Khalil Ben Haddouch, Najib Tsouli and Zakaria El Allali (Oujda)

THE THIRD ORDER SPECTRUM OF THE p-BIHARMONIC OPERATOR WITH WEIGHT

Abstract. We show that the spectrum of $\Delta_{p}^{2} u+2 \beta \cdot \nabla\left(|\Delta u|^{p-2} \Delta u\right)+$ $|\beta|^{2}|\Delta u|^{p-2} \Delta u=\alpha m|u|^{p-2} u$, where $\beta \in \mathbb{R}^{N}$, under Navier boundary conditions, contains at least one sequence of eigensurfaces.

1. Introduction. We are concerned here with the eigenvalue problem

$$
\left\{\begin{array}{l}
\text { Find }(\beta, \alpha, u) \in \mathbb{R}^{N} \times \mathbb{R}_{+}^{*} \times(X \backslash\{0\}) \text { such that } \tag{1.1}\\
\Delta_{p}^{2} u+2 \beta \cdot \nabla\left(|\Delta u|^{p-2} \Delta u\right)+|\beta|^{2}|\Delta u|^{p-2} \Delta u=\alpha m|u|^{p-2} u \quad \text { in } \Omega, \\
u=\Delta u=0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 1), \beta \in \mathbb{R}^{N}, \Delta_{p}^{2}$ denotes the p-biharmonic operator defined by $\Delta_{p}^{2} u=\Delta\left(|\Delta u|^{p-2} \Delta u\right), X=W^{2, p}(\Omega) \cap$ $W_{0}^{1, p}(\Omega)$, and $m \in M=\left\{m \in L^{\infty}(\Omega): \operatorname{meas}\{x \in \Omega: m(x)>0\} \neq 0\right\}$.

Set $\Omega^{+}=\{x \in \Omega: m(x)>0\}$; we suppose that $\left|\Omega^{+}\right| \neq 0$.
A. Anane, O. Chakrone and J.-P. Gossez [A have studied the eigenvalue problem

$$
\left\{\begin{array}{l}
\text { Find }(\beta, \alpha, u) \in \mathbb{R}^{N} \times \mathbb{R} \times\left(W_{0}^{1, p}(\Omega) \backslash\{0\}\right) \text { such that } \\
-\Delta_{p} u=\alpha m|u|^{p-2} u+\beta \cdot|\nabla u|^{p-2} \nabla u \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

They showed that the spectrum of this problem, denoted by $\sigma_{1}\left(-\Delta_{p}, m\right)$, contains at least one sequence of eigensurfaces in $\mathbb{R}^{N} \times \mathbb{R}$.

Motivated by this work, we define the third-order spectrum for the p biharmonic operator, denoted by $\sigma_{3}\left(\Delta_{p}^{2}, m\right)$, to be the set of couples $(\beta, \alpha) \in$ $\mathbb{R}^{N} \times \mathbb{R}$ such that the problem (1.1) has a non-trivial solution $u \in X$. We will show that this spectrum contains a sequence of eigensurfaces in $\mathbb{R}^{N} \times \mathbb{R}$.

[^0]In the case where $\beta=0$, the zero order spectrum, denoted by $\sigma_{0}\left(\Delta_{p}^{2}, m\right)$, is defined to be the set of eigenvalues $\alpha \in \mathbb{R}$ such that the problem

$$
\left\{\begin{array}{l}
\text { Find }(\alpha, u) \in \mathbb{R}_{+}^{*} \times(X \backslash\{0\}) \text { such that } \tag{1.2}\\
\Delta_{p}^{2} u=\alpha m|u|^{p-2} u \quad \text { in } \Omega \\
u=\Delta u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

has a non-trivial solution $u \in X$.
Problem (1.2) was considered by P. Drábek and M. Ôtani [DR] for $m=1$. They showed that it has a principal positive eigenvalue which is simple and isolated.
A. El Khalil, S. Kellati and A. Touzani [E] have studied the spectrum of the p-biharmonic operator with weight and with Dirichlet boundary conditions. They showed that this spectrum contains at least one non-decreasing sequence of positive eigenvalues.

