_{i} \nabla T_{k}\left(u_{i, \epsilon}\right) d x d s .
\end{aligned}
$$

Let $M_{i}=\sup _{\epsilon}\left\|f_{i, \epsilon}\right\|_{L^{1}\left(Q_{T}\right)}+\left\|b_{i}\left(x, u_{i, 0 \epsilon}\right)\right\|_{L^{1}(\Omega)}$. Note that

$$
B_{i, k}^{\epsilon}(x, s)=\int_{0}^{s} T_{k}(\sigma) \frac{\partial b_{i, \epsilon}(x, \sigma)}{\partial \sigma} d \sigma \geq \frac{\lambda_{i}+\epsilon}{2}\left|T_{k}(s)\right|^{2}>\frac{\lambda_{i}}{2}\left|T_{k}(s)\right|^{2} .
$$

We deduce from (3.14) and (3.15) that

$$
\begin{align*}
& \frac{\lambda_{i}}{2} \int_{\Omega}\left|T_{k}\left(u_{i, \epsilon}\right)\right|^{2} d x+\alpha \int_{Q_{t}}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right|^{p} d x d s \tag{3.16}\\
& \quad \leq M_{i} k+\int_{Q_{t}} c_{i}(x, t)\left|u_{i, \epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right| d x d s+\int_{Q_{t}} F_{i} \nabla T_{k}\left(u_{i, \epsilon}\right) d x d s
\end{align*}
$$

By the Gagliardo-Nirenberg and Young inequalities we have

$$
\begin{equation*}
\int_{Q_{t}} c_{i}(x, t)\left|u_{i, \epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right| d x d s \tag{3.17}
\end{equation*}
$$

$$
\begin{aligned}
\leq & C_{i} \frac{\gamma}{N+2}\left\|c_{i}(x, t)\right\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{i, \epsilon}\right)\right|^{2} d x \\
& +C_{i} \frac{N+2-\gamma}{N+2}\left\|c_{i}(x, t)\right\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}\left(\int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right|^{p} d x d s\right)^{\left(\frac{1}{p}+\frac{N \gamma}{(N+2) p}\right) \frac{N+2}{N+2-\gamma}} .
\end{aligned}
$$

Since $\gamma=\frac{(N+2)}{N+p}(p-1)$, by using 3.16 and 3.17 we obtain

$$
\begin{aligned}
& \frac{\lambda_{i}}{2} \int_{\Omega}\left|T_{k}\left(u_{i, \epsilon}\right)\right|^{2} d x+\alpha \int_{Q_{t}}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right|^{p} d x d s \\
& \leq M_{i} k+C_{i} \frac{\gamma}{N+2}\left\|c_{i}(x, t)\right\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{i, \epsilon}\right)\right|^{2} d x \\
&+\left(\frac{\alpha}{p}\right)^{-(p-1)}\left\|F_{i}\right\|_{\left(L^{p^{\prime}}(Q)\right)^{N}} \\
&+C_{i} \frac{N+2-\gamma}{N+2}\left\|c_{i}(x, t)\right\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} \int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right|^{p} d x d s \\
&+\frac{\alpha}{p} \int_{Q_{t}}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right|^{p} d x d s
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
&\left(\frac{\lambda_{i}}{2}-C_{i} \frac{\gamma}{N+2}\left\|c_{i}(x, t)\right\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}\right) \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{i, \epsilon}\right)\right|^{2} d x+\alpha \int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right|^{p} d x d s \\
&-\left(C_{i} \frac{N+2-\gamma}{N+2}\left\|c_{i}(x, t)\right\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}+\frac{\alpha}{p}\right) \int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right|^{p} d x d s \leq M_{i} k
\end{aligned}
$$

