KHALIL BEN HADDOUCH, NAJIB TSOULI and ZAKARIA EL ALLALI (Oujda)

THE THIRD ORDER SPECTRUM OF THE *p*-BIHARMONIC OPERATOR WITH WEIGHT

Abstract. We show that the spectrum of $\Delta_p^2 u + 2\beta \cdot \nabla(|\Delta u|^{p-2}\Delta u) + |\beta|^2 |\Delta u|^{p-2}\Delta u = \alpha m |u|^{p-2} u$, where $\beta \in \mathbb{R}^N$, under Navier boundary conditions, contains at least one sequence of eigensurfaces.

1. Introduction. We are concerned here with the eigenvalue problem

(1.1)
$$\begin{cases} \text{Find } (\beta, \alpha, u) \in \mathbb{R}^N \times \mathbb{R}^*_+ \times (X \setminus \{0\}) \text{ such that} \\ \Delta_p^2 u + 2\beta \cdot \nabla(|\Delta u|^{p-2} \Delta u) + |\beta|^2 |\Delta u|^{p-2} \Delta u = \alpha m |u|^{p-2} u \quad \text{in } \Omega, \\ u = \Delta u = 0 \quad \text{on } \partial \Omega, \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^N $(N \ge 1)$, $\beta \in \mathbb{R}^N$, Δ_p^2 denotes the *p*-biharmonic operator defined by $\Delta_p^2 u = \Delta(|\Delta u|^{p-2}\Delta u)$, $X = W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$, and $m \in M = \{m \in L^{\infty}(\Omega) : \max\{x \in \Omega : m(x) > 0\} \neq 0\}$.

Set $\Omega^+ = \{x \in \Omega : m(x) > 0\}$; we suppose that $|\Omega^+| \neq 0$.

A. Anane, O. Chakrone and J.-P. Gossez [A] have studied the eigenvalue problem

$$\begin{cases} \text{Find } (\beta, \alpha, u) \in \mathbb{R}^N \times \mathbb{R} \times (W_0^{1, p}(\Omega) \setminus \{0\}) \text{ such that} \\ -\Delta_p u = \alpha m |u|^{p-2} u + \beta \cdot |\nabla u|^{p-2} \nabla u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

They showed that the spectrum of this problem, denoted by $\sigma_1(-\Delta_p, m)$, contains at least one sequence of eigensurfaces in $\mathbb{R}^N \times \mathbb{R}$.

Motivated by this work, we define the third-order spectrum for the *p*biharmonic operator, denoted by $\sigma_3(\Delta_p^2, m)$, to be the set of couples $(\beta, \alpha) \in \mathbb{R}^N \times \mathbb{R}$ such that the problem (1.1) has a non-trivial solution $u \in X$. We will show that this spectrum contains a sequence of eigensurfaces in $\mathbb{R}^N \times \mathbb{R}$.

[247]

2010 Mathematics Subject Classification: 35P30, 35J40.

Key words and phrases: p-biharmonic operator, nonlinear spectral theory.

In the case where $\beta = 0$, the zero order spectrum, denoted by $\sigma_0(\Delta_p^2, m)$, is defined to be the set of eigenvalues $\alpha \in \mathbb{R}$ such that the problem

(1.2)
$$\begin{cases} \text{Find } (\alpha, u) \in \mathbb{R}^*_+ \times (X \setminus \{0\}) \text{ such that} \\ \Delta_p^2 u = \alpha m |u|^{p-2} u \quad \text{in } \Omega, \\ u = \Delta u = 0 \quad \text{on } \partial\Omega, \end{cases}$$

has a non-trivial solution $u \in X$.

Problem (1.2) was considered by P. Drábek and M. Ötani [DR] for m = 1. They showed that it has a principal positive eigenvalue which is simple and isolated.

A. El Khalil, S. Kellati and A. Touzani [E] have studied the spectrum of the *p*-biharmonic operator with weight and with Dirichlet boundary conditions. They showed that this spectrum contains at least one non-decreasing sequence of positive eigenvalues.