In 2007, M. Talbi and N. Tsouli [T] considered the spectrum of the weighted p-biharmonic operator with weight and showed that the eigenvalue problem

$$
\left\{\begin{array}{l}
\Delta\left(\rho|\Delta u|^{p-2} \Delta u\right)=\alpha m|u|^{p-2} u \quad \text { in } \Omega \tag{1.3}\\
u=\Delta u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $\rho \in C(\bar{\Omega})$ and $\rho>0$, has a non-decreasing sequence of eigenvalues, and studied the one-dimensional case.
J. Benedikt [B] found the spectrum of the p-biharmonic operator with Dirichlet and Neumann boundary conditions in the case $N=1, m=1$, and $\rho=1$.

In this article we consider the transformation of the Poisson problem used by P. Drábek and M. Ôtani. We use Ljusternik-Schnirelmann theory to prove that the spectrum of (1.1) contains a sequence of eigensurfaces $\left(G\left(\Gamma_{n}^{p}(\cdot, m)\right)\right)_{n \geq 1}$ such that for all $\beta \in \mathbb{R}^{N}, \Gamma_{n}^{p}(\beta, m) \rightarrow \infty$.
2. Preliminaries. Let $X=W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$. We denote by:

- $\|u\|_{p}=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p}$ the norm in $L^{p}(\Omega)$,
- $\|u\|_{2, p}=\left(\|\Delta u\|_{p}^{p}+\|u\|_{p}^{p}\right)^{1 / p}$ the norm in X,
- $\|u\|_{\infty}$ the norm in $L^{\infty}(\Omega)$,
- $\langle\cdot, \cdot\rangle$ the duality bracket between $L^{p}(\Omega)$ and $L^{p^{\prime}}(\Omega)$, where $1 / p+1 / p^{\prime}$ $=1$.

For all $f \in L^{p}(\Omega)$ the Dirichlet problem for the Poisson equation,

$$
\left\{\begin{array}{l}
-\Delta u=f \quad \text { in } \Omega \tag{2.1}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

is uniquely solvable in X (cf. [G]). We denote by Λ the inverse operator of $-\Delta: X \rightarrow L^{p}(\Omega)$. In the following lemma we give some properties of the operator Λ (cf. [AG]).

Lemma 2.1.
(i) (Continuity) There exists a constant $C_{p}>0$ such that $\|\Lambda f\|_{2, p} \leq$ $C_{p}\|f\|_{p}$ for all $\left.p \in\right] 1, \infty\left[\right.$ and $f \in L^{p}(\Omega)$.
(ii) (Continuity) Given $k \in \mathbb{N}^{*}$, there exists a constant $C_{p, k}>0$ such that $\|\Lambda f\|_{W^{k+2, p}} \leq C_{p, k}\|f\|_{W^{k, p}}$.
(iii) (Symmetry) The identity $\int_{\Omega} \Lambda u \cdot v d x=\int_{\Omega} u \cdot \Lambda v d x$ holds for all $u \in L^{p}(\Omega)$ and $v \in L^{p^{\prime}}(\Omega)$ with $\left.p \in\right] 1, \infty[$.
(iv) (Regularity) Given $f \in L^{\infty}(\Omega)$, we have $\Lambda f \in C^{1, \alpha}(\bar{\Omega})$ for all $\alpha \in$ $] 0,1\left[\right.$; moreover, there exists $C_{\alpha}>0$ such that $\|\Lambda f\|_{C^{1, \alpha}} \leq C_{\alpha}\|f\|_{\infty}$.
(v) (Regularity and Hopf-type maximum principle) Let $f \in C(\bar{\Omega})$ and $f \geq 0$. Then $w=\Lambda f \in C^{1, \alpha}(\bar{\Omega})$ for all $\left.\alpha \in\right] 0,1[$, and $w>0$ in Ω, $\partial w / \partial n<0$ on $\partial \Omega$.
(vi) (Order preserving property) Given $f, g \in L^{p}(\Omega)$, if $f \leq g$ in Ω then $\Lambda f<\Lambda g$ in Ω.
Remark 2.2.

