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INFLUENCE OF DIFFUSION ON INTERACTIONS
BETWEEN MALIGNANT GLIOMAS

AND IMMUNE SYSTEM

Abstract. We analyse the influence of diffusion and space distribution of
cells in a simple model of interactions between an activated immune sys-
tem and malignant gliomas, among which the most aggressive one is GBM
Glioblastoma Multiforme. It turns out that diffusion cannot affect stability
of spatially homogeneous steady states. This suggests that there are two
possible outcomes—the solution is either attracted by the positive steady
state or by the semitrivial one. The semitrivial steady state describes the
healthy state, while the positive one reflects the chronic disease and typically
the level of tumour cells in this state is very high, exceeding the threshold of
lethal outcome. Results of numerical simulation show that the initial tumour
cells distribution has an essential impact on the dynamics of the system. If
the positive steady state exists, then we observe bistability and the initial
distribution decides to which steady state the solution tends.

1. Introduction. In this paper we focus on the influence of diffusion
and space distribution of tumour cells in a simple model of interactions
between an activated immune system and malignant gliomas, among which
the most aggressive one is GBM Glioblastoma Multiforme. High grade malig-
nant gliomas also include such tumour types as anaplastic astrocytoma and
anaplastic oligodendroglioma. The life expectancy for MGs does not exceed
1.5 years for GBM and 5 years for less aggressive forms [10]. Conventional
treatments (surgery, radiation and chemotherapy) turn out to be insufficient
in the case of MGs. Therefore, we consider immunotherapy, which can offer
a survival advantage.
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In this paper we follow the ideas of immunotherapy presented in [14]
and extended in [11]–[13]. However, following [8], in the present work we
include the influence of spatial effects on the system dynamics using reaction-
diffusion equations instead of ODEs. We compare the dynamics of solutions
for two types of gliomas: grade III which are less aggressive and grade IV
which are the most aggressive ones. In [8] we considered the diffusion process
in 1-D, for simplicity. The present paper extends the results of [8] to 2-D
and 3-D cases which are closer to real experiments (2-D in vitro and 3-D in
vivo).

Interactions between the immune system and tumour/cancer cells and
immunotherapy of cancer are currently among the most intensively studied
topics, both from the medical and mathematical point of view (cf., e.g., [1],
[3]–[6], [9], [15]–[18] and [22]–[26]).

1.1. Presentation of the model. The full model of immune reactions
proposed in [14] and generalised in [11, 12] is described by the system of six
equations, which reflect the dynamics of concentrations of the main compo-
nents of the analysed processes, namely T (t) reflecting the tumour size, C(t)
describing the number of cytotoxic T-lymphocytes (CTL), Fβ and Fγ are the
concentrations of TGF-β and INF-γ, respectively, and MI and MII repre-
sent molecules of MHC class I and II, respectively. This system of equations
reads

Ṫ = r(T )T − fT (Fβ)gT (MI )h(T )CT,

Ċ = fC(T ·MII )gC(Fβ)− µCC + S(t),

Ḟβ = fβ(T )− µβFβ,
Ḟγ = fγ(C)− µγFγ ,

ṀI = fMI (Fγ)− µMI MI ,
˙MII = fMII (Fβ)gMII (Fγ)− µMII MII ,

(1)

where:

• r(T ) is the rate of tumour growth; it is at most linear, i.e. r(T ) ≤ r0,
r0 = const, and r(K) = 0, where K reflects the maximal tumour size
(in the following we study the model with r(T ) = r(1− T/K));
• fT (Fβ) and gT (MI ) describe the CTL efficiency; fT is decreasing and

bounded from below, gT is increasing and bounded from above;
• h(T ) is the tumour damping function; it is decreasing and bounded

from below;
• fC(T · MII ) is the CTL production with the inhibition rate gC(Fβ)

depending on TGF-β; fC(T · MII ) is increasing and bounded from
above, while gC(Fβ) is decreasing and bounded from below;
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• S(t) is the treatment function, that is, the infusion of alloreactive
CTLs; in general S(t) is non-negative and bounded from above; we
focus on the case S(t) = S = const;
• fβ(T ) and fγ(C) are the production functions of TGF-β and IFN-γ,

respectively; fβ(T ) and fγ(C) are increasing;
• fMI (Fγ) is the MHC class I production function; it is increasing and

bounded from above;
• gMII (Fγ) and fMII (Fβ) are the MHC class II production and inhibition,

respectively; gMII (Fγ) is increasing and bounded from above, while
fMII (Fβ) is decreasing and bounded from below.

