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DYNAMIC REFORMING OF A QUASI PAY-AS-YOU-GO
SOCIAL SECURITY SYSTEM WITHIN A DISCRETE

STOCHASTIC MULTIDIMENSIONAL FRAMEWORK USING
OPTIMAL CONTROL METHODS

Abstract. In many western economies, the phenomenon of ageing popula-
tion implies that the large Pay-As-You-Go (PAYGO) social security system
will run into several severe financial difficulties. In that direction, this paper
constructs a discrete-time stochastic model for a quasi PAYGO social secu-
rity system to allow the potential accumulation of a special (contingency)
fund, which can oscillate so as to absorb fluctuations in the various system
parameters involved. The basic difference equation is analytically designed
including several control variables (i.e. different investment strategies, con-
tribution rates, ages of eligibility for normal retirement and levels of pension
benefits). The theoretical model is solved using standard linearization and
stochastic optimization techniques resulting in analytic formulae for the con-
trol variables. These solutions are actually feedback mechanisms of the past
fund values. Finally, we present a practical application for the projected
population of Greece for the years 2007–2030 deriving a smooth solution for
the development of the controls.

1. Introduction. Most of the E.U. economies experience the demo-
graphic phenomenon called the “ageing population” due to higher life ex-
pectancy and low fertility rates. Since most of these economies run several,
large-scale social security pension plans financed by PAYGO systems, this
may trigger increased taxation or contribution of workers or reducing ben-
efits to pensioners. The potential significance of the problem is illustrated
by the aged dependency ratio, i.e. the number of people at the working-age
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over the number of elderly people, those aged 65 years and older,

(# working-age)/(# elderly).

Around 2010, the post-war generation, called the “baby boom” generation,
will start retiring. This cohort of lives is numerous in the majority of the
western developed countries. Greece is also going to experience one of the
worst shifts in the dependency ratio which, according to the National Sta-
tistical Service of the country, is expected to fall to 2.65 in 2030 and drop
below the critical value of 2.0 in 2050 (see Tables 1, 2).

Table 1. Greek population, projections, 2007–2030

2007 2010 2015 2020 2025 2030

Population

15-64 7462.5 7480.8 7387.8 7271.1 7123.3 6928.2

65+ 1994.5 2078.9 2195.0 2303.7 2446.2 2610.7

Aged dependency ratio

3.74 3.60 3.36 3.16 2.91 2.65

Table 2. European GDP and population, projections, 2000–2050

(% per annum and ratios)

Real Population Aged dependency ratio

GDP Total 15–64 65+ 2000 2050

Denmark 1.5 0.04 −0.11 0.81 4.5 2.8

Germany 1.4 −0.17 −0.47 0.93 4.2 2.0

Greece 2.0 −0.06 −0.40 1.09 3.8 1.9

Spain 1.8 −0.23 −0.67 1.13 4.0 1.7

France 1.7 0.10 −0.14 1.14 4.2 2.2

Ireland 2.6 0.47 0.23 2.04 5.9 2.5

Italy 1.4 −0.36 −0.79 0.90 3.7 1.6

Austria 1.6 −0.13 −0.49 1.15 4.3 1.9

Portugal 1.9 0.17 −0.15 1.33 4.3 2.2

UK 1.7 0.08 −0.11 1.01 4.2 2.4

Economic Policy Committee (2001), Table 3.4, p. 21 and Annex 7,
pp. 109–110

In view of the severe demographic forecasts, it is hardly surprising that
reforms of the social security pension system have been at the front line
of the policy debate. This debate focuses on (at least) two main issues.
First, there are several questions about how the PAYGO financing system
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can be reformed absorbing effectively the demographic severity. Secondly,
there are concerns about the future generations. Since the intergenerational
solidarity is defined as the willingness of both young and old generations to
participate in a common pool, sharing actual experience, including any losses
emerging (see [7], [19] and [21] for further discussion), a potential change of
the financing method should not generate double cost for a certain cohort
of lives and an analogous deficit in the national budget till the whole system
returns to a new equilibrium under a new financing method.

In its traditional form, the PAYGO pension system requires no accumu-
lation of funds. However, in practice, there exists a small fund, but only
for liquidity purposes. According to this method, the output of today’s
workforce is partially transferred to today’s retirees. The equation which
represents this transition is the following:

(1.1) bP = csA

where b is the level of average pension and P the number of eligible pen-
sioners. Consumption on pensions, bP , is financed by an appropriate pro-
portional contribution c (percentage of the total salaries). Typically, there
is an individual wage ceiling above which no contribution is collected, and
normally a maximum pension is associated with it. If A is the number of
workers who participate in the scheme (not necessarily all the working-age
population) and s is the average salary, then csA is the total revenue col-
lected. This simple model shifts immediately any balance perturbation onto
beneficiaries or/and contributors.

From the international demographic trends it is clear that the public
pension systems of all countries operating under the PAYGO model will be
faced with rising costs over the next few years (see also [20]). For instance,
equation (1.1) demonstrates that, to maintain balance under a constant
amount of a pension benefit, c will have to increase if the decline in fertility
rates leads to a decrease in A and at the same time a decrease in mortality
rates leads to an increase in P .

In this paper, one such fundamental reform is examined, and with that
in mind a special purpose (contingency) fund for investment benefits is in-
troduced buffering any kind of fluctuations in mortality, fertility rates (see
[17]) or other worsening random events. This idea was first introduced by
the authors of [9], who have constructed a PAYGO financing system with a
contingency fund and they have controlled over time the two major variables
of the system: the contribution rate and the age of normal retirement. Now,
this idea is further enriched by the introduction of an appropriate balanced
and active investment strategy. Additionally, further new variables are es-
tablished for the management of the system. Hence, a comprehensive and
convenient multi-dimensional model is introduced with several control vari-
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ables which also provide the opportunity of interaction among the different
social security pension plans involved in the social system of each country.
These variables are to be controlled through a smooth path over time. The
smoothness of the path is determined by a functional which weighs changes
in the variables involved. The weights are key parameters which reflect the
expectations of all participants in the pension system as well as the under-
lying demographic trends.