$$
\forall u \in X \forall v \in L^{p}(\Omega) \quad v=-\Delta u \Leftrightarrow u=\Lambda v
$$

Let N_{p} be the Nemytskiĭ operator defined by

$$
N_{p}(v)(x)= \begin{cases}|v(x)|^{p-2} v(x) & \text { if } v(x) \neq 0 \tag{2.2}\\ 0 & \text { if } v(x)=0\end{cases}
$$

We have

$$
\forall v \in L^{p}(\Omega) \forall w \in L^{p^{\prime}}(\Omega) \quad N_{p}(v)=w \Leftrightarrow v=N_{p^{\prime}}(w)
$$

Proposition 2.3 (cf. [D], K$]$). Let $q, r \in[1, \infty[$. If there exist $c>0$ and $b \in L^{r}(\Omega)$ such that

$$
|f(x, \xi)| \leq c|\xi|^{q / r}+b(x) \quad \text { a.e. } x \in \Omega, \forall \xi \in \mathbb{R}^{m}
$$

then N_{f} is well defined from $\left(L^{q}(\Omega)\right)^{m}$ to $L^{r}(\Omega)$, continuous and bounded. Moreover, if $m=1$ and $r=q^{\prime} \neq 1$, then the functional $\Psi: L^{q}(\Omega) \rightarrow \mathbb{R}$, $\Psi(u)=\int_{\Omega} F(x, u) d x$, where $F(x, s)=\int_{0}^{s} f(x, t) d t$, is well defined, of class C^{1} on $L^{q}(\Omega)$, and $\Psi^{\prime}(u)=f(x, u)$ for all $u \in L^{q}(\Omega)$.

Definition 2.4. Let E be a real Banach space and A be a closed, symmetric subset of $E \backslash\{0\}$. We define the genus of A to be the number

$$
\gamma(A)=\inf \left\{m: \exists f \in C^{0}\left(A, \mathbb{R}^{m} \backslash\{0\}\right) \forall u \in A, f(-u)=f(u)\right\}
$$

and $\gamma(A)=\infty$ if no such f exists; $\gamma(\emptyset)=0$ by definition.
Lemma 2.5 (cf. [C], $[\mathrm{R}]$). Let E be a real Banach space and A, B be symmetric subsets of $E \backslash\{0\}$ which are closed in E. Then:
(a) If there exists an odd continuous mapping $f: A \rightarrow B$, then $\gamma(A) \leq$ $\gamma(B)$.
(b) If $A \subset B$, then $\gamma(A) \leq \gamma(B)$.
(c) $\gamma(A \cup B) \leq \gamma(A)+\gamma(B)$.
(d) If $\gamma(B)<\infty$, then $\gamma(\overline{A-B}) \geq \gamma(A)-\gamma(B)$.
(e) If A is compact, then $\gamma(A)<\infty$ and there exists a neighborhood N of A which is a symmetric subset of $E \backslash\{0\}$, closed in E, and such that $\gamma(N)=\gamma(A)$.
(f) If N is a symmetric and bounded neighborhood of the origin in \mathbb{R}^{k} and if A is homeomorphic to the boundary of N by an odd homeomorphism, then $\gamma(A)=k$.
(g) If E_{0} is a subspace of E of codimension k and if $\gamma(A)>k$, then $A \cap E_{0}=\emptyset$.
Lemma 2.6 ([L, Corollary 4.1]). Suppose that M is a closed symmetric C^{1}-submanifold of a real Banach space E and $0 \notin M$. Suppose also that $f \in C^{1}(M, \mathbb{R})$ is even and bounded below. Define

$$
c_{j}=\inf _{K \in \Gamma_{j}} \sup _{x \in K} f(x),
$$

where

$$
\Gamma_{j}=\{K \subset M: K \text { is symmetric, compact and } \gamma(K) \geq j\}
$$

If $\Gamma_{k} \neq \emptyset$ for some $k \geq 1$ and if f satisfies $(\mathrm{PS})_{c}$ for all $c=c_{j}, j=1, \ldots, k$, then f has at least k distinct pairs of critical points.