We also assume that all the functions described above are at least of
class C1.

Following the ideas presented in [11]–[13] we simplify the notation using
the following new variables: x = Fβ, y = Fγ , u = MI , v = MII , and
function’s indices: fβ = fx, fγ = fy, fMI = fu, fMII = fv and gMII = gv.
Moreover, as in [13] we assume that all functions are strictly convex, concave
or linear, more precisely:

• r(T ) is non-increasing and convex or linear,
• fT is convexly decreasing from fT (0) = 1 to 1 > aT,x > 0,
• gT is concavely increasing from gT (0) = 0 to aT > 0,
• h is convexly decreasing from h(0) = 1 to 0,
• fC is concavely increasing from fC(0) = 0 to aC,v > 0,
• gC is convexly decreasing from gC(0) = 1 to 1 > aC,x/eC,x > 0,
• fx and fy are increasing and concave or linear, fx(0) = gx > 0 and
fy(0) = 0, respectively,
• fu is concavely increasing from fu(0) = gy > 0 to gy + au,y > gy,
• fv is convexly decreasing from fv(0) = 1 to 0 and finally,
• gv is concavely increasing from gv(0) = 0 to av,y > 0.

The simplified model proposed in [11] assumes that the dynamics of
TGF-β is much faster than those of other system components, which is based
on the turnover and secretion rate estimated for TGF-β from experimental
data. Therefore, the variable x is determined as x = fx(T )/µx. Furthermore,
we neglect the influence of MHC class II receptors and TGF-β on the natural
CTLs inflow and assume that the inflow of CTLs is constant. Define the
auxiliary function

f̄T (T ) = fT (fx(T )/µx).

Assuming further that all components of the system have some spatial dis-
tribution, that is, T = T (t, p), C = C(t, p), y = y(t, p), u = u(t, p), p ∈ R3,
and they can diffuse in space with constant diffusion coefficients, the final
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version of the system studied in this paper reads

∂T

∂t
= r(T )T − f̄T (T )gT (u)h(T )TC +DT∆T,

∂C

∂t
= S − µCC +DC∆C,

∂y

∂t
= fy(C)− µyy +Dy∆y,

∂u

∂t
= fu(y)− µuu+Du∆u,

(2)

with the standard Neumann boundary conditions on [0, π]3 ⊂ R3, for sim-
plicity.

We would like to study the dynamics of tumour growth for gliomas of
grade III and IV. Note that the form of equations is the same for both grades
of tumour and the difference is expressed by the value of the reproduction
coefficient which is much greater for grade IV than for grade III. On the basis
of numerical simulations in Section 3 we show that the qualitative behaviour
for both grades is similar. However, there are major quantitative differences.

2. Properties of the system. In [11, 12] the basic properties of the full
system (1) were studied. It was proved that in the case of tumour growth,
that is, for T ∈ [0,K], all variables are bounded and this leads to dissipativ-
ity of the system. Dissipativity implies that the system (1) has a compact
global attractor. In all cases considered in [12] the solution was attracted by
one of the steady states.

2.1. Existence of solutions. Local existence of solutions to (2) is an
easy consequence of the theory set out in [19]. To prove global existence
we show that the system has an invariant set. Note that the same set is
invariant for the system without diffusion (cf. [12]). We use the framework
of invariant sets presented in [5, 20, 21].

Proposition 1. The set Σ = [0, 1] × [0, C∗] × [0, y∗] × [0, u∗], where
C∗ = S/µC , y∗ = fy(C∗)/µy and u∗ = fu(ym)/µu, is invariant for (2).