In 2007, M. Talbi and N. Tsouli [T] considered the spectrum of the weighted p-biharmonic operator with weight and showed that the eigenvalue problem

(1.3)
$$\begin{cases} \Delta(\rho | \Delta u|^{p-2} \Delta u) = \alpha m |u|^{p-2} u & \text{in } \Omega, \\ u = \Delta u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\rho \in C(\overline{\Omega})$ and $\rho > 0$, has a non-decreasing sequence of eigenvalues, and studied the one-dimensional case.

J. Benedikt [B] found the spectrum of the *p*-biharmonic operator with Dirichlet and Neumann boundary conditions in the case N = 1, m = 1, and $\rho = 1$.

In this article we consider the transformation of the Poisson problem used by P. Drábek and M. Ôtani. We use Ljusternik–Schnirelmann theory to prove that the spectrum of (1.1) contains a sequence of eigensurfaces $(G(\Gamma_n^p(\cdot, m)))_{n\geq 1}$ such that for all $\beta \in \mathbb{R}^N$, $\Gamma_n^p(\beta, m) \to \infty$.

- **2. Preliminaries.** Let $X = W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$. We denote by:
- $||u||_p = (\int_{\Omega} |u|^p dx)^{1/p}$ the norm in $L^p(\Omega)$,
- $||u||_{2,p} = (||\Delta u||_p^p + ||u||_p^p)^{1/p}$ the norm in X,
- $||u||_{\infty}$ the norm in $L^{\infty}(\Omega)$,
- $\langle \cdot, \cdot \rangle$ the duality bracket between $L^p(\Omega)$ and $L^{p'}(\Omega)$, where 1/p + 1/p' = 1.

For all $f \in L^p(\Omega)$ the Dirichlet problem for the Poisson equation,

(2.1)
$$\begin{cases} -\Delta u = f \quad \text{in } \Omega, \\ u = 0 \quad \text{on } \partial \Omega, \end{cases}$$

248

is uniquely solvable in X (cf. [G]). We denote by Λ the inverse operator of $-\Delta: X \to L^p(\Omega)$. In the following lemma we give some properties of the operator Λ (cf. [AG]).

Lemma 2.1.

- (i) (Continuity) There exists a constant $C_p > 0$ such that $||\Lambda f||_{2,p} \le C_p ||f||_p$ for all $p \in]1, \infty[$ and $f \in L^p(\Omega)$.
- (ii) (Continuity) Given $k \in \mathbb{N}^*$, there exists a constant $C_{p,k} > 0$ such that $\|\Lambda f\|_{W^{k+2,p}} \leq C_{p,k} \|f\|_{W^{k,p}}$.
- (iii) (Symmetry) The identity $\int_{\Omega} \Lambda u \cdot v \, dx = \int_{\Omega} u \cdot \Lambda v \, dx$ holds for all $u \in L^p(\Omega)$ and $v \in L^{p'}(\Omega)$ with $p \in [1, \infty)$.
- (iv) (Regularity) Given $f \in L^{\infty}(\Omega)$, we have $\Lambda f \in C^{1,\alpha}(\overline{\Omega})$ for all $\alpha \in [0,1[; moreover, there exists <math>C_{\alpha} > 0$ such that $\|\Lambda f\|_{C^{1,\alpha}} \leq C_{\alpha} \|f\|_{\infty}$.
- (v) (Regularity and Hopf-type maximum principle) Let $f \in C(\overline{\Omega})$ and $f \geq 0$. Then $w = \Lambda f \in C^{1,\alpha}(\overline{\Omega})$ for all $\alpha \in [0,1[$, and w > 0 in Ω , $\partial w/\partial n < 0$ on $\partial \Omega$.
- (vi) (Order preserving property) Given $f, g \in L^p(\Omega)$, if $f \leq g$ in Ω then $\Lambda f < \Lambda g$ in Ω .