If we choose τ_{1} such that

$$
\begin{aligned}
\frac{\lambda_{i}}{2}-C_{i} \frac{\gamma}{N+2}\left\|c_{i}(x, t)\right\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} & \geq 0 \\
\frac{\alpha}{p^{\prime}}-C_{i} \frac{N+2-\gamma}{N+2}\left\|c_{i}(x, t)\right\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} & \geq 0
\end{aligned}
$$

then, denoting by C_{i} the minimum of

$$
\frac{\lambda_{i}(N+2)}{2 \gamma\left\|c_{i}(x, t)\right\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}} \quad \text { and } \quad \frac{\alpha(N+2)}{p^{\prime}(N+2-\gamma)\left\|c_{i}(x, t)\right\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}},
$$

we obtain

$$
\begin{equation*}
\sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{i, \epsilon}\right)\right|^{2} d x+\int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{i, \epsilon}\right)\right|^{p} d x d t \leq C_{i} M_{i} k \tag{3.18}
\end{equation*}
$$

Then, by (3.18) and Lemma 3.1 ([1], [6]), we conclude that $T_{k}\left(u_{i, \epsilon}\right)$ is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ independently of ϵ for any $k \geq 0$, so there exists a subsequence still denoted by $u_{i, \epsilon}$ such that

$$
\begin{equation*}
T_{k}\left(u_{i, \epsilon}\right) \rightharpoonup H_{i, k} \quad \text { weakly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \tag{3.19}
\end{equation*}
$$

Lemma 3.3 (see [1]). We have

$$
\begin{equation*}
u_{i, \epsilon} \rightarrow u_{i} \quad \text { a.e. } Q_{T}, \quad b_{i}\left(x, u_{i}\right) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \tag{3.20}
\end{equation*}
$$

where u_{i} is a measurable function defined on Q_{T} for $i=1,2$. Moreover,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{\epsilon \rightarrow 0} \frac{1}{n} \int_{\left\{\left|u_{i, \epsilon}\right| \leq n\right\}} a\left(x, t, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right) \nabla u_{i, \epsilon} d x d t=0 \tag{3.21}
\end{equation*}
$$

STEP 4. In this step we prove that the weak limit $X_{i, k}$ of $a\left(x, t, T_{k}\left(u_{i, \epsilon}\right)\right.$, $\nabla T_{k}\left(u_{i, \epsilon}\right)$) can be identified with $a\left(x, t, T_{k}\left(u_{i}\right), \nabla T_{k}\left(u_{i}\right)\right)$, for $i=1,2$. To prove this we recall the following lemma (see [1]):

Lemma 3.4. For $i=1,2$, a subsequence of $u_{i, \epsilon}$ satisfies, for any $k \geq 0$,

$$
\begin{aligned}
\limsup _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t} a\left(x, s, u_{i, \epsilon}, \nabla T_{k}\left(u_{i, \epsilon}\right)\right) \nabla T_{k}\left(u_{i, \epsilon}\right) & d s d x d t \\
& \leq \int_{Q_{T}} \int_{0}^{t} X_{i, k} \nabla T_{k}\left(u_{i}\right) d x d s d t
\end{aligned}
$$

$\lim _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t}\left(a\left(x, t, T_{k}\left(u_{i, \epsilon}\right), \nabla T_{k}\left(u_{i, \epsilon}\right)\right)-a\left(x, t, T_{k}\left(u_{i, \epsilon}\right), \nabla T_{k}\left(u_{i}\right)\right)\right)$

$$
\times\left(\nabla T_{k}\left(u_{i, \epsilon}\right)-\nabla T_{k}\left(u_{i}\right)\right)=0
$$

$$
\begin{equation*}
\left.X_{i, k}=a\left(x, t, T_{k}\left(u_{i}\right), \nabla T_{k}\left(u_{i}\right)\right)\right) \quad \text { a.e. in } Q_{T} \tag{3.22}
\end{equation*}
$$

and as ϵ tends to 0 ,

$$
\begin{align*}
a\left(x, t, T_{k}\left(u_{i, \epsilon}\right), \nabla T_{k}\left(u_{i, \epsilon}\right)\right) \nabla & T_{k}\left(u_{i, \epsilon}\right) \tag{3.23}\\
& \rightharpoonup a\left(x, t, T_{k}\left(u_{i}\right), \nabla T_{k}\left(u_{i}\right)\right) \nabla T_{k}\left(u_{i}\right)
\end{align*}
$$