Finally, the contingency fund returns to zero when the fluctuations dis-
appear, leaving the system at a new equilibrium point regarding the ma-
jor control variables. The specific fund can take positive or negative val-
ues. In the first (positive) case, there is a surplus that can be invested,
while in the second (negative) case, there is a deficit which can be covered
by borrowing. This concept of contingency fund improves the intergenera-
tional equity by smoothing the rates of return produced for each cohort of
lives.

The paper is organized as follows: Section 2 describes the general stochas-
tic control model and offers the necessary notation; it also presents the lin-
earization technique and concludes with the final difference equation. Sec-
tion 3 describes the properties of the solution. Section 4 provides a detailed
study of the solution of the model in the general case of m social secu-
rity pension plans. An application to the Greek population is described in
Section 5. A summary and conclusions appear in Section 6.

2. The discrete-time framework model. This section proceeds with
the presentation of the proposed model, translating the entire discussion and
motivation of the previous section into mathematical equations. Firstly, the
necessary notation is defined keeping in mind the discrete framework of our
analysis. Throughout, i = 1, . . . ,m.

m : Number of different social security pension plans.
CFi,n : Contingency (reserve) fund at time n ∈ N (at the end of the nth

period) for the ith pension plan.
rk
i,n : Rate of return from a portfolio of k different investments, k = 1, . . . , d,

such as cash, bonds, shares etc., for the (n + 1)th period, i.e. in the
time interval [n, n+ 1), for the ith pension plan. We assume that rk

i,n

are stochastic variables.
wk

i,n : Proportions (weights) invested in k different investments, k = 1, . . . , d,
such as cash, bonds, shares, at time n ∈ N (constant during the whole
(n+ 1)th period) for the ith pension plan. Obviously,

∑d
k=1w

k
i,n = 1,

or equivalently, wd
i,n = 1−

∑d−1
k=1w

k
i,n.

ci,n : Contribution rate at time n ∈ N (constant during the whole (n+ 1)th
period) for the ith pension plan.
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bi,n : Average pension benefit paid to the pensioners due to normal retire-
ment at time n ∈ N (or during the (n+ 1)th period).

ai,n : Age of eligibility for normal retirement at time n ∈ N (or during the
(n+ 1)th period) for the ith pension plan.

si,n : Average salary received by the workers at time n ∈ N (or during the
(n+ 1)th period) for the ith pension plan.

Ai;n,ai,n : Total number of active members of the population at time n ∈ N
(or during the (n + 1)th period) for the ith pension plan, given that
the age of eligibility for normal retirement is ai,n.

Pi;n,ai,n : Total number of pensioners due to normal retirement at time n ∈
N (or during the (n+ 1)th period) for the ith pension plan, assuming
that the age of eligibility equals ai,n.

βij,n : Interaction factor, the percentage of the contingency (reserve) fund
transferred from the ith to jth pension plan at time n ∈ N (or during
the (n + 1)th period), i, j = 1, . . . ,m. We have

∑m
j=1 βij,n = 1 for all

i = 1, . . . ,m.
εij,n : Also an interaction factor, the transition cost for transferring mone-

tary units from the ith to jth pension plan at time n ∈ N (or during
the (n+1)th period). It is expressed as a percentage of the contingency
(reserve) fund.

Definition 2.1. The accumulated contingency (reserve) fund for the
entire social security system at time n ∈ N (or during the (n+ 1)th period)
is defined by

(2.1) CFn =
m∑

i=1

CFi,n.

Trivially, if we demand

(2.2) CFn = 0 for any n ∈ N

equation (2.1) corresponds exactly to the initial balanced equation (1.1).

Furthermore, the accumulated contingency fund is determined by the
following difference equation for i = 1, . . . ,m:

(2.3) CFi,n+1 =
i−1∑
l=1

βli,n(1− εli,n)CFl,n

{
βii,n(1− εii,n)

+ ICFi,n>0

( d∑
k=1

wk
i,nr

k
i,n

)}
CFi,n

+
m∑

l=i+1

βli,n(1− εli,n)CFl,n + ci,nsi,nAi;n,ai,n − bi,nPi;n,ai,n .
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Thus, (2.3) determines a dynamical system, where

Ix>0(Y ) =
{
Y when x > 0,
0 otherwise.

{CFi,n}n∈N is the sequence of state variables, {wk
i,n}n∈N for k = 1, . . . , d,

{ci,n}n∈N, {bi,n}n∈N, {ai,n}n∈N are the deterministic control variables, and
{rk

i,n}n∈N for k = 1, . . . , d, {Ai;n,ai,n}n∈N, {Pi;n,ai,n}n∈N, {sn}n∈N, {βij,n}n∈N
and {εij,n}n∈N are the input variables for i = 1, . . . ,m.

By using equation (2.3), the variables that restrict the development of
the process are controlled by demanding the fulfillment of the minimization
criterion (2.4) which produces a smooth path for the evolution of the control
variables, i.e.

(2.4) min
w1

i,n,...,wd−1
i,n

ci,n,bi,n,ai,n

E



N∑
n=1

{ d−1∑
k=1

θi,k[100(wk
i,n − wk

i,n)]2

+ θi,d[100(ci,n − ci,n)]2

+ θi,d+1(bi,n − bi,n)2 + θi,d+2(ai,n − ai,n)2
}

+
(

1−
d+2∑
k=1

θi,k

)
(CFi,N − CF i,N )2


,

where

{wk
i,n}n∈N : The sequence of standard values for the proportions invested in
k different investments, k = 1, . . . , d − 1, such as bonds, cash, shares
etc. for the ith pension plan. They can be considered as the initial
values or average values near to which the path of the future values of
{wk

i,n}n∈N, k = 1, . . . , d− 1, is placed using the smoothing process.
{ci,n}n∈N, {ai,n}n∈N, {bi,n}n∈N : The sequences of standard values for the

contribution rate, the age of retirement and the benefits of pensioners,
respectively, for the ith pension plan, with explanation similar to that
for {wk

i,n}n∈N, k = 1, . . . , d− 1.
CF i,N : A desirable final value for the contingency (reserve) fund, obtained

from this operation at the end of period N for the ith pension plan.
Note the importance of expressions (2.1) and (2.2).