Proof. Write (T,C, y, u) = Y = (Y1, Y2, Y3, Y4). Let Φ(Y ) be the vector
of kinetic functions of (2). Following the ideas of [20] we look for a function
G : R4 → R such that G(Y ) ≤ 0 in Σ, G is quasi-convex, ∇G is a left
eigenvector for the diffusion coefficients matrix D (D = diag(DYi) in our
case), and ∇G · Φ|bd Σ ≤ 0.

Since the matrix D is diagonal, every vector Sl ∈ R4 with Sli = 0 for
i 6= l and Sll = ±1 is a left eigenvector for this matrix. Therefore, we can
use functions Gi which are linear as functions of Yi.
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To show non-negativity we use the functions Gi = −Yi ≤ 0 in Σ, i =
1, 2, 3, 4. We have

∇G1(Y ) · Φ(Y ) = −T (r(T )− f̄T (T )gT (u)h(T )C)|T=0 = 0,
∇G2(Y ) · Φ(Y ) = −(S − µCC)|C=0 = −S ≤ 0,
∇G3(Y ) · Φ(Y ) = −(fy(C)− µyy)|y=0 = −fy(C) ≤ 0,
∇G4(Y ) · Φ(Y ) = −(fu(y)− µuu)|u=0 = −fu(y) ≤ 0.

Next we use Gi(Y ) = Yi−Y m
i ≤ 0 in Σ, where Y m

1 = 1, Y m
2 = C∗, Y m

3 = y∗

and Y m
4 = u∗. For these functions we obtain

∇G1(Y ) · Φ(Y ) = (r(T )− f̄T (T )gT (u)h(T )C)|T=1

= −f̄T (1)gT (u)h(T )C ≤ 0,
∇G2(Y ) · Φ(Y ) = (S − µCC)|C=C∗ = 0,
∇G3(Y ) · Φ(Y ) = (fy(C)− µyy)|y=y∗ = fy(C)− fy(C∗) ≤ 0,
∇G4(Y ) · Φ(Y ) = (fu(y)− µuu)|u=u∗ = fu(y)− fu(ym) ≤ 0,

because fy and fu are increasing.
Therefore, Σ is invariant according to the theory of invariant sets for

reaction-diffusion equations.

The statement of Proposition 1 implies that the solutions to (2) for initial
conditions having values in Σ are global in time.

In the following we study (2) in the invariant domain Σ.

2.2. Local stability analysis. Global analysis of stability for the sys-
tem (2) without diffusion was performed in [11]. In the case without external
inflow of CTLs, that is, for S = 0, the solution always tends to the semitriv-
ial steady state with maximal tumour size T = K. When the external inflow
S is non-zero, we have two possibilities depending on the magnitude of S
and the initial tumour size T0:

I. a solution tends to one of the positive steady states if S < Smin, where
Smin is some threshold value, or S ∈ (Smin, Sthr), where Sthr > Smin

is the next threshold, and the initial tumour size T0 is sufficiently
large,

II. a solution tends to the semitrivial steady state with zero tumour size
if S > Sthr or S ∈ (Smin, Sthr) and T0 is sufficiently small.

In this subsection we focus on the influence of diffusion on the local
stability of steady states. Spatially homogeneous steady states for the last
three equations can be easily calculated to be C∗ = S/µC , y∗ = fy(C∗)/µy
and u∗ = fu(y∗)/µu, respectively. For the first equation the steady state
value T ∗ is given either by T = 0, or by

(3) r(T )− f̄T (T )gT (u∗)h(T )C∗ = 0.
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This can be reformulated as

(4) r(T ) = G(T )H(S),

where

G(T ) = fT

(
fx(T )
µx

)
h(T ), H(S) = gT

(
fu(fy(S/µC))

µu

)
S

µC
.

Proposition 2. The system (2) has at most two spatially homogeneous
positive stationary solutions (steady states).