Remark 2.2.

$$\forall u \in X \ \forall v \in L^p(\Omega) \quad v = -\Delta u \ \Leftrightarrow \ u = \Lambda v.$$

Let N_p be the Nemytskiĭ operator defined by

(2.2)
$$N_p(v)(x) = \begin{cases} |v(x)|^{p-2}v(x) & \text{if } v(x) \neq 0, \\ 0 & \text{if } v(x) = 0. \end{cases}$$

We have

$$\forall v \in L^p(\Omega) \ \forall w \in L^{p'}(\Omega) \quad N_p(v) = w \Leftrightarrow v = N_{p'}(w).$$

PROPOSITION 2.3 (cf. [D], [K]). Let $q, r \in [1, \infty[$. If there exist c > 0and $b \in L^{r}(\Omega)$ such that

$$|f(x,\xi)| \le c |\xi|^{q/r} + b(x) \quad a.e. \ x \in \Omega, \ \forall \xi \in \mathbb{R}^m,$$

then N_f is well defined from $(L^q(\Omega))^m$ to $L^r(\Omega)$, continuous and bounded. Moreover, if m = 1 and $r = q' \neq 1$, then the functional $\Psi : L^q(\Omega) \to \mathbb{R}$, $\Psi(u) = \int_{\Omega} F(x, u) \, dx$, where $F(x, s) = \int_0^s f(x, t) \, dt$, is well defined, of class C^1 on $L^q(\Omega)$, and $\Psi'(u) = f(x, u)$ for all $u \in L^q(\Omega)$.

DEFINITION 2.4. Let E be a real Banach space and A be a closed, symmetric subset of $E \setminus \{0\}$. We define the *genus* of A to be the number

$$\gamma(A) = \inf\{m : \exists f \in C^0(A, \mathbb{R}^m \setminus \{0\}) \ \forall u \in A, \ f(-u) = f(u)\},$$

and $\gamma(A) = \infty$ if no such f exists; $\gamma(\emptyset) = 0$ by definition.

LEMMA 2.5 (cf. [C], [R]). Let E be a real Banach space and A, B be symmetric subsets of $E \setminus \{0\}$ which are closed in E. Then:

- (a) If there exists an odd continuous mapping $f : A \to B$, then $\gamma(A) \leq \gamma(B)$.
- (b) If $A \subset B$, then $\gamma(A) \leq \gamma(B)$.
- (c) $\gamma(A \cup B) \le \gamma(A) + \gamma(B)$.
- (d) If $\gamma(B) < \infty$, then $\gamma(\overline{A-B}) \ge \gamma(A) \gamma(B)$.
- (e) If A is compact, then γ(A) < ∞ and there exists a neighborhood N of A which is a symmetric subset of E \ {0}, closed in E, and such that γ(N) = γ(A).
- (f) If N is a symmetric and bounded neighborhood of the origin in \mathbb{R}^k and if A is homeomorphic to the boundary of N by an odd homeomorphism, then $\gamma(A) = k$.
- (g) If E_0 is a subspace of E of codimension k and if $\gamma(A) > k$, then $A \cap E_0 = \emptyset$.

LEMMA 2.6 ([L, Corollary 4.1]). Suppose that M is a closed symmetric C^1 -submanifold of a real Banach space E and $0 \notin M$. Suppose also that $f \in C^1(M, \mathbb{R})$ is even and bounded below. Define

$$c_j = \inf_{K \in \Gamma_j} \sup_{x \in K} f(x),$$

where

 $\Gamma_j = \{K \subset M : K \text{ is symmetric, compact and } \gamma(K) \ge j\}.$

If $\Gamma_k \neq \emptyset$ for some $k \ge 1$ and if f satisfies $(PS)_c$ for all $c = c_j$, j = 1, ..., k, then f has at least k distinct pairs of critical points.

LEMMA 2.7 (cf. [AD]). Let Ω be a domain of class C^1 in \mathbb{R}^N .

- (i) If p < N/2, then $W^{2,p}(\Omega) \hookrightarrow L^q(\Omega)$ for all $q \in [1, p_2^*]$.
- (ii) If p = N/2, then $W^{2,p}(\Omega) \hookrightarrow L^q(\Omega)$ for all $q \in [1, \infty[$.
- (iii) If p > N/2, then $W^{2,p}(\Omega) \hookrightarrow C(\overline{\Omega})$.

The above injections are compact, and

$$p_2^* = \begin{cases} \frac{Np}{N-2p} & \text{if } p < N/2, \\ \infty & \text{if } p \ge N/2. \end{cases}$$

3. Third order spectrum of the *p*-biharmonic operator

DEFINITION 3.1. The set of couples $(\beta, \alpha) \in \mathbb{R}^N \times \mathbb{R}$ such that there exists a solution (β, α, u) of (1.1) is called the *third order spectrum* of the *p*-biharmonic operator.