The weights θi,j for i = 1, . . . ,m, j = 1, . . . , d + 2 (and
∑4

j=1 θi,j = 1)
measure the impact of changes in the control variables w1

i,n, . . . , w
d−1
i,n , ci,n,

bi,n, ai,n and CFi,n, for i = 1, . . . ,m. The parameters would be obtained
after research and negotiations with all parties involved in the public pen-
sion system (i.e. authorities, employees, employers etc.). Additionally, some
coefficients are multiplied by 100, see (2.4), in order to deal with the mea-
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surement unit problem. Note that bi,n and ai,n are greater than 1 (near 60
and 65, respectively).

For the sequences {Ai;n,ai,n}n∈N and {Pi;n,ai,n}n∈N, we assume a quadratic
form:

(2.5)
Ai;n,ai,n = λi,1n+ λi,2ai,n + λi,3n

2 + λi,4a
2
i,n + λi,5nai,n + λi;6,n,

Pi;n,ai,n = ki,1n+ k1,2ai,n + ki,3n
2 + ki,4a

2
i,n + ki,5nai,n + ki;6,n,

where ki,k, λi,k, k = 1, . . . , 5, are constant coefficients and λi;6,n, ki;6,n are
stochastic variables. This last assumption for λi;6,n, ki;6,n incorporates a
stochastic element into the fully quadratic projections of the number of
active members and the number of pensioners.

Proposition 2.1. The nonlinear equation (2.3) can be rewritten in the
vector linear form

xi,n+1 = a1xn + biui,n + ciwi,n + φi for i = 1, . . . ,m,(2.6)

by applying the standard linearization technique where

xi,n+1 = ∆Pi,n+1,

ai = [A1i · · · Ami] ∈ R1×m.(2.7)

Note that βij,n ≡ βij,n and εij,n ≡ εij,n are constant. The elements of (2.7)
are

Aji =



βji,n(1− εji,n) for j 6= i,

βii,n(1− εii,n)

+ ICFi,n>0

( d−1∑
k=1

wk
i,nr

k
i,n +

(
1−

d−1∑
k=1

wk
i,n

)
rd
i,n

)
for j = i,

(2.8)

xn = [∆CF1,n · · · ∆CFm,n]′ ∈ Rm,(2.9)

bi = [ICFi,n>0(r1i,n − rd
i,n)CF i,n · · · ICFi,n>0(rd−1

i,n − r
d
i,n)CF i,n(2.10)

γisi,n −δi ηi] ∈ R1×(d+2),

where

ηi = ci,nsi,n[λi,2 + 2λi,4ai,n + λi,5n]− bi,n[ki,2 + 2ki,4ai,n + ki,5n],

γi = λi,1n+ λi,2ai,n + λi,3n
2 + λi,4a

2
i,n + λi,5nai,n + λi;6,n,

and

δi = ki,1n+ ki,2ai,n + ki,3n
2 + ki,4a

2
i,n + ki,5nai,n + ki;6,n,(2.11)

ui,n = [∆w1
i,n · · · ∆wd−1

i,n ∆ci,n ∆βi,n ∆ai,n]′ ∈ Rd+2,(2.12)

ci = [c1i · · · cd+3,i] ∈ R1×(d+3),(2.13)
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where

cji =



wj
i,nCF i,n for j = 1, . . . , d− 1,(
1−

d−1∑
k=1

wk
i,n

)
CF i,n for j = d,

γici,n for j = d+ 1,
ci,nsi,n for j = d+ 2,
−bn for j = d+ 3,

(2.14)

wi,n = [∆r1i,n · · · ∆ rd−1
i,n ∆rd

i,n ∆si,n ∆λi,n ∆ki,n]′ ∈ Rd+3(2.15)

and

(2.16) φi = ci,nwi,n[λi,1 +2λi,3n+λi,5ai,n]−bi,n[ki,1 +2ki,3n+ki,5ai,n] ∈ R.

Proof. By substituting (2.5) into equation (2.3), we obtain

CFi,n+1 =
i−1∑
l=1

βli,n(1− εli,n)CFl,n

+
{
βii,n(1− εii,n) + ICFi,n>0

( d∑
k=1

wk
i,nr

k
i,n

)}
CFi,n

+
m∑

l=i+1

βli,n(1− εli,n)CFl,n

+ ci,nsi,n(λi,1n+ λi,2ai,n + λi,3n
2 + λi,4a

2
i,n + λi,5nai,n + λi;6,n)

− bi,n(ki,1n+ ki,2ai,n + ki,3n
2 + ki,4a

2
i,n + ki,5nai,n + ki;6,n).

The above equation is difficult to solve as it has a nonlinear form. For this
reason, we employ a standard linearization technique considering the ∆
operator at the equilibrium point for the ith pension plan, i = 1, . . . ,m (see
[22]). Thus the nominal solution is

(n,CF i,n, w
h
i,n, r

k
i,n, ci,n, bi,n, ai,n, si,n, λi;6,n, ki;6,n)

for h = 1, . . . , d−1 and k = 1, . . . , d and imperceptibly small changes for the
parameters, i.e. ∆fi,n = fi,n− f i,n for every parameter of the nominal solu-
tion above. Now, recall that rk

i,n, si,n, λi,n and ki,n are stochastic variables,
so the terms ∆rk

i,n, ∆wi,n, ∆λi,n and ∆ki,n are also stochastic variables.
Then, for the ith pension plan, we obtain
∆CFi,n+1