weakly in $L^{1}\left(Q_{T}\right)$.
Proof. For $i=1,2$, we introduce a time regularization of $T_{k}\left(u_{i}\right)$ for $k>0$ in order to apply the monotonicity method. This regularization was introduced for the first time by R. Landes [9]. Let v_{0}^{μ} be a sequence of functions in $L^{\infty}(\Omega) \cap W_{0}^{1, p}(\Omega)$ such that $\left\|v_{0}^{\mu}\right\|_{L^{\infty}(\Omega)} \leq k$ for all $\mu>0$ and v_{0}^{μ} converges to $T_{k}\left(u_{0}\right)$ a.e. in Ω and $\frac{1}{\mu}\left\|v_{0}^{\mu}\right\|_{L^{p}(\Omega)}$ converges to 0 . For $k \geq 0$ and $\mu>0$, we use the sequence $\left(T_{k}(u)\right)_{\mu}$ as approximation of $T_{k}(u)$. We define the regularization in time of the function $T_{k}(u)$ by

$$
\left(T_{k}(u)\right)_{\mu}(x, t)=\mu \int_{-\infty}^{t} e^{\mu(s-t)} T_{k}(u(x, s)) d s
$$

extending $T_{k}(u)$ by 0 for $s<0$. It is differentiable for a.e. $t \in(0, T)$ with

$$
\begin{aligned}
& \left|\left(T_{k}(u)\right)_{\mu}(x, t)\right| \leq k\left(1-e^{-\mu t}\right)<k \quad \text { a.e. in } Q \\
& \frac{\partial\left(T_{k}(u)\right)_{\mu}}{\partial t}+\mu\left(\left(T_{k}(u)\right)_{\mu}-T_{k}(u)\right)=0 \quad \text { in } \mathcal{D}^{\prime}(\Omega)
\end{aligned}
$$

Note that $\left(T_{k}(u)\right)_{\mu} \rightarrow T_{k}(u)$ a.e. in Q_{T}, weakly-* in $L^{\infty}(Q)$ and strongly in $L^{p}\left(0, T ; W_{0}^{p}(\Omega)\right)$ as $\mu \rightarrow \infty$ and $\left\|\left(T_{k}(u)\right)_{\mu}\right\|_{L^{\infty}(Q)} \leq \max \left(\left\|\left(T_{k}(u)\right)\right\|_{L^{\infty}(Q)},\left\|\nu_{0}^{\mu}\right\|_{L^{\infty}(\Omega)}\right) \leq k, \quad \forall \mu>0, \forall k>0$.

Lemma 3.5 (see H. Redwane [12]). Let $k \geq 0$ be fixed. Let S be an increasing $C^{\infty}(\mathbb{R})$-function such that $S(r)=r$ for $|r| \leq k$, and $\operatorname{supp} S^{\prime}$ is compact. Then

$$
\liminf _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t}\left\langle\frac{\partial b_{i, \epsilon}\left(x, u_{i, \epsilon}\right)}{\partial t}, S^{\prime}\left(u_{i, \epsilon}\right)\left(T_{k}\left(u_{i, \epsilon}\right)-\left(T_{k}\left(u_{i}\right)\right)_{\mu}\right)\right\rangle \geq 0
$$

where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between $L^{1}(\Omega)+W^{-1, p^{\prime}}(\Omega)$ and $L^{\infty}(\Omega) \cap W^{1, p}(\Omega)$.