The couple (β, α) is then called a *third-order eigenvalue* and u is said to be the associated eigenfunction.

A set of third-order eigenvalues of the form $(\beta, f(\beta))$, for $\beta \in \mathbb{R}^N$ and some function $f : \mathbb{R}^N \to \mathbb{R}$, is called an *eigensurface* of (1.1).

LEMMA 3.2. The problem (1.1) is equivalent to the problem

(3.1)
$$\begin{cases} Find \ (\alpha, u) \in \mathbb{R}^*_+ \times (X \setminus \{0\}) \text{ such that} \\ \Delta_p^{2,\beta} u = \alpha m e^{\beta \cdot x} |u|^{p-2} u \quad in \ \Omega, \\ u = \Delta u = 0 \quad on \ \partial\Omega, \end{cases}$$

where
$$\Delta_p^{2,\beta} u = \Delta(e^{\beta \cdot x} |\Delta u|^{p-2} \Delta u).$$

Proof. For all $\beta \in \mathbb{R}^N$,
 $\Delta(e^{\beta \cdot x} |\Delta u|^{p-2} \Delta u) = \nabla[\nabla(e^{\beta \cdot x} |\Delta u|^{p-2} \Delta u)]$
 $= \nabla[\nabla(e^{\beta \cdot x}) |\Delta u|^{p-2} \Delta u + e^{\beta \cdot x} \nabla(|\Delta u|^{p-2} \Delta u)]$
 $= e^{\beta \cdot x} [\Delta_p^2 u + 2\beta \cdot \nabla(|\Delta u|^{p-2} \Delta u) + |\beta|^2 |\Delta u|^{p-2} \Delta u],$

hence (1.1) is equivalent to (3.1).

The operator Λ enables us to transform problem (3.1) to another problem which we shall study in the space $L^p(\Omega)$.

LEMMA 3.3. The problem (3.1) is equivalent to the problem

(3.2)
$$\begin{cases} Find \ (\alpha, v) \in \mathbb{R}^*_+ \times (L^p(\Omega) \setminus \{0\}) \text{ such that} \\ e^{\beta \cdot x} N_p(v) = \alpha \Lambda(e^{\beta \cdot x} m N_p(\Lambda v)) \text{ in } L^{p'}(\Omega). \end{cases}$$

A pair $(\alpha, u) \in \mathbb{R}^*_+ \times X \setminus \{0\}$ is a solution of problem (3.1) if and only if (α, v) , where $v = -\Delta u$, is a solution of problem (3.2).

By using Ljusternik–Schnirelmann theory (cf. [S]), we will give a sequence of eigensurfaces of problem (1.1).

We consider the functionals $F_{\beta}, G_{\beta}: L^p(\Omega) \to \mathbb{R}$ defined

$$F_{\beta}(v) = \frac{1}{p} \int_{\Omega} e^{\beta \cdot x} |v|^p \, dx, \qquad G_{\beta}(v) = \frac{1}{p} \int_{\Omega} e^{\beta \cdot x} m |\Lambda v|^p \, dx.$$

 F_{β} and G_{β} are of class C^1 in $L^p(\Omega)$ and for all $v \in L^p(\Omega)$,

$$F'_{\beta}(v) = e^{\beta \cdot x} N_p(v), \quad G'_{\beta}(v) = \Lambda(m e^{\beta \cdot x} N_p(\Lambda v)) \quad \text{in } L^{p'}(\Omega).$$

Set

$$\mathcal{M}_{\beta} = \{ v \in L^{p}(\Omega) : pG_{\beta}(v) = 1 \},\$$

$$\Gamma_{n} = \{ K \subset \mathcal{M}_{\beta} : K \text{ is symmetric, compact and } \gamma(K) \ge n \},\$$

where $\gamma(K)$ indicates the genus of K.

Since $|\Omega^+| \neq 0$, there exists $v \in L^p(\Omega)$ such that $\int_{\Omega} m e^{\beta \cdot x} |\Lambda v|^p dx = 1$, so $\mathcal{M}_{\beta} \neq \emptyset$. Furthermore \mathcal{M}_{β} is a C^1 -manifold.