= ∆

8>>>><>>>>:
i−1X
l=1

βli,n(1− εli,n)CFi,n +
n
βii,n(1− εii,n) + ICFi,n>0

“ dX
k=1

wk
i,nr

k
i,n

”o
CFi,n

+

mX
l=i+1

βli,n(1− εli,n)CFl,n

9>>>>=>>>>;
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+∆

(
ci,nsi,n(λi,1n+ λi,2ai,n + λi,3n

2 + λi,4a
2
i,n + λi,5nai,n + λi;6,n)

−bi,n(ki,1n+ ki,2ai,n + ki,3n
2 + ki,4a

2
i,n + ki,5nai,n + ki;6,n)

)

=

i−1X
l=1

βli,n(1− εl,i,n)∆CFl,n

+
n
βii,n(1− εii,n) + ICFi,n>0

“ d−1X
k=1

wk
i,n0r

k
i,n0 +

“
1−

d−1X
k=1

wk
i,n0

”
rd

i,n0

”o
∆CFi,n

+

mX
l=l+1

βl,i,n(1− εl,i,n)∆CFl,n

+ ICFi,n>0

n
CF i,n

“ d−1X
k=1

(rk
i,n − rd

i,n)
”
∆wk

i,n + CF i,nr
d
i,n∆w

d
i,n

o

+ ICFi,n>0

n
CF i,n

d−1X
k=1

wk
i,n∆r

k
i,n + CF i,n

“
1−

d−1X
k=1

wk
i,n

”
∆rd

i,n

o
+ γisi,n∆ci,n + γici,n∆si,n − δi∆bi,n + ci,nsi,n∆λi;6,n − bn∆ki;6,n

+ {ci,nsi,n[λi,2 + 2λi,4ai,n + λi,5n]− bi,n[ki,2 + 2ki,4ai,n + ki,5n]}∆ai,n

+ {ci,nsi,n[λi,1 + 2λi,3n+ λi,5ai,n]− bi,n[ki,1 + 2ki,3n+ ki,5ai,n]}.

It is obvious that each of the m pension plans generates its own system of
equations, as shown by the above vector equation (2.6). However, these sys-
tems cannot be solved independently because of the existence of interaction
factors.

Definition 2.2. We define three matrices, A, B and C:

A , [a′1 · · · a′m]′ ∈ Rm×m,(2.17)

where ai ∈ R1×m, i = 1, . . . ,m, is given by (2.7) and (2.8);

B , diag{b1, . . . ,bm} ∈ Rm×m,(2.18)

where bi ∈ R1×(d+2), i = 1, . . . ,m, is given by (2.10) and (2.12);

C , diag{c1, . . . , cm} ∈ Rm×m,(2.19)

where ci ∈ R1×(d+3), i = 1, . . . ,m, is given by (2.13) and (2.14). Finally,

ϕ , [ϕ1 . . . ϕm] ∈ Rm.(2.20)

Combining equations (2.6) for all i = 1, . . . ,m leads to the construction
of the following difference matrix equation that describes the accumulated
profit or loss and the interactions within the portfolio of pension plans:

xn+1 = Axn + Bun + Cwn + ϕ,(2.21)

where the state vector xn ∈ Rm is given by (2.9). However, taking into
consideration (2.12), the control vector un ∈ Rm obtains the following form:
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un = [u1,n · · · um,n]′ ∈ Rm.(2.22)

Furthermore, the input vector wn ∈ Rd+3 is expressed by (2.19).
Keeping in mind that wn is the only stochastic vector, because it contains

all the stochastic elements, we substitute the expressions of optimal control
from (2.22) into the objective function (2.4). So, we obtain

min
un

E
{ N∑

n=1

u′n ·R · un + x′NQxN

}
,(2.23)

where

R , diag{Λ1, . . . ,Λm}, Λi = diag{li,1, . . . , li,d+2}(2.24)

and

Q , diag
{

1−
d+2∑
k=1

θ1,k, . . . , 1−
d+2∑
k=1

θm,k

}
∈ Rm×m,(2.25)

where

(2.26) li,k = 1002θi,k for k = 1, . . . , d, li,d+1 = θi,d+1, li,d+2 = θi,d+2.

i.e. R is a positive semidefinite, diagonal matrix and Q is also a positive
definite symmetric matrix, as required by the assumptions of [11], [6], [15]
and [3] for the solution of the relevant optimization (minimization) problem.
That is described extensively in the next sections.

3. Properties and the solution of the model. In this section, a func-
tional optimization (minimization) procedure within a stochastic framework
is extensively discussed for the solution of the standard matrix difference
equation (2.21).

Consider the linear difference equation

xn+1 = Axn + Bun + Cwn + ϕ,

where xn ∈ Rm is the state variable, un ∈ Rm is the control variable and
wn ∈ Rm is the input variable. Then wn is a random vector with zero
mean, finite covariance E(wnw′n) = G and finite second moment while it is
independent of xn−1 and un. Additionally, A,B,C ∈ Rm×m are constant
matrices and ϕ is a constant vector.

We search for the optimal control un (i.e. determine u1,n, . . . ,um,n) that
minimizes the expression

E
{ N∑

n=1

u′n ·R · un + x′NQxN

}
,

where R and Q are positive semidefinite and positive definite symmetric
matrices, respectively.
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Theorem 3.1. If the system is stable (i.e., all the characteristic roots of
A + BM are smaller than 1 in absolute value), then the solution ultimately
converges and is given by

un = Mxn−1 + ζ,(3.1)

where

M = −(B′HB + R)−1B′HA,(3.2)

H = A′[H−HB(B′HB + R)−1B′H]A + Q,(3.3)

ζ = −(B′HB + R)−1(B′Hϕ).(3.4)

Proof. See [11] and [3] for more details.