Let S_{n} be a sequence of increasing C^{∞}-functions such that

$$
\begin{aligned}
& S_{n}(r)=r \quad \text { for }|r| \leq n, \quad \operatorname{supp} S_{n}^{\prime} \subset[-(n+1), n+1] \\
& \left\|S_{n}^{\prime \prime}\right\|_{L^{\infty}(\mathbb{R})} \leq 1 \quad \text { for any } n \geq 1
\end{aligned}
$$

For $i=1,2$, we use the sequence $\left(T_{k}\left(u_{i}\right)\right)_{\mu}$ of approximations of $T_{k}\left(u_{i}\right)$, and plug the test function $S_{n}^{\prime}\left(u_{i, \epsilon}\right)\left(T_{k}\left(u_{i, \epsilon}\right)-\left(T_{k}\left(u_{i}\right)\right)_{\mu}\right)$ in (3.4) for $n, \mu>0$. For fixed $k \geq 0$, let $W_{\mu}^{\epsilon}=T_{k}\left(u_{i, \epsilon}\right)-\left(T_{k}\left(u_{i}\right)\right)_{\mu}$. Upon integration over $(0, t)$ and then over $(0, T)$ we obtain

$$
\begin{align*}
& \int_{0}^{T} \int_{0}^{t}\left\langle\frac{\partial b_{i, \epsilon}\left(x, u_{i, \epsilon}\right)}{\partial t}, S_{n}^{\prime}\left(u_{i, \epsilon}\right) W_{\mu}^{\epsilon}\right\rangle d s d t \tag{3.24}\\
&+\int_{Q_{T}} \int_{0}^{t} a_{\epsilon}\left(x, s, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right) S_{n}^{\prime}\left(u_{i, \epsilon}\right) \nabla W_{\mu}^{\epsilon} d s d t d x \\
&+\int_{Q_{T}} \int_{0}^{t} a_{\epsilon}\left(x, s, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right) S_{n}^{\prime \prime}\left(u_{i, \epsilon}\right) \nabla u_{i, \epsilon} \nabla W_{\mu}^{\epsilon} d s d t d x \\
&-\int_{Q_{T}}^{t} \int_{0}^{t} \phi_{i, \epsilon}\left(x, s, u_{i, \epsilon}\right) S_{n}^{\prime}\left(u_{i, \epsilon}\right) \nabla W_{\mu}^{\epsilon} d s d t d x \\
&-\int_{Q_{T}} \int_{0}^{t} S_{n}^{\prime \prime}\left(u_{i, \epsilon}\right) \phi_{i, \epsilon}\left(x, s, u_{i, \epsilon}\right) \nabla u_{i, \epsilon} \nabla W_{\mu}^{\epsilon} d s d t d x \\
&= \int_{Q_{T}}^{t} \int_{0}^{t} f_{i, \epsilon} S_{n}^{\prime}\left(u_{i, \epsilon}\right) W_{\mu}^{\epsilon} d x d s d t+\int_{Q_{T}}^{t} F_{i} S_{n}^{\prime}\left(u_{i, \epsilon}\right) \nabla W_{\mu}^{\epsilon} d s d t d x \\
&+\int_{Q_{T}}^{t} \int_{0}^{t} F_{i} S_{n}^{\prime \prime}\left(u_{i, \epsilon}\right) \nabla u_{i, \epsilon} \nabla W_{\mu}^{\epsilon} d s d t d x
\end{align*}
$$

We pass to the limit in (3.24) as $\epsilon \rightarrow 0, \mu \rightarrow \infty$ and then $n \rightarrow \infty$ for k fixed. We use Lemma 3.5 and proceeding as in [4, [12], we conclude that

$$
\begin{gathered}
\liminf _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t}\left\langle\frac{\partial b_{i, \epsilon}\left(x, u_{i, \epsilon}\right)}{\partial t}, W_{\mu}^{\epsilon}\right\rangle d s d t \geq 0 \quad \text { for any } n \geq k \\
\lim _{n \rightarrow \infty} \limsup _{\mu \rightarrow \infty} \limsup _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t} a_{\epsilon}\left(x, t, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right) S_{n}^{\prime \prime}\left(u_{i, \epsilon}\right) \nabla u_{i, \epsilon} \nabla W_{\mu}^{\epsilon} d s d t d x=0, \\
\lim _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t} f_{i, \epsilon} S_{n}^{\prime}\left(u_{i, \epsilon}\right) W_{\mu}^{\epsilon} d s d t d x=0 \\
\lim _{\mu \rightarrow \infty} \int_{Q_{T}}^{t} \int_{0}^{t} F_{i} S_{n}^{\prime}\left(u_{i, \epsilon}\right) \nabla W_{\mu}^{\epsilon} d s d t d x=0 \\
\lim _{\mu \rightarrow \infty} \int_{Q_{T}}^{t} \int_{0}^{t} F_{i} S_{n}^{\prime \prime}\left(u_{i, \epsilon}\right) \nabla u_{i, \epsilon} W_{\mu}^{\epsilon} d s d t d x=0
\end{gathered}
$$