Proof. Positive steady states are defined by (4). For constant inflow of
CTLs one needs to compare the behaviour of r(T ) and G(T ) on the interval
[0,K]. We know that r is decreasing to r(K) = 0 and r′′(T ) ≥ 0, that is, r
is linear or convex. We can show that G(T ) is convexly decreasing. In fact,

G′(T ) = f ′T

(
fx(T )
µx

)
f ′x(T )
µx

h(T ) + fT

(
fx(T )
µx

)
h′(T ) < 0,

because fT and h are decreasing, while fx is increasing. Moreover,

G′′(T ) = f ′′T

(
fx(T )
µx

)(
f ′x(T )
µx

)2

h(T ) +
f ′′x (T )
µx

f ′T

(
fx(T )
µx

)
h(T )

+ h′′(T )fT

(
fx(T )
µx

)
+ 2f ′T

(
fx(T )
µx

)
f ′x(T )
µx

h′(T ) > 0,

because fT and h are convex and fx is linear or concave. Therefore, (4)
can have at most two solutions. The number of solutions depends on the
magnitude of S. It is easily seen that H(S) is an increasing function. If S is
sufficiently small, we have r(0) > G(0)H(S) and then there exists exactly
one positive steady state. If r(0) < G(0)H(S), then there are two positive
steady states or none.

Studying local stability of these states for the system (2) we use the
standard separation of variables method and the linearisation theorem (see
e.g. [2, 20]). Hence, we look for fundamental solutions of the form exp(λt)
× cos(k1p1) cos(k2p2) cos(k3p3), kj ∈ Z, j = 1, 2, 3, p = (p1, p2, p3) ∈ [0, π]3,
and obtain the following characteristic matrix:

(5)


a11 − λ−DTK a12 0 a14

0 −µc − λ−DCK 0 0
0 f ′y(C

∗) −µy − λ−DyK 0
0 0 f ′u(y∗) −µu − λ−DuK


where K = k2

1 + k2
2 + k2

3,
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a11 = r(T )− gT (u)h(T )f̄T (T )C

+ T
(
r′(T )− gT (u)C(h′(T )f̄T (T ) + h(T )f̄ ′T (T ))

)
,

a12 = − gT (u)h(T )f̄T (T )T, a14 = −g′T (u)h(T )f̄T (T )TC

for (T,C, y, u) = (T ∗, C∗, y∗, u∗).

Proposition 3. Diffusion-driven instability cannot occur for the sys-
tem (2).

Proof. The characteristic equation for both steady states has the form

(a11 − λ−DT (k2
1 + k2

2 + k2
3))(µC + λ+DC(k2

1 + k2
2 + k2

3))

× (µy + λ+Dy(k2
1 + k2

2 + k2
3))(µu + λ+Du(k2

1 + k2
2 + k2

3)) = 0,

and we look for solutions λ that obviously depend on kj , j = 1, 2, 3. These
solutions can be easily calculated as λ1 = a11 − DT (k2

1 + k2
2 + k2

3), λ2 =
−
(
µC + DC(k2

1 + k2
2 + k2

3)
)
, λ3 = −

(
µy + Dy(k2

1 + k2
2 + k2

3)
)

and λ4 =
−
(
µu + Du(k2

1 + k2
2 + k2

3)
)
. We see that all eigenvalues are real and λi for

i = 2, 3, 4 is negative for every kj ∈ Z, j = 1, 2, 3. Moreover, if a11 < 0, then
λ1 < 0, while if a11 > 0, then λ1 > 0 for k1 = k2 = k3 = 0. This implies
that neither the trivial nor the positive steady state can lose local stability
under the influence of diffusion. Clearly, if the steady state is stable for the
case without diffusion, that is, a11 < 0, then for any ki ∈ Z all characteristic
values are negative.