The analytic solution of the above linear quadratic control problem (2.21)
relies on solving equation (3.3). In that direction there exist several nu-
merically stable algorithms for the solution of the algebraic matrix Riccati
equation, [16]. In this paper, a rather straightforward method is used for
determining the Hamiltonian matrix H, [13], [1], [2], and [10], given by the
following expression:

H =

[
A + BR−1B′(A′)−1Q −BR−1B′(A′)−1

−(A′)−1Q (A′)−1

]
(3.5)

where it is assumed that A−1 exists. Denote by

[V′1 V′2]′(3.6)

the matrix of 2m eigenvectors corresponding to the stable and unstable
eigenvalues of the Hamiltonian matrix H. Analytically, V1 and V2 are
formed by the m eigenvectors corresponding to the m stable (|λ| < 1) and
m unstable eigenvalues of H respectively. Note that of the 2m eigenvalues
of H, only m are stable (i.e. within the unit circle). Furthermore, since an
optimal control system is considered, the solution of the algebraic matrix
Riccati equation is provided by the expression

H = V2V−1
1 .(3.7)

Corollary 3.2. The optimal choice of the control vector (3.1)

(3.8) un = [u1,n · · · um,n]′ ∈ Rm,

(3.9) ui,n =
m∑

j=1

Mij(xj,n−1 + (A−1ϕ)j) for every i = 1, . . . ,m,

where

(3.10) Mij ∈ Rd+2,

(3.11) ui,n = [∆m1
i,n · · · ∆md−1

i,n ∆ci,n ∆bi,n ∆ai,n]T ∈ Rd+2

for the d+ 2 controls.
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Proof. The expression (3.2) is transformed to

M = −(B′V2V−1
1 B + R)−1B′V2V−1

1 A(3.12)

and the analytic expression for the control vector is

un = −(B′V2V−1
1 B + R)−1B′V2V−1

1 Axn−1 + ζ.(3.13)

Combining also equations (3.2) and (3.4), we obtain

ζ = MA−1 ∈ Rm.(3.14)

Hence, the optimal choice for the control vector is determined by equa-
tion (3.13) (see also next section) or equivalently,

un =


u1,n

...
um,n

=


M11 · · · M1m

...
. . .

...
Mm1 · · · Mmm




x1,n−1 + (A−1ϕ)1
...

xm,n−1 + (A−1ϕ)m

 .
4. The analytic solution for m social security pension plans. To

further illustrate the ideas presented in the pervious sections, let us describe
a complex model with m social security pension plans.

Consider the matrices A , [akl]1≤k,l≤m ∈ Rm×m and A−1 , [αkl]1≤k,l≤m

∈ Rm×m.

Lemma 4.1. The Hamiltonian matrix is given by (3.5) and

A + BR−1B′(A′)−1Q

=


a11 + d1α11B1Λ−1

1 B′1 · · · a1m + dmαm1B1Λ−1
1 B′1

...
. . .

...
am1 + d1α1mBmΛ−1

m B′m · · · amm + dmαmmBmΛ−1
m B′m

 ∈ Rm×m

where di = 1−
∑d+2

k=1 θi,k/det(A) for i = 1, . . . ,m. Additionally ,

−BR−1B′(A′)−1 =


α11B1Λ−1

1 B′1 · · · αm1B1Λ−1
1 B′1

...
. . .

...
α1mBmΛ−1

m B′m · · · αmmBmΛ−1
m B′m

 ∈ Rm×m.

Finally ,

H =

[
A + BR−1B′(A′)−1Q −BR−1B′(A′)−1

−(A′)−1Q (A′)−1

]
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=

2666666666664

a11+d1α11B1Λ
−1
1 B′1 ··· a1m+dmαm1B1Λ

−1
1 B′1 −cα11B1Λ

−1
1 B′1 ··· −cαm1B1Λ

−1
1 B′1

... ···
...

... ···
...

am1+d1α1mBmΛ−1
m B′m ··· amm+dmαmmBmΛ−1

m B′m −cα1mBmΛ−1
m B′m ··· −cαmmBmΛ−1

m B′m

−d1α11 ··· −dmαm1 cα11 ··· cαm1

... ···
...

... ···
...

−d1α1m ··· −dmαmm cα1m ··· cαmm

3777777777775
∈ R2m×2m,

where c = 1/det(A).

Proof. The proof is straightforward.

The matrices V−1
1 and V2 are defined as follows:

V−1
1 = [vkj ]1≤k,l≤m ∈ Rm×m, V2 = [ukl]1≤k,l≤m ∈ Rm×m.

Now, to calculate the respective coordinates, M11,M12, . . . ,Mmm (see
expression (3.10)), the inverse matrix of B′V2V−1

1 B + R should be deter-
mined.

Proposition 4.2. The inverse matrix of B′V2V−1
1 B + R is given by

(B′V2V−1
1 B + R)−1 , [B̃kl]1≤k,l≤m =

diag{Λ1, . . . ,Λm}+


u11B′1 · · · u1mB′1

...
...

...
um1B′m · · · ummB′m



v11B′1 · · · v1mB′m

...
...

...
vm1B′1 · · · vmmB′m


∈ Rm×m.

In order to calculate the elements of the inverse matrix, some additional
properties of determinants are recalled (see [12]).

Lemma 4.3. If K and N are square matrices, then

det

[
K Λ

M N

]
= det(K) det(N−MK−1Λ) when K−1 exists.

The matrix N−MK−1Λ is called the Schur complement of K.

Lemma 4.4. If an m ×m matrix K is nonsingular , and C and D are
m× s matrices, then

det(K + CD′) = det(K) det(Im + D′K−1C),

or equivalently , if ci and di are the ith columns of C and D, respectively ,
then

det
(
K +

m∑
k=1

ckd′k
)

= det(K)
(

1 +
m∑

k=1

d′kK−1ck

)
.
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Theorem 4.5. The elements of the inverse matrix B̃ , (B′V2V−1
1 B

+ R)−1 are given by

B̃ii =
1

li,1 · · · li,d+2

1 +
∑m

i=1

∑m
j=1 vjiuijBiΛ−1

i N′i −
∑m

j=1 vjiujiBiΛ−1
i B′i

1 +
∑m

i=1

∑m
j=1 vjiuijBiΛ−1

i B′i
,

B̃ij = −
∑m

k=1 uikvkj det(B′iBj)
(li,1 · · · li,d+2)(jj,1 · · · lj,d+2)

·
1 +

∑m
r=1 βrrBrΛ−1

r B′r − βiiBiΛ−1
i B′i − βjjBjΛ−1

j B′j
1 +

∑m
i=1

∑m
j=1 vjiuijBiΛ−1

i B′i
for i 6= j,

where

βrr =
∑m

k=1 urkvrk
∑m

k=1 ujkvki −
∑m

k=1 urkvki
∑m

k=1 ujkvkr∑m
k=1 ujkvki

and

det(B′V2V−1
1 B + R) =

m∏
k=1

lk,1 · · · lk,d+2

{
1 +

m∑
i=1

m∑
j=1

vjiuijBiΛ−1
i B′i

}
.