and finally,

$$
\begin{equation*}
\lim _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t} \phi_{i, \epsilon}\left(x, t, u_{i, \epsilon}\right) S_{n}^{\prime}\left(u_{i, \epsilon}\right) \nabla W_{\mu}^{\epsilon} d s d t d x=0 \tag{3.25}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t} S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \phi_{i, \epsilon}\left(x, t, u_{i, \epsilon}\right) \nabla u_{i, \epsilon} \nabla W_{\mu}^{\epsilon} d s d t d x=0 \tag{3.26}
\end{equation*}
$$

For the proof of (3.25) and (3.26) the reader is referred to [1] here (3.22) and (3.23) are used. Note that, letting $\epsilon \rightarrow 0$ in (3.21) and using (3.23) shows that u satisfies (3.3).

Now we want to prove that u satisfies (3.4). Let S be a function in $W^{2, \infty}(\mathbb{R})$ such that $\operatorname{supp} S^{\prime} \subset[-k, k]$ where k is a positive real number. Pointwise multiplication of (3.13) by $S^{\prime}\left(u_{\epsilon}\right)$ leads to

$$
\begin{align*}
& \frac{\partial B_{i, S}^{\epsilon}\left(x, u_{i, \epsilon}\right)}{\partial t}-\operatorname{div}\left(a_{\epsilon}\left(x, t, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right) S^{\prime}\left(u_{i, \epsilon}\right)\right) \tag{3.27}\\
&+S^{\prime \prime}\left(u_{i, \epsilon}\right) a\left(x, t, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right) \nabla u_{i, \epsilon}+\operatorname{div}\left(\phi_{i, \epsilon}\left(x, t, u_{i, \epsilon}\right) S^{\prime}\left(u_{i, \epsilon}\right)\right) \\
&-S^{\prime \prime}\left(u_{i, \epsilon}\right) \phi_{i, \epsilon}\left(x, t, u_{i, \epsilon}\right) \nabla u_{i, \epsilon} \\
&= f_{i, \epsilon} S^{\prime}\left(u_{i, \epsilon}\right)-\operatorname{div}\left(F_{i} S^{\prime}\left(u_{i, \epsilon}\right)\right)+S^{\prime \prime}\left(u_{i, \epsilon}\right) F_{i} \nabla u_{i, \epsilon} \quad \text { in } \mathcal{D}^{\prime}\left(Q_{T}\right),
\end{align*}
$$

where $B_{i, S}^{\epsilon}(x, r)=\int_{0}^{r} \frac{\partial b_{i, \epsilon}(x, s)}{\partial s} S^{\prime}(s) d s$.
In what follows we let $\epsilon \rightarrow 0$ in each term of (3.27). Since $u_{i, \epsilon}$ converging to u_{i} a.e. in Q_{T} implies that $B_{i, S}^{\epsilon}\left(x, u_{i, \epsilon}\right)$ converges to $B_{i, S}\left(x, u_{i}\right)$ a.e. in Q_{T} and weakly-* in $L^{\infty}\left(Q_{T}\right)$, it follows that $\partial B_{i, S}^{\epsilon}\left(x, u_{i, \epsilon}\right) / \partial t$ converges
to $\partial B_{i, S}\left(x, u_{i}\right) / \partial t$ in $\mathcal{D}^{\prime}\left(Q_{T}\right)$. We observe that $a_{\epsilon}\left(x, t, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right) S^{\prime}\left(u_{i, \epsilon}\right)$ can be identified with $a\left(x, t, T_{k}\left(u_{i, \epsilon}\right), \nabla T_{k}\left(u_{i, \epsilon}\right)\right) S^{\prime}\left(u_{i, \epsilon}\right)$ for $\epsilon \leq 1 / k$, so using the pointwise convergence of $u_{i, \epsilon}$ to u_{i} in Q_{T}, and the weak convergence of $T_{k}\left(u_{i, \epsilon}\right)$ to $T_{k}\left(u_{i}\right)$ in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$, we get