For all $\beta \in \mathbb{R}^N$, define

$$\Gamma_n^p(\beta, m) = \inf_{K \in \Gamma_n} \sup_{v \in K} pF_\beta(v).$$

Lemma 3.4.

(i) For all $\beta \in \mathbb{R}^N$, F'_{β} satisfies condition (S_+) , i.e. $v_{\alpha} \rightarrow v$ in $L^p(Q)$ and $\limsup \int F'_{\alpha}(v_{\alpha})(v_{\alpha} - v)$

$$v_n \rightarrow v \text{ in } L^p(\Omega) \quad and \quad \limsup_{n \rightarrow \infty} \int_{\Omega} F'_{\beta}(v_n)(v_n - v) \, dx \le 0$$

implies $v_n \to v$ strongly in $L^p(\Omega)$.

(ii) For all $\beta \in \mathbb{R}^N$, G'_{β} is completely continuous in $L^p(\Omega)$.

Proof. (i) Let (v_n) be a sequence in $L^p(\Omega)$ such that

(3.3)
$$v_n \rightharpoonup v \text{ in } L^p(\Omega) \text{ and } \limsup_{n \to \infty} \langle e^{\beta \cdot x} N_p(v_n), v_n - v \rangle \leq 0.$$

We have

$$\limsup_{n \to \infty} \int_{\Omega} e^{\beta \cdot x} N_p(v_n)(v_n - v) \, dx = \limsup_{n \to \infty} \int_{\Omega} e^{\beta \cdot x} (N_p(v_n) - N_p(v))(v_n - v) \, dx.$$

By the monotonicity of N_p and by Hölder's inequality we obtain

$$\int_{\Omega} e^{\beta \cdot x} (N_p(v_n) - N_p(v))(v_n - v) \, dx$$

$$\geq C_0(\|v_n\|_p^{p-1} - \|v\|_p^{p-1})(\|v_n\|_p - \|v\|_p) \geq 0$$

where $C_0 = \min\{e^{\beta \cdot x} : x \in \overline{\Omega}\}$. Hence (3.3) implies that $||v_n||_p \to ||v||_p$. Since $v_n \rightharpoonup v$ in $L^p(\Omega)$ and $L^p(\Omega)$ is uniformly convex, $v_n \to v$ in $L^p(\Omega)$.

(ii) Let (v_n) be a sequence in $L^p(\Omega)$ such that $v_n \to v$ in $L^p(\Omega)$. By Lemma 2.1(i) we obtain $Av_n \to Av$ in X. Sobolev's embedding theorem (cf. Lemma 2.7) and the properties of the Nemytskiĭ operator N_p (cf. Proposition 2.3) imply that $Av_n \to Av$ in $L^p(\Omega)$ and $G'_\beta(v_n) \to G'_\beta(v)$ in $L^{p'}(\Omega)$.

LEMMA 3.5. For all $\beta \in \mathbb{R}^N$:

- (i) F_{β} is C^1 in \mathcal{M}_{β} , even and bounded below.
- (ii) For all $n \in \mathbb{N}^*$, $\Gamma_n \neq \emptyset$.
- (iii) The functional F_{β} satisfies (PS)_c on \mathcal{M}_{β} for every $c \neq 0$.

Proof. (i) is evident. (ii) Since $|\Omega^+| \neq 0$, for all $n \in \mathbb{N}^*$ there exist $u_1, \ldots, u_n \in X$ which satisfy

$$\begin{cases} \operatorname{supp} u_i \cap \operatorname{supp} u_j = \emptyset & \text{if } i \neq j, \\ \int_{\Omega} m e^{\beta \cdot x} |u_i|^p \, dx = 1, & i, j \in \{1, \dots, n\}. \end{cases}$$

For all $i \in \{1, ..., n\}$, there exists $v_i \in L^p(\Omega)$ such that $u_i = Av_i$. Let $F_n = \operatorname{span}\{v_1, ..., v_n\} \subset L^p(\Omega)$. Then

$$\forall v \in F_n \exists (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n \quad v = \sum_{i=1}^n \alpha_i v_i$$

and

$$\begin{split} \int_{\Omega} m e^{\beta \cdot x} |\Lambda v|^p &= \int_{\Omega} m e^{\beta \cdot x} \Big| \sum_{i=1}^n \alpha_i \Lambda v_i \Big|^p = \sum_{i=1}^n |\alpha_i|^p \int_{\Omega} m e^{\beta \cdot x} |\Lambda v_i|^p \\ &= \sum_{i=1}^n |\alpha_i|^p > 0. \end{split}$$