Proof. This follows from Lemmas 4.1–4.3.

We also define the m×m matrix

M , [Mkl]1≤k,l≤m = −(B′V2V−1
1 B + R)−1B′V2V−1

1 A

= −



m∑
t=1

B̃1tB′t

m∑
k=1

αk1

m∑
s=1

utsvsk · · ·
m∑

t=1

B̃1tB′t

m∑
k=1

αkm

m∑
s=1

utsvsk

... · · ·
...

m∑
t=1

B̃mtB′t

m∑
k=1

αk1

m∑
s=1

utsvsk · · ·
m∑

t=1

B̃mtB′t

m∑
k=1

αkm

m∑
s=1

utsvsk


and

ζ =
[ m∑

t=1

m∑
j=1

M1jαjtφt · · ·
m∑

t=1

m∑
j=1

Mmjαjtφt

]′
,

ui,n =
m∑

j=1

Mij

(
xj,n−1 +

m∑
t=1

αjtφt

)
for every i = 1, . . . ,m,

where Mij ∈ Rd+2 and

ui,n = [∆m1
i,n · · · ∆md−1

i,n ∆ci,n ∆bi,n ∆αi,n]′=
m∑

j=1

Mij

(
xj,n−1 +

m∑
t=1

αjtφt

)
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= Mi1

(
∆P1,n−1 +

m∑
t=1

α1tφt

)
+ · · · + Mim

(
∆Pm,n−1 +

m∑
t=1

αmtφt

)
where Mij = −

∑m
t=1 B̃itB′tαkj

∑m
s=1 utsvsk, for i = 1, . . . ,m.

5. A practical numerical application for the population of
Greece. As a practical case study, the stochastic-discrete model for two
social security pension plans and the corresponding analytic results have
been applied to the social security system of Greece. We also suppose that
the existing two plans cover the entire population of Greece. This is not a
mere simplification, as the major part of the population of Greece is insured
in the two major social security pension plans (I.K.A. and O.G.A.; in this
application we assume 60% and 30%, respectively).

The steps and the respective assumptions are as follows:

1. The starting date of the simulation is the year 2007, and the closing
date is the end of 2030.

2. The entry age has been fixed equal to 20 years, and the labor force
participation rate equals 100%.

3. The weights of θik, i = 1, 2, k = 1, 2, 3, 4, can take any value in the in-
terval [0, 1] keeping in mind the relationship

∑4
k=1 θi,n ≤ 1. In our example,

the weights are equal to 0.25. In other words, the pension plan managers
and the government are indifferent to the four alternatives.

4. It is assumed that the (earned annually) rate of return of different
investments, such as cash (rc

i,n), bonds (rb
i,n) and shares (rs

i,n) are given by
the following stationary (unconditional) autoregressive processes in discrete
time of order 1 (see [5] and [8]):

(5.1) rh
i,n = µh

i + φ(rh
i,n−1 − µh

i ) + ξh
i,n, ξh

i,n ∼ N(0, (σh
i )2)

for h = c, b, s, n = 1, 2, . . . .

This model suggests that the rate of return earned in any year depends
upon rates earned in the previous year and some constant level. In [4] the
following has been shown:

E(rh
i,n) = µh

i , Var(rh
i,n) =

(σh
i )2

1− φ2
, Cov(rh

i,n, r
h
i,m) =

(σh
i )2

1− φ2
φ|n−m|.

The condition for the processes to be stationary is that |φ| < 1, in our case
we choose φ = 0.6. Moreover, we are targeting at the investment rates as in
Table 3.
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Table 3. Investments return

Mean Deviation

Cash c1 3.50% 0%

c2 4.25% 0%

Bonds b1 4.50% 2%

b2 5.50% 2%

Shares s1 6% 10%

s2 8% 10%

So, as 1− ϕ2 = 0.64, we obtain

ξb
i,n ∼ N(0, 2.56 · 10−4), ξs

i,n ∼ N(0, 6.4 · 10−3).

Furthermore, for the small change ∆rh
i,n = rh

i,n − rh
i,n0

, we obtain

E(∆rh
i,n) = E(rh

i,n − rh
i,n0

) = E(rh
i,n)− rh

i,n0
= 0, Var(∆rh

i,n) = Var(rh
i,n).

5. Each active life from the age of 20 to the age of normal retirement
receives an annual salary of one monetary unit, s2007 = 1, in the year 2007
and the salary increases annually according to si,n = si,n−1fi,n where

fi,n ∼ N(µi, σ
2),

µ1 = 1.01, µ2 = 1.02 and σ2 = 5 · 10−3, respectively.
Multiple regression techniques are applied to obtain estimates for the ki,k

and λi,k, for i = 1, 2, k = 1, . . . 5. For the regression, 27 points for each of
Ai;n,an and Pi;n,an have been taken by the projected values of these functions
(according to Tables 3 and 4). 66% and 44% of the entire population of
Greece in the 1st and 2nd pension plan (see Tables 4, 5, and 6). By using the
statistical toolbox of MATLAB, we apply a multiple full-quadratic regression
model with 95% global confidence interval for the predictions.

The number of Actives is

Ai;n,na = λi,1n+ λi,2ai,n + λi,3n
2 + λi,4a

2
i,n + λi,5nai,n + λi;6,n

with

λ1,1 = 1, 769.46, λ2,1 = 911.54, λ1,2 = −1, 331.55, λ2,2 = −887.7,
λ1,3 = −0.4537, λ2,3 = −0.3024, λ1,4 = −0.47614, λ2,4 = −0.31743,
λ1,5 = 0.73214, λ2,5 = 0.48881, λ1,6 = −1, 726.296, λ2,6 = −1, 150.864.