If

S < S̃ =
r(0)µC

gT (u∗)h(0)fT (0)
,

then the trivial steady state is unstable independently of the magnitude of
the diffusion coefficients. If S > S̃, then this state is stable, also indepen-
dently of the diffusion coefficients. Similarly, if

S <

(
r(T ∗) + r′(T ∗)T ∗

)
µC

gT (u∗)
(
h(T ∗)f̄T (T ∗) + T ∗(h′(T ∗)f̄T (T ∗) + h(T ∗)f̄ ′T (T ∗))

) ,
then the positive steady state is unstable independently of the diffusion
coefficients, while for the opposite inequality it is stable. It should be noticed
that the inequality above gives a condition on S in an implicit formula,
because T ∗ is also a function of S. We can rewrite it in the following form:

r′(T ∗)
r(T ∗)

>
h′(T ∗)
h(T ∗)

+
f̄ ′T (T ∗)
f̄T (T ∗)

,

noting that a11 = r(T ∗)T ∗
( r′(T ∗)
r(T ∗) −

h′(T ∗)
h(T ∗) −

f̄ ′T (T ∗)

f̄T (T ∗)

)
for T ∗ > 0.
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3. Numerical simulations. In Section 2 the analytical result was
stated for the 3-D case. However, it is difficult to illustrate results of sim-
ulations in this case. Therefore, we present a simulation for p ∈ [0, 1]. We
use the specific realisations of the functions describing the right-hand side
of the system (2) proposed in [14] and the normal values of parameters es-
timated in [14, 12]. Hence, after rescaling we consider the following system
of equations:

∂T

∂t
(t, ω) = dT∆T

+ T

(
r(1− T )− aTC

u

u+ eT

hT
T + hT

aT,x
T+gx

µx
+ eT,x

T+gx

µx
+ eT,x

)
,

∂C

∂t
(t, ω) = dC∆C + SC − C,

∂y

∂t
(t, ω) = dy∆y + C − µyy,

∂u

∂t
(t, ω) = du∆u+

y + gy
y + eu,y

− µuu,

(6)

with the standard Neumann boundary conditions on [0, 1] and the values of
parameters:

rIII = 0.0472, rIV = 0.135, aT = 0.208, eT = 0.128, hT = 5.2 · 10−6,

aT,x = 0.69, gx = 0.111, µx = 935, eT,x = 1.3 · 10−4,

µy = 13.8, gu = 0.5, eu,y = 2.46 · 103, µu = 1.94,

SIV
C = 104, SIII

C = 3.5 · 103, dT = 1, dC = dy = du = 0.01,

where rIII and rIV , SIII
C and SIV

C denote the reproductions rate and the
inflows for grade III and grade IV tumour, respectively. The difference of
the magnitudes of the diffusion coefficient for T and for the other compo-
nents of the system reflects the high diffusiveness of GBM tumour cells. In
the simulations presented in [8] we used a continuous initial function and
focused on the influence of the mean and maximal size of the initial tumour
distribution on the tumour dynamics. It turned out that in all cases consid-
ered, at each point p ∈ [0, 1] the solution tends to one of the steady states
as t→∞.

Now, we present simulations for non-standard initial functions, that is,
for discontinuous values of T0. Such initial functions seem to be more natural
for experimental data, especially in vitro, when tumour cells are placed in
some region at the beginning of the experiment. Other initial functions are
assumed for the worst case, which means C0 = y0 = u0 = 0. It should be
stressed that for such type of initial functions the analytical results presented
in Section 2 may be invalid.
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In the simulations we focus on the asymptotic dynamics of tumour cells
as well as on the initial behaviour of the tumour which can be important
from the early-treatment point of view.

We start simulations from a grade III tumour for the same initial tumour
size 0.1 but with different discontinuous space distributions on subintervals
of total length 0.1. The results are presented in Figs. 1 and 2. We see that
independently of the number of subintervals on which the tumour cells ap-
pear and their distribution in space, the asymptotic dynamics is almost the
same. Asymptotically, the number of tumour cells drops to 0, while CTLs
stabilise on their steady state level C∗. Moreover, the dynamics of CTLs is
exactly the same for all cases shown in Fig. 1, and therefore we present only
one Fig. 2 reflecting it. However, the initial behaviour depends on the initial
distribution. In Fig. 1 we see that the initial distribution of tumour cells is
preserved for some time.
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Fig. 1. Examples of tumour dynamics for a grade III tumour with initial tumour size 0.1
and different discontinuous initial tumour distributions