It follows that the map $v \mapsto (pG_{\beta}(v))^{1/p}$ defines a norm on F_n . Hence $S_{\beta} = F_n \cap \mathcal{M}_{\beta}$ is the unit sphere of F_n which is homeomorphic to the unit sphere of \mathbb{R}^N and this homeomorphism is odd. Then Lemma 2.5(f) yields $\gamma(S_{\beta}) = n$. Therefore $S_{\beta} \in \Gamma_n$.

(iii) Let (v_n) be a sequence in \mathcal{M}_{β} and (t_n) be a sequence in \mathbb{R} such that (3.4) $F_{\beta}(v_n) \to c$ and $F'_{\beta}(v_n) - t_n G'_{\beta}(v_n) \to 0.$

We will show that (v_n) has a subsequence which converges strongly in $L^p(\Omega)$. We have $(C_0/p) ||v_n||_p^p \leq F_\beta(v_n)$, so (v_n) is bounded in $L^p(\Omega)$. Hence for a subsequence still denoted by (v_n) we have $v_n \rightharpoonup v$ in $L^p(\Omega)$. As G'_β is completely continuous, we have $G'_\beta(v_n) \rightarrow G'_\beta(v)$ in $L^{p'}(\Omega)$.

It follows from (3.4) that

$$\langle F'_{\beta}(v_n) - t_n G'_{\beta}(v_n), v_n \rangle = p F_{\beta}(v_n) - t_n \to 0$$

and $t_n \to pc$. So the sequence $(F'_{\beta}(v_n))$ is strongly convergent in $L^{p'}(\Omega)$. Hence

$$\lim_{n \to \infty} \int_{\Omega} F'_{\beta}(v_n)(v_n - v) \, dx = 0.$$

Since F'_{β} is of type (S_+) , we have $v_n \to v$ in $L^p(\Omega)$.

Our main result is the following theorem:

THEOREM 3.6. Problem (1.1) has a sequence of positive eigensurfaces $(G(\Gamma_n^p(\cdot,m)))_{n\geq 1}$, where $G(\Gamma_n^p(\cdot,m))$ is the graph of the function $\Gamma_n^p(\cdot,m)$. Moreover, we have

(3.5)
$$\forall \beta \in \mathbb{R}^N \quad \Gamma_n^p(\beta, m) = \inf_{K \in \mathcal{B}_n} \sup_{u \in K} \int_{\Omega} e^{\beta \cdot x} |\Delta u|^p \, dx$$

where

$$\mathcal{B}_n = \{ K \subset \mathcal{N}_{\beta} : K \text{ is compact, symmetric and } \gamma(K) \ge n \},\$$
$$\mathcal{N}_{\beta} = \left\{ u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega) : \int_{\Omega} m e^{\beta \cdot x} |u|^p \, dx = 1 \right\}$$

and

(3.6)
$$\Gamma_n(\beta, m) \to \infty \quad \text{as } n \to \infty.$$

Proof. Lemmas 2.6 and 3.5 enable us to claim that $(G(\Gamma_n^p(\cdot, m)))_{n\geq 1}$ is an infinite sequence of positive eigensurfaces of problem (3.2).

We now prove (3.6). Since $L^p(\Omega)$ is separable, there exists a biorthogonal system $(e_i, e_j^*)_{i,j \in \mathbb{N}}$ such that $e_i \in L^p(\Omega), e_j^* \in L^{p'}(\Omega)$. The e_i 's are linearly dense in $L^p(\Omega)$ and the e_i^* 's are total in $L^p(\Omega)$ (cf. [L]).

For $n \in \mathbb{N}^*$, set $F_n = \text{span}\{e_1, \ldots, e_n\}$ and $F_n^{\perp} = \text{cl span}\{e_{n+1}, e_{n+2}, \ldots\}$, where cl denotes closure. From Lemma 2.5(g) we deduce that $K \cap F_{n-1}^{\perp} \neq \emptyset$ for any $K \in \Gamma_n$.