$$
a_{\epsilon}\left(x, t, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right) S^{\prime}\left(u_{i, \epsilon}\right) \rightharpoonup a\left(x, t, T_{k}\left(u_{i}\right), \nabla T_{k}\left(u_{i}\right)\right) S^{\prime}\left(u_{i}\right) \quad \text { in } L^{p^{\prime}}\left(Q_{T}\right)
$$

and

$$
S^{\prime \prime}\left(u_{i, \epsilon}\right) a_{\epsilon}\left(x, t, u_{i, \epsilon}, \nabla u_{i, \epsilon}\right) \nabla u_{i, \epsilon} \rightharpoonup S^{\prime \prime}\left(u_{i}\right) a\left(x, t, T_{k}\left(u_{i}\right), \nabla T_{k}\left(u_{i}\right)\right) \nabla T_{k}\left(u_{i}\right)
$$

in $L^{1}\left(Q_{T}\right)$. Furthermore, since

$$
\phi_{i, \epsilon}\left(x, t, u_{i, \epsilon}\right) S^{\prime}\left(u_{i, \epsilon}\right)=\phi_{i, \epsilon}\left(x, t, T_{k}\left(u_{i, \epsilon}\right)\right) S^{\prime}\left(u_{i, \epsilon}\right)
$$

a.e. in Q_{T}, by 3.10 we obtain

$$
\left|\phi_{i, \epsilon}\left(x, t, T_{k}\left(u_{i, \epsilon}\right)\right) S^{\prime}\left(u_{i, \epsilon}\right)\right| \leq\left|c_{i}(x, t)\right| k^{\gamma} .
$$

It follows that

$$
\phi_{i, \epsilon}\left(x, t, T_{k}\left(u_{i, \epsilon}\right)\right) S^{\prime}\left(u_{i, \epsilon}\right) \rightarrow \phi_{i}\left(x, t, T_{k}\left(u_{i}\right)\right) S^{\prime}\left(u_{i}\right) \quad \text { strongly in } L^{p^{\prime}}\left(Q_{T}\right) .
$$

In a similar way

$$
S^{\prime \prime}\left(u_{i, \epsilon}\right) \phi_{i, \epsilon}\left(x, t, u_{i, \epsilon}\right) \nabla u_{i, \epsilon}=S^{\prime \prime}\left(T_{k}\left(u_{i, \epsilon}\right)\right) \phi_{i, \epsilon}\left(x, t, T_{k}\left(u_{i, \epsilon}\right)\right) \nabla T_{k}\left(u_{i, \epsilon}\right)
$$

a.e. in Q_{T}. Using the weak convergence of $T_{k}\left(u_{i, \epsilon}\right)$ in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ it is possible to prove that

$$
S^{\prime \prime}\left(u_{i, \epsilon}\right) \phi_{\epsilon}\left(x, t, u_{i, \epsilon}\right) \nabla u_{i, \epsilon} \rightarrow S^{\prime \prime}\left(u_{i}\right) \phi_{i}\left(x, t, u_{i}\right) \nabla u_{i} \quad \text { in } L^{1}\left(Q_{T}\right)
$$

and $S^{\prime \prime}\left(u_{i, \epsilon}\right) F_{i} \nabla u_{i, \epsilon} \rightarrow S^{\prime \prime}\left(u_{i}\right) F_{i} \nabla u_{i}$ in $L^{1}\left(Q_{T}\right)$. Since $\left|S^{\prime}\left(u_{i, \epsilon}\right)\right| \leq C$, it follows that $F_{i} S^{\prime \prime}\left(u_{i, \epsilon}\right) \rightarrow F_{i} S^{\prime \prime}\left(u_{i}\right)$ strongly in $L^{p^{\prime}}\left(Q_{T}\right)$. Finally by 3.11 we deduce that $f_{\epsilon} S^{\prime}\left(u_{i, \epsilon}\right) \rightarrow f_{i} S^{\prime}\left(u_{i}\right)$ in $L^{1}\left(Q_{T}\right)$.