In Fig. 3 we see the dynamics for larger initial tumour size, namely
T0 = 0.5 on the interval of the same length as in Fig. 1. This is the initial level
for which tumour cells stabilise at the positive steady state with increasing t.
We see that stabilisation of CTLs on the level C∗ is very fast compared to
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Fig. 2. The dynamics of CTLs for tumour growth presented in Fig. 1
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Fig. 3. Example of the tumour and CTLs dynamics for a grade III tumour with initial
tumour size 0.5

the tumour growth. As before, the asymptotic dynamics does not depend on
the number and space distribution of the subintervals on which tumour cells
appear at the beginning of the disease. However, the initial distribution is
also preserved for some time after which tumour cells spread into the whole
interval [0, 1], reaching a much smaller level than the initial T0.

In Figs. 4 and 5 we see that the qualitative dynamics for grade IV is sim-
ilar. We observe only a quantitative difference, as in the case of simulations
performed in [8]. Moreover, dependence on the distribution of tumour cells
is also similar—the asymptotic behaviour of solutions depends strongly on
the total length of the intervals in which T0 is non-zero and can even be
large (as in Fig. 5) if the interval is short. This means that the asymptotic
tumour dynamics depends mainly on the total initial number of tumour
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Fig. 4. Examples of the tumour and CTLs dynamics for a grade IV tumour with initial
tumour size 0.5 (top) and 0.3(3) (bottom)
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Fig. 5. Example of tumour and CTLs dynamics for a grade IV tumour with the maximal
possible initial tumour size 1 on the interval of length 0.025

cells. On the other hand, for all simulations performed, we observed that
the initial distribution of tumour cells is preserved for some time and then
tumour cells spread either on the whole interval or on some subinterval (cf.
Fig. 6).
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Fig. 6. Examples of tumour dynamics for a grade IV tumour and different diffusion coef-
ficients: 0.01, 1 (top) and 100 (bottom)

We have also performed simulations for different diffusion coefficients
for tumour cells (cf. Fig. 6). It is interesting that for discontinuous initial
tumour distributions considered in this paper the difference in tumour cells
dynamics for different diffusion coefficients is more visible than in the case
of continuous functions used in [8]. For small values of the diffusion coef-
ficient the region where tumour cells appear does not propagate into the
whole interval [0, 1] (the upper left graph in Fig. 6), while for large diffusion
coefficients it propagates very fast (the bottom graph in Fig. 6).

4. Conclusions. We have studied a simple model of immunotherapy
in the case of malignant gliomas with spatial distribution reflected in the
diffusion process. We have shown global existence of solutions using the
framework of invariant sets, and studied local stability of steady states in
the context of possible diffusion-driven instability. It turns out that diffusion
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has no essential impact on the asymptotic dynamics of the system. Stabil-
ity analysis performed in Section 2 implies that stability does not change
due to the diffusion process. On the other hand, from the early-treatment
point of view not only the asymptotic behaviour is important. Therefore,
we have performed a number of numerical simulations for different initial
distributions of tumour cells assuming discontinuous initial data that seem
to better reflect experimental distribution.

Numerical simulations presented in Section 3 confirmed expected bistable
asymptotic dynamics—depending on the total initial tumour size, the pop-
ulation of tumour cells stabilises either on the zero level, which reflects re-
covery, or on the positive level, which typically reflects lethal outcome (this
positive steady state for tumour size is normally too high for the patient’s
survival). On the other hand, the initial dynamics of tumour essentially de-
pends on the initial distribution of tumour cells and on the value of the
diffusion coefficient for these cells. We observe that the initial distribution is
preserved for some time after which tumour cells spread either into the whole
interval [0, 1] or to some subinterval which depends on the magnitude of dif-
fusion. If the diffusion coefficient is large, then tumour cells occupy the whole
interval and they spread into it faster with increasing diffusion. With the de-
creasing diffusion coefficient the interval occupied by tumour cells is smaller.

The results presented in this paper and in [8] show that although we
should expect bistable asymptotic dynamics in the case of tumour-immune
system interactions independently of the initial spatial tumour distribution,
this initial distribution has a large impact on the initial tumour growth,
which is important from the treatment point of view.
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