We claim that

$$d_n = \inf_{K \in \Gamma_n} \sup_{v \in K \cap F_{n-1}^{\perp}} pF_{\beta}(v) \to \infty \quad \text{as } n \to \infty.$$

Indeed, if not, there exists M > 0 such that for every $n \in \mathbb{N}^*$ there exists $v_n \in F_{n-1}^{\perp}$ with $pG_{\beta}(v_n) = 1$ and $d_n \leq pF_{\beta}(v_n) \leq M$. We deduce that (v_n) is bounded in $L^p(\Omega)$. Thus for a subsequence still denoted by $(v_n), v_n \rightharpoonup v$ in $L^p(\Omega)$. Since G'_{β} is completely continuous we get

$$G'_{\beta}(v_n) \to G'_{\beta}(v) \text{ in } L^{p'}(\Omega) \text{ and } \lim_{n \to \infty} \langle G'_{\beta}(v_n), v_n \rangle = \langle G'_{\beta}(v), v \rangle.$$

Then $pG_{\beta}(v_n) \to pG_{\beta}(v)$. The fact that $pG_{\beta}(v_n) = 1$ implies $pG_{\beta}(v) = 1$.

On the other hand, for every $n \ge j$, $\langle e_j^*, e_n \rangle = 0$. Hence $v_n \rightharpoonup 0$, therefore v = 0 and $G_\beta(v) = 0$, which leads to a contradiction. Since $\Gamma_n^p(\beta, m) \ge d_n$, we get (3.6).

Finally we verify (3.5). We know that $-\Delta : X \to L^p(\Omega)$ and $\Lambda : L^p(\Omega) \to X$ are odd homeomorphisms. Consequently, by the properties of genus we get: $K \in \Gamma_n \Leftrightarrow \Lambda K \in \mathcal{B}_n$. Hence for every $n \in \mathbb{N}^*$, $\Gamma_n^p(\beta, m) = \inf_{K \in \mathcal{B}_n} \sup_{u \in K} \int_{\Omega} e^{\beta \cdot x} |\Delta u|^p dx$.

REMARK 3.7. We can prove that the spectrum of (1.1) is closed and the set of eigenfunctions associated with the same eigensurface of problem (1.1) is compact.

References

- [AD] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [AG] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623–727.
- [A] A. Anane, O. Chakrone et J.-P. Gossez, Spectre d'ordre supérieur et problèmes aux limites quasi-linéaires, Boll. Un. Mat. Ital. B (8) 4 (2001), 483–519.
- [B] J. Benedikt, On the discreteness of the spectra of the Dirichlet and Neumann p-biharmonic problems, Abstr. Appl. Anal. 2004, 777–792.
- [C] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, New York, 1982.
- [D] D. de Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Inst. Fundam. Res., Bombay, and Springer, Berlin, 1989.

- [DR] P. Drábek and M. Ôtani, Global bifurcation result for the p-biharmonic operator, Electron. J. Differential Equations 2001, no. 48, 19 pp.
- [E] A. El Khalil, S. Kellati and A. Touzani, On the spectrum of the p-biharmonic operator, Electron. J. Differential Equations Conf. 9 (2002), 161–170.
- [G] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, 2nd ed., Springer, New York, 1983.
- T. Idogawa and M. Ötani, The first eigenvalues of some abstract elliptic operator, Funkcial. Ekvac. 38 (1995), 1–9.
- [K] M. A. Krasnosel'skiĭ, Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964.
- [L] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977.
- [R] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, Amer. Math. Soc., Providence, RI, 1986.
- [S] A. Szulkin, Ljusternik–Schnirelmann theory on C^1 manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119–139.
- [T] M. Talbi and N. Tsouli, On the spectrum of the weighted p-biharmonic operator with weight, Mediterr. J. Math. 4 (2007), 73–86.

Khalil Ben Haddouch, Najib Tsouli	Zakaria El Allali
Department of Mathematics	Department of Mathematics
University Mohamed I	University Mohamed I
Oujda, Morocco	Oujda, Multidisciplinary Faculty of Nador, Morocco
E-mail: ayasch1@hotmail.com	E-mail: elallali@hotmail.com
tsouli@hotmail.com	

Received on 25.2.2014; revised version on 18.7.2014 and 23.9.2014 (2231)