Lemma 2.7 (cf. AD). Let Ω be a domain of class C^{1} in \mathbb{R}^{N}.
(i) If $p<N / 2$, then $W^{2, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ for all $q \in\left[1, p_{2}^{*}[\right.$.
(ii) If $p=N / 2$, then $W^{2, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ for all $q \in[1, \infty[$.
(iii) If $p>N / 2$, then $W^{2, p}(\Omega) \hookrightarrow C(\bar{\Omega})$.

The above injections are compact, and

$$
p_{2}^{*}= \begin{cases}\frac{N p}{N-2 p} & \text { if } p<N / 2 \\ \infty & \text { if } p \geq N / 2\end{cases}
$$

3. Third order spectrum of the p-biharmonic operator

Definition 3.1. The set of couples $(\beta, \alpha) \in \mathbb{R}^{N} \times \mathbb{R}$ such that there exists a solution (β, α, u) of 1.1$)$ is called the third order spectrum of the p-biharmonic operator.

The couple (β, α) is then called a third-order eigenvalue and u is said to be the associated eigenfunction.

A set of third-order eigenvalues of the form $(\beta, f(\beta))$, for $\beta \in \mathbb{R}^{N}$ and some function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$, is called an eigensurface of 1.1 .

Lemma 3.2. The problem (1.1) is equivalent to the problem

$$
\left\{\begin{array}{l}
\text { Find }(\alpha, u) \in \mathbb{R}_{+}^{*} \times(X \backslash\{0\}) \text { such that } \tag{3.1}\\
\Delta_{p}^{2, \beta} u=\alpha m e^{\beta \cdot x}|u|^{p-2} u \quad \text { in } \Omega \\
u=\Delta u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $\Delta_{p}^{2, \beta} u=\Delta\left(e^{\beta \cdot x}|\Delta u|^{p-2} \Delta u\right)$.
Proof. For all $\beta \in \mathbb{R}^{N}$,

$$
\begin{aligned}
\Delta\left(e^{\beta \cdot x}|\Delta u|^{p-2} \Delta u\right) & =\nabla\left[\nabla\left(e^{\beta \cdot x}|\Delta u|^{p-2} \Delta u\right)\right] \\
& =\nabla\left[\nabla\left(e^{\beta \cdot x}\right)|\Delta u|^{p-2} \Delta u+e^{\beta \cdot x} \nabla\left(|\Delta u|^{p-2} \Delta u\right)\right] \\
& =e^{\beta \cdot x}\left[\Delta_{p}^{2} u+2 \beta \cdot \nabla\left(|\Delta u|^{p-2} \Delta u\right)+|\beta|^{2}|\Delta u|^{p-2} \Delta u\right]
\end{aligned}
$$

hence (1.1) is equivalent to (3.1).
The operator Λ enables us to transform problem (3.1) to another problem which we shall study in the space $L^{p}(\Omega)$.

Lemma 3.3. The problem (3.1) is equivalent to the problem

$$
\left\{\begin{array}{l}
\text { Find }(\alpha, v) \in \mathbb{R}_{+}^{*} \times\left(L^{p}(\Omega) \backslash\{0\}\right) \text { such that } \tag{3.2}\\
e^{\beta \cdot x} N_{p}(v)=\alpha \Lambda\left(e^{\beta \cdot x} m N_{p}(\Lambda v)\right) \quad \text { in } L^{p^{\prime}}(\Omega) .
\end{array}\right.
$$

A pair $(\alpha, u) \in \mathbb{R}_{+}^{*} \times X \backslash\{0\}$ is a solution of problem (3.1) if and only if (α, v), where $v=-\Delta u$, is a solution of problem (3.2).

By using Ljusternik-Schnirelmann theory (cf. [S]), we will give a sequence of eigensurfaces of problem 1.1).