The number of Pensioners is

Pi;n,na = ki,1n+ ki,2ai,n + ki,3n
2 + ki,4a

2
i,n + ki,5nai,n + ki;6,n

with
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k1,1 = 523.46, k2,1 = 348.97, k1,2 = 838.2, k2,2 = 548.8,
k1,3 = −0.1170, k2,3 = −0.0780, k1,4 = 1.3507, k2,4 = 0.9005,
k1,5 = −0.5496, k2,5 = −0.3664, k1,6 = −566, 227.2, k2,6 = −377, 484.8.

In order to incorporate a stochastic element into the functions Ai;n,na and
Pi;n,na , it is assumed that

λi;6,n ∼ N(λi,6, σ
2
2 = (50)2), ki;6,n ∼ N(ki,6, σ

2
5 = (35)2), i = 1, 2,

or equivalently,

∆λi;6,n ∼ N(0, σ2
4 = (50)2), ∆ki;6,n ∼ N(0, σ2

5 = (35)2).

Table 4. Total population of active members and pensioners in Greece, 2007–2030

Total population in thousands

Years

Age bands 2007 2010 2015 2020 2025 2030

20-24 767.9 630.8 581.7 549.9 562.9 585.5

25-29 838.7 770.6 634.2 585.4 553.7 566.8

30-34 871.4 860.9 793.9 658.0 609.4 577.8

35-39 864.4 872.5 862.3 795.7 660.4 611.9

40-44 801.8 876.4 885.1 875.0 808.8 674.3

45-49 761.3 787.7 861.9 870.5 860.7 795.2

50-54 721.3 777.1 804.1 877.4 886.0 876.5

55-59 658.9 695.4 750.7 777.5 849.9 858.7

60-64 565.6 648.2 684.7 739.5 766.7 838.2

65-69 605.4 531.5 611.1 647.4 701.3 728.8

70-74 588.5 568.1 503.2 579.0 615.4 668.4

75-79 431.6 501.4 488.2 435.9 505.0 541.1

80-84 232.2 312.5 368.4 362.6 326.8 383.9

85+ 136.8 165.4 224.1 278.8 297.7 288.5

Total 8845.8 8998.5 9053.6 9032.6 9004.7 8995.6

Source: National Statistical Service of Greece (2004) [14]

Table 5. Accumulated population of active members in Greece (2007–2030)

Total population in thousands

Years

2007 2010 2015 2020 2025 2030

20-64 6851.3 6919.6 6858.6 6728.9 6558.5 6384.9

20-69 7456.7 7451.1 7469.7 7376.3 7259.8 7113.7

20-74 8045.2 8019.2 7972.9 7955.3 7875.2 7782.1

20-79 8476.8 8520.6 8461.1 8391.2 8380.2 8323.2

20-84 8709.0 8833.1 8829.5 8753.8 8707.0 8707.1

Source: National Statistical Service of Greece (2004) [14]
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Table 6. Accumulated population of pensioners in Greece (2007–2030)

Total population in thousands

Years

2007 2010 2015 2020 2025 2030

65+ 1994.5 2078.9 2195.0 2303.7 2446.2 2610.7

70+ 1389.1 1547.4 1583.9 1656.3 1744.9 1881.9

75+ 800.6 979.3 1080.7 1077.3 1129.5 1213.5

80+ 369.0 477.9 592.5 641.4 624.5 672.4

85+ 136.8 165.4 224.1 278.8 297.7 288.5

Source: National Statistical Service of Greece (2004) [14]

6. Moreover the interaction factors, βij,n, and εij,n, i, j = 1, 2, are con-
stant and equal to β12,n = β21,n = 0.1 (i.e. 10% of the contingency fund is
transferred from the ith to the jth social security pension plan, so, β11,n =
β22,n = 0.9), and ε11,n = ε22,n = 0, ε12,n = ε21,n = 0.05 (i.e. there is a small
transition cost).

7. The initial surplus is chosen to be 0 (monetary unit) for each subport-
folio. The arrays (50%, 25%, 25%, 20.653%, 65, 80) and (70%, 20%, 10%,
23.603%, 65, 70) (i.e. proportion invested in bonds, in shares, in cash, the
contribution rate, the age of eligibility of retirement, and the benefit) are
chosen as the first equilibrium point for each social security pension plan.

Table 7. Equilibrium points for the application

n %c1n0 %c2n0 a1n0 a2n0 b1n0 b2n0 CF1n0 CF1n0 CFn0
2007 20.6525 23.6029 65 65 70 80 0.00 0.00 0,00

2010 20.7425 23.6779 65.1650 65.1200 69.8350 79.8800 3227,34 4644,36 7871,70

2015 20.8925 23.8029 65.4400 65.3200 69.5600 79.6800 6507,90 7338,10 13846,00

2020 21.0425 23.9279 65.8150 65.6700 69.1850 79.3300 7167,30 7450,70 14618,00

2025 21.1925 24.0529 66.1900 66.0200 68.8100 78.9800 5423,90 5049,10 10473,00

2030 21.3425 24.1779 66.5650 66.3700 68.4350 78.6300 614,28 -641,41 -27,12

Table 8a. Simulation results

n %E(wb1n) %E(wb2n) %E(ws1n) %E(ws2n) %E(c1n) %E(c2n)

2007 50 70 25 10 20.6525 23.6029

2010 50.032 70.039 25.065 20.067 20.7354 23.6739

2015 50.110 70.116 25.219 20.217 20.8834 23.7912

2020 50.105 70.119 25.209 20.211 21.0246 23.9180

2025 50.132 70.139 25.263 20.261 21.1746 24.0362

2030 50.004 70.009 25.008 20.006 21.3240 24.1731

Table 8b. Simulation results

E(a1n) E(a2n) E(b1n) E(b2n) E(CF1n) E(CF2n) E(CF2n)