Now, it remains to prove that $B_{i, S}\left(x, u_{i}\right)$ satisfies the initial condition $B_{i, S}\left(x, u_{i}\right)(t=0)=B_{i, S}\left(x, u_{i, 0}\right)$ in Ω. To this end, first note that $B_{S}^{\epsilon}\left(x, u_{\epsilon}\right)$ is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$. Secondly the above consideration of the behavior of the terms of this equation shows that $\partial B_{i, S}^{\epsilon}\left(x, u_{i, \epsilon}\right) / \partial t$ is bounded in $L^{1}\left(Q_{T}\right)+L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$. As a consequence, $B_{i, S}^{\epsilon}\left(u_{i, \epsilon}\right)(t=0)=$ $B_{i, S}^{\epsilon}\left(x, u_{i, 0 \epsilon}\right)$ converges to $B_{i, S}\left(x, u_{i}\right)(t=0)$ strongly in $L^{1}(\Omega)$ (for a proof of this trace result see [11]). Finally, the smoothness of S implies that $B_{i, S}\left(x, u_{i}\right)(t=0)=B_{i, S}\left(x, u_{i, 0}\right)$ in Ω. The proof of Theorem 3.1 is complete.

References

[1] A. Aberqi, J. Bennouna, M. Mekkour and H. Redwane, Existence of renormalized solution for a nonlinear parabolic problems with lower order terms, Int. J. Math. Anal. 7 (2013), 1323-1340.
[2] L. Aharouch, E. Azroul and A. Benkirane, Existence of solutions for degenerated problems in L^{1} having lower order terms with natural growth, Portugal. Math. 65 (2008), 95-120.
[3] L. Aharouch, A. Benkirane, J. Bennouna and A. Touzani, Existence and uniqueness of solutions of some nonlinear equations in Orlicz spaces and weighted Sobolev spaces, in: Recent Developments in Nonlinear Analysis, World Sci., 2010, 170-180.
[4] D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations 177 (2001), 331-374.
[5] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 741-808.
[6] R. Di Nardo, F. Feo and O. Guibé, Existence result for nonlinear parabolic equations with lower order terms, Anal. Appl. (Singap.) 9 (2011), 161-186.
[7] R.-J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321-366.
[8] A. El Hachimi and H. Elouardi, Attractors for a class of doubly nonlinear parabolic systems, Electron. J. Qualit. Differential Equations 2006, no. 1, 15 pp.
[9] R. Landes, On the existence of weak solutions for quasilinear parabolic initialboundary problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 217-237.
[10] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969.
[11] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. 177 (1999), 143-172.
[12] H. Redwane, Existence of a solution for a class of a parabolic equations with three unbounded nonlinearities, Adv. Dynam. Systems Appl. 2 (2007), 241-264.

Ahmed Aberqi, Jaouad Bennouna
Laboratory LAMA, Department of Mathematics
Faculty of Sciences Dhar El Mahraz
Sidi Mohamed Ben Abdellah University
P.O. Box 1796 Atlas, Fez, Morocco

E-mail: aberqi_ahmed@yahoo.fr
jbennouna@hotmail.com

Hicham Redwane
Faculté des Sciences Juridiques,
Économiques et Sociales
Université Hassan 1 B.P. 784, Settat, Morocco

E-mail: redwane_hicham@yahoo.fr

Received on 25.2.2014;
revised version on 18.7.2014

[^0]: 2010 Mathematics Subject Classification: Primary 47A15; Secondary 46A32, 47D20.
 Key words and phrases: parabolic problems, Sobolev space, renormalized solutions.