We consider the functionals $F_{\beta}, G_{\beta}: L^{p}(\Omega) \rightarrow \mathbb{R}$ defined

$$
F_{\beta}(v)=\frac{1}{p} \int_{\Omega} e^{\beta \cdot x}|v|^{p} d x, \quad G_{\beta}(v)=\frac{1}{p} \int_{\Omega} e^{\beta \cdot x} m|\Lambda v|^{p} d x
$$

F_{β} and G_{β} are of class C^{1} in $L^{p}(\Omega)$ and for all $v \in L^{p}(\Omega)$,

$$
F_{\beta}^{\prime}(v)=e^{\beta \cdot x} N_{p}(v), \quad G_{\beta}^{\prime}(v)=\Lambda\left(m e^{\beta \cdot x} N_{p}(\Lambda v)\right) \quad \text { in } L^{p^{\prime}}(\Omega)
$$

Set

$$
\begin{aligned}
\mathcal{M}_{\beta} & =\left\{v \in L^{p}(\Omega): p G_{\beta}(v)=1\right\} \\
\Gamma_{n} & =\left\{K \subset \mathcal{M}_{\beta}: K \text { is symmetric, compact and } \gamma(K) \geq n\right\}
\end{aligned}
$$

where $\gamma(K)$ indicates the genus of K.
Since $\left|\Omega^{+}\right| \neq 0$, there exists $v \in L^{p}(\Omega)$ such that $\int_{\Omega} m e^{\beta \cdot x}|\Lambda v|^{p} d x=1$, so $\mathcal{M}_{\beta} \neq \emptyset$. Furthermore \mathcal{M}_{β} is a C^{1}-manifold.

For all $\beta \in \mathbb{R}^{N}$, define

$$
\Gamma_{n}^{p}(\beta, m)=\inf _{K \in \Gamma_{n}} \sup _{v \in K} p F_{\beta}(v)
$$

Lemma 3.4.

(i) For all $\beta \in \mathbb{R}^{N}, F_{\beta}^{\prime}$ satisfies condition $\left(S_{+}\right)$, i.e.

$$
v_{n} \rightharpoonup v \text { in } L^{p}(\Omega) \quad \text { and } \quad \limsup _{n \rightarrow \infty} \int_{\Omega} F_{\beta}^{\prime}\left(v_{n}\right)\left(v_{n}-v\right) d x \leq 0
$$

implies $v_{n} \rightarrow v$ strongly in $L^{p}(\Omega)$.
(ii) For all $\beta \in \mathbb{R}^{N}, G_{\beta}^{\prime}$ is completely continuous in $L^{p}(\Omega)$.

Proof. (i) Let $\left(v_{n}\right)$ be a sequence in $L^{p}(\Omega)$ such that

$$
\begin{equation*}
v_{n} \rightharpoonup v \text { in } L^{p}(\Omega) \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left\langle e^{\beta \cdot x} N_{p}\left(v_{n}\right), v_{n}-v\right\rangle \leq 0 \tag{3.3}
\end{equation*}
$$

We have
$\limsup _{n \rightarrow \infty} \int_{\Omega} e^{\beta \cdot x} N_{p}\left(v_{n}\right)\left(v_{n}-v\right) d x=\limsup _{n \rightarrow \infty} \int_{\Omega} e^{\beta \cdot x}\left(N_{p}\left(v_{n}\right)-N_{p}(v)\right)\left(v_{n}-v\right) d x$.
By the monotonicity of N_{p} and by Hölder's inequality we obtain

$$
\begin{aligned}
& \int_{\Omega} e^{\beta \cdot x}\left(N_{p}\left(v_{n}\right)-N_{p}(v)\right)\left(v_{n}-v\right) d x \\
& \quad \geq C_{0}\left(\left\|v_{n}\right\|_{p}^{p-1}-\|v\|_{p}^{p-1}\right)\left(\left\|v_{n}\right\|_{p}-\|v\|_{p}\right) \geq 0
\end{aligned}
$$