65 65 70 80 0 0 0

65.1354 65.1076 69.8357 79.9319 3183.52 4425.56 7509.08

65.3942 65.2913 69.6111 79.7298 6400.96 7233.11 13634.06

65.7853 65.6312 69.1982 79.3898 6824.41 7408.96 14233.35

66.1327 65.9583 68.8417 79.029 5233.63 4866.35 10099.98

66.5491 66.3271 68.4354 78.6797 588.69 -609.78 78.91
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8. After the establishment of the first equilibrium point, we proceed
with the design of the equilibrium path for wb

i,n, ws
i,n, ci,n, ai,n and bi,n,

i = 1, 2, for all the time periods. We use a trial and error procedure increas-
ing annually the consecutive values of: c1,n by 0.03%, and c2,n by 0.025%
for the next time periods; a1,n by 0.055 each year in 2008–2015 and by
0.075 in 2016–2030 and a2,n by 0.04 each year in 2008–2015 and by 0.07 in
2016–2030, and decreasing annually the consecutive values of b1,n by 0.055
each year in 2008–2015 and by 0.075 in 2016–2030, and b2,n by 0.04 each
year in 2008–2015 and by 0.07 in 2016–2030. Following that investment pol-
icy, we leave mb

i,n0
and ms

i,n0
stable, for i = 1, 2, targeting at a zero annual

cash flow and a zero accumulated reserve CFn = CF1,n + CF2,n at the end
of 2030. Finally, we calculate the actual levels for: the contingency fund, the
investment rate of return due to bonds, shares, the contribution rate, the
age of eligibility and the pension benefit from equations (2.2), (2.3), and
(3.8)–(3.11) respectively. Then we execute 50,000 simulations and obtain
the results for the expectations and standard deviations for wb

i,n, ws
i,n, ci,n,

ai,n, bi,n, CFi,n, for i = 1, 2 and CFn, which are presented in Tables 7, 8
and Figures 1–5.

In the simulations, the optimal path for wb
i,n, ws

i,n, ci,n, ai,n, bi,n, CFi,n for
i = 1, 2 and CFn, is quite smooth, while the resulting path for the reserve
(contingency) fund exhibits oscillations, absorbing the stochastic fluctua-
tions in mortality patterns (actually the fluctuation of ∆λi;6,n and ∆ki;6,n)
and investment performance. This is evident from the development of the
expectations and the magnitude of the standard deviations and is explained
briefly below.

Note that the paths of expectations for wb
i,n, ws

i,n, ci,n, ai,n, bi,n, and CFi,n

for i = 1, 2 are smooth (and very close to the designed paths of the equilib-
rium points), and that StDev(wb

i,n), StDev(ws
i,n), StDev(ci,n), StDev(ai,n)

and StDev(bi,n) are small for all the time period. The path of E(CFi,n) is
also smooth and remains close to the path of the equilibrium points while
StDev(CFi,n) is not small (see Table 9), reflecting the oscillatory pattern
of CFn.

Table 9. Simulation results

n StDev(CF1n) StDev(CF2n)

2007 0 0

2010 4304 4004

2015 8533 9353

2020 18454 21034

2025 25566 29064

2030 56654 50534
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Fig. 1. The contingency fund for (a) the first, E(CF1,n), (b) the second, E(CF2,n), social
security pension plan. (c) The total contingency fund for the two social security pension
plans, E(CFn).
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Fig. 2. Proportions invested in bonds (a) E(wb
1,n), (c) E(wb

2,n) and shares (b) E(ws
1,n),
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Fig. 3. Other control variables: contribution rate, (a) E(c1,n) and (b) E(c2,n), respectively
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Fig. 4. Other control variables: age of eligibility for retirement, (a) E(a1,n) and (b) E(a2,n)
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Fig. 5. The last control variables: benefits, (a) E(b1,n) and (b) E(b2,n)

6. Conclusion. The paper investigates both a theoretical and a prac-
tical approach to a non-traditional, quasi PAYGO social security system by
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constructing a control discrete-time multi-dimensional model and assuming
the existence of a non-zero contingency reserve fund. This fund acts as a
buffer absorbing unexpectedness or other disturbances in the parameters
and improving the overall performance of the system.

As regards the theoretical model, we design:

(a) m state variables which correspond to the value of contingency funds
of different social security pension plans.

(b) Interaction among the m social security pension plans.
(c) d+ 2 control variables:

• d variables that correspond to the proportions invested in different
kind of investment, i.e. bonds, shares, cash, property etc.
• two variables corresponding to the contribution rate and age of

eligibility for normal retirement.

(d) Input variables:

• the investment rates of returns,
• the average salary received by workers,
• modelling variables for the active members of the population and

the pensioners, and
• the percentage of contingency fund transferred from the ith social

security pension plan to the jth plan and the corresponding cost.

(e) A functional which corresponds to the objective function of the prob-
lem. In our model the functional contains seven smoothing variables
(the same as the controls).

As regards the practical application, we model:

(a) the rates of the investment returns assuming stationary (uncondi-
tional) autoregressive processes in discrete time of order 1,

(b) the fluctuations in the salaries and mortality patterns by assuming
that the fluctuations in the total number of active workers or pen-
sioners are described via normal distributions.

The numerical application to the projected population of the Greece for
the years 2007–2030 provides results compatible with the theoretical anal-
ysis. These results show (see Figures 1–5) a steadily increasing pattern for
the investment mix (towards riskier solutions in order to enlarge the po-
tential investment procedures), the contribution rate and age of eligibility
for normal retirement while a decreasing pattern for the level of pension
and disability benefits. The total increase of the contribution rate and the
age of eligibility for normal retirement is less than anticipated by [9]. That
is expected as in our model there are additional smoothing variables, the
investment mix, the level of the pension and the disability benefit which ab-
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sorb a certain percentage of the incurred cost attributable to the decreasing
trend of the support ratio during the years up to 2030.
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