where $C_{0}=\min \left\{e^{\beta \cdot x}: x \in \bar{\Omega}\right\}$. Hence 3.3 implies that $\left\|v_{n}\right\|_{p} \rightarrow\|v\|_{p}$. Since $v_{n} \rightharpoonup v$ in $L^{p}(\Omega)$ and $L^{p}(\Omega)$ is uniformly convex, $v_{n} \rightarrow v$ in $L^{p}(\Omega)$.
(ii) Let $\left(v_{n}\right)$ be a sequence in $L^{p}(\Omega)$ such that $v_{n} \rightharpoonup v$ in $L^{p}(\Omega)$. By Lemma 2.1(i) we obtain $\Lambda v_{n} \rightharpoonup \Lambda v$ in X. Sobolev's embedding theorem (cf. Lemma 2.7) and the properties of the Nemytskiŭ operator N_{p} (cf. Proposition 2.3) imply that $\Lambda v_{n} \rightarrow \Lambda v$ in $L^{p}(\Omega)$ and $G_{\beta}^{\prime}\left(v_{n}\right) \rightarrow G_{\beta}^{\prime}(v)$ in $L^{p^{\prime}}(\Omega)$.

Lemma 3.5. For all $\beta \in \mathbb{R}^{N}$:
(i) F_{β} is C^{1} in \mathcal{M}_{β}, even and bounded below.
(ii) For all $n \in \mathbb{N}^{*}, \Gamma_{n} \neq \emptyset$.
(iii) The functional F_{β} satisfies $(\mathrm{PS})_{c}$ on \mathcal{M}_{β} for every $c \neq 0$.

Proof. (i) is evident. (ii) Since $\left|\Omega^{+}\right| \neq 0$, for all $n \in \mathbb{N}^{*}$ there exist $u_{1}, \ldots, u_{n} \in X$ which satisfy

$$
\left\{\begin{array}{l}
\operatorname{supp} u_{i} \cap \operatorname{supp} u_{j}=\emptyset \quad \text { if } i \neq j, \\
\int_{\Omega} m e^{\beta \cdot x}\left|u_{i}\right|^{p} d x=1,
\end{array} \quad i, j \in\{1, \ldots, n\}\right.
$$

For all $i \in\{1, \ldots, n\}$, there exists $v_{i} \in L^{p}(\Omega)$ such that $u_{i}=\Lambda v_{i}$.
Let $F_{n}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} \subset L^{p}(\Omega)$. Then

$$
\forall v \in F_{n} \exists\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n} \quad v=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

and

$$
\begin{aligned}
\int_{\Omega} m e^{\beta \cdot x}|\Lambda v|^{p} & =\int_{\Omega} m e^{\beta \cdot x}\left|\sum_{i=1}^{n} \alpha_{i} \Lambda v_{i}\right|^{p}=\sum_{i=1}^{n}\left|\alpha_{i}\right|^{p} \int_{\Omega} m e^{\beta \cdot x}\left|\Lambda v_{i}\right|^{p} \\
& =\sum_{i=1}^{n}\left|\alpha_{i}\right|^{p}>0
\end{aligned}
$$

It follows that the map $v \mapsto\left(p G_{\beta}(v)\right)^{1 / p}$ defines a norm on F_{n}. Hence $S_{\beta}=F_{n} \cap \mathcal{M}_{\beta}$ is the unit sphere of F_{n} which is homeomorphic to the unit sphere of \mathbb{R}^{N} and this homeomorphism is odd. Then Lemma 2.5(f) yields $\gamma\left(S_{\beta}\right)=n$. Therefore $S_{\beta} \in \Gamma_{n}$.
(iii) Let $\left(v_{n}\right)$ be a sequence in \mathcal{M}_{β} and $\left(t_{n}\right)$ be a sequence in \mathbb{R} such that

$$
\begin{equation*}
F_{\beta}\left(v_{n}\right) \rightarrow c \quad \text { and } \quad F_{\beta}^{\prime}\left(v_{n}\right)-t_{n} G_{\beta}^{\prime}\left(v_{n}\right) \rightarrow 0 \tag{3.4}
\end{equation*}
$$

We will show that $\left(v_{n}\right)$ has a subsequence which converges strongly in $L^{p}(\Omega)$. We have $\left(C_{0} / p\right)\left\|v_{n}\right\|_{p}^{p} \leq F_{\beta}\left(v_{n}\right)$, so $\left(v_{n}\right)$ is bounded in $L^{p}(\Omega)$. Hence for a subsequence still denoted by $\left(v_{n}\right)$ we have $v_{n} \rightharpoonup v$ in $L^{p}(\Omega)$. As G_{β}^{\prime} is completely continuous, we have $G_{\beta}^{\prime}\left(v_{n}\right) \rightarrow G_{\beta}^{\prime}(v)$ in $L^{p^{\prime}}(\Omega)$.

It follows from (3.4) that

$$
\left\langle F_{\beta}^{\prime}\left(v_{n}\right)-t_{n} G_{\beta}^{\prime}\left(v_{n}\right), v_{n}\right\rangle=p F_{\beta}\left(v_{n}\right)-t_{n} \rightarrow 0
$$

and $t_{n} \rightarrow p c$. So the sequence $\left(F_{\beta}^{\prime}\left(v_{n}\right)\right)$ is strongly convergent in $L^{p^{\prime}}(\Omega)$. Hence

$$
\lim _{n \rightarrow \infty} \int_{\Omega} F_{\beta}^{\prime}\left(v_{n}\right)\left(v_{n}-v\right) d x=0
$$

Since F_{β}^{\prime} is of type $\left(S_{+}\right)$, we have $v_{n} \rightarrow v$ in $L^{p}(\Omega)$.
Our main result is the following theorem:
Theorem 3.6. Problem (1.1) has a sequence of positive eigensurfaces $\left(G\left(\Gamma_{n}^{p}(\cdot, m)\right)\right)_{n \geq 1}$, where $G\left(\Gamma_{n}^{p}(\cdot, m)\right)$ is the graph of the function $\Gamma_{n}^{p}(\cdot, m)$. Moreover, we have

$$
\begin{equation*}
\forall \beta \in \mathbb{R}^{N} \quad \Gamma_{n}^{p}(\beta, m)=\inf _{K \in \mathcal{B}_{n}} \sup _{u \in K} \int_{\Omega} e^{\beta \cdot x}|\Delta u|^{p} d x \tag{3.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathcal{B}_{n}=\left\{K \subset \mathcal{N}_{\beta}: K \text { is compact, symmetric and } \gamma(K) \geq n\right\} \\
& \mathcal{N}_{\beta}=\left\{u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega): \int_{\Omega} m e^{\beta \cdot x}|u|^{p} d x=1\right\}
\end{aligned}
$$

and

$$
\begin{equation*}
\Gamma_{n}(\beta, m) \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{3.6}
\end{equation*}
$$

Proof. Lemmas 2.6 and 3.5 enable us to claim that $\left(G\left(\Gamma_{n}^{p}(\cdot, m)\right)\right)_{n \geq 1}$ is an infinite sequence of positive eigensurfaces of problem (3.2).

We now prove (3.6). Since $L^{p}(\Omega)$ is separable, there exists a biorthogonal system $\left(e_{i}, e_{j}^{*}\right)_{i, j \in \mathbb{N}}$ such that $e_{i} \in L^{p}(\Omega), e_{j}^{*} \in L^{p^{\prime}}(\Omega)$. The e_{i} 's are linearly dense in $L^{p}(\Omega)$ and the e_{j}^{*} 's are total in $L^{p}(\Omega)$ (cf. [L).

For $n \in \mathbb{N}^{*}$, set $F_{n}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$ and $F_{n}^{\perp}=\mathrm{cl} \operatorname{span}\left\{e_{n+1}, e_{n+2}, \ldots\right\}$, where cl denotes closure. From Lemma 2.5 (g) we deduce that $K \cap F_{n-1}^{\perp} \neq \emptyset$ for any $K \in \Gamma_{n}$.

We claim that

$$
d_{n}=\inf _{K \in \Gamma_{n}} \sup _{v \in K \cap F_{n-1}^{\perp}} p F_{\beta}(v) \rightarrow \infty \quad \text { as } n \rightarrow \infty .
$$

Indeed, if not, there exists $M>0$ such that for every $n \in \mathbb{N}^{*}$ there exists $v_{n} \in F_{n-1}^{\perp}$ with $p G_{\beta}\left(v_{n}\right)=1$ and $d_{n} \leq p F_{\beta}\left(v_{n}\right) \leq M$. We deduce that (v_{n}) is bounded in $L^{p}(\Omega)$. Thus for a subsequence still denoted by $\left(v_{n}\right), v_{n} \rightharpoonup v$ in $L^{p}(\Omega)$. Since G_{β}^{\prime} is completely continuous we get

$$
G_{\beta}^{\prime}\left(v_{n}\right) \rightarrow G_{\beta}^{\prime}(v) \text { in } L^{p^{\prime}}(\Omega) \text { and } \lim _{n \rightarrow \infty}\left\langle G_{\beta}^{\prime}\left(v_{n}\right), v_{n}\right\rangle=\left\langle G_{\beta}^{\prime}(v), v\right\rangle .
$$

Then $p G_{\beta}\left(v_{n}\right) \rightarrow p G_{\beta}(v)$. The fact that $p G_{\beta}\left(v_{n}\right)=1$ implies $p G_{\beta}(v)=1$.
On the other hand, for every $n \geq j,\left\langle e_{j}^{*}, e_{n}\right\rangle=0$. Hence $v_{n} \rightharpoonup 0$, therefore $v=0$ and $G_{\beta}(v)=0$, which leads to a contradiction. Since $\Gamma_{n}^{p}(\beta, m) \geq d_{n}$, we get 3.6.

Finally we verify (3.5). We know that $-\Delta: X \rightarrow L^{p}(\Omega)$ and $\Lambda:$ $L^{p}(\Omega) \rightarrow X$ are odd homeomorphisms. Consequently, by the properties of genus we get: $K \in \Gamma_{n} \Leftrightarrow \Lambda K \in \mathcal{B}_{n}$. Hence for every $n \in \mathbb{N}^{*}, \Gamma_{n}^{p}(\beta, m)=$ $\inf _{K \in \mathcal{B}_{n}} \sup _{u \in K} \int_{\Omega} e^{\beta \cdot x}|\Delta u|^{p} d x$.

Remark 3.7. We can prove that the spectrum of (1.1) is closed and the set of eigenfunctions associated with the same eigensurface of problem (1.1) is compact.

References

[AD] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[AG] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623-727.
[A] A. Anane, O. Chakrone et J.-P. Gossez, Spectre d'ordre supérieur et problèmes aux limites quasi-linéaires, Boll. Un. Mat. Ital. B (8) 4 (2001), 483-519.
[B] J. Benedikt, On the discreteness of the spectra of the Dirichlet and Neumann p-biharmonic problems, Abstr. Appl. Anal. 2004, 777-792.
[C] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, New York, 1982.
[D] D. de Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Inst. Fundam. Res., Bombay, and Springer, Berlin, 1989.
[DR] P. Drábek and M. Ôtani, Global bifurcation result for the p-biharmonic operator, Electron. J. Differential Equations 2001, no. 48, 19 pp.
[E] A. El Khalil, S. Kellati and A. Touzani, On the spectrum of the p-biharmonic operator, Electron. J. Differential Equations Conf. 9 (2002), 161-170.
[G] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, New York, 1983.
[I] T. Idogawa and M. Ôtani, The first eigenvalues of some abstract elliptic operator, Funkcial. Ekvac. 38 (1995), 1-9.
[K] M. A. Krasnosel'skiì, Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964.
[L] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977.
[R] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, Amer. Math. Soc., Providence, RI, 1986.
[S] A. Szulkin, Ljusternik-Schnirelmann theory on \mathcal{C}^{1} manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119-139.
[T] M. Talbi and N. Tsouli, On the spectrum of the weighted p-biharmonic operator with weight, Mediterr. J. Math. 4 (2007), 73-86.

Khalil Ben Haddouch, Najib Tsouli
Zakaria El Allali
Department of Mathematics
University Mohamed I
Oujda, Morocco
E-mail: ayasch1@hotmail.com tsouli@hotmail.com

Received on 25.2.2014;
revised version on 18.7.2014 and 23.9.2014

[^0]: 2010 Mathematics Subject Classification: 35P30, 35J40.
 Key words and phrases: p-biharmonic operator, nonlinear spectral theory.

