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ASYMPTOTIC DYNAMICS
IN DOUBLE-DIFFUSIVE CONVECTION

Abstract. We consider the double-diffusive convection phenomenon and
analyze the governing equations. A system of partial differential equations
describing the convective flow arising when a layer of fluid with a dissolved
solute is heated from below is considered. The problem is placed in a func-
tional analytic setting in order to prove a theorem on existence, unique-
ness and continuous dependence on initial data of weak solutions in the
class C([0,∞);H) ∩ L2

loc(R+;V ). This theorem enables us to show that the
infinite-dimensional dynamical system generated by the double-diffusive con-
vection equations has a global attractor on which the long-term dynamics of
solutions is focused.

1. Introduction. The double-diffusive convection (DDC) has become
a phenomenon of considerable scientific interest since Stern rediscovered it
in 1960 [11]. It had been Jevons [4] who performed first experiments one
century before but he was not able to explain them. Since the early 1960s
most of the research has been devoted to applications in oceanology [9], and
because heat and salt are then the relevant properties, the process has been
called thermohaline convection. So far, DDC has been recognized in fields as
diverse as astrophysics, metallurgy and geology so the name double-diffusive
convection has been chosen to encompass the wider range of phenomena. An
interesting physical insight into DDC is given in two monographs: of Joseph
[5] and Turner [13]. The inspiration to deal with the governing equations for
DDC in this paper came from Renardy [7].

Contemporary research on DDC includes both theoretical [3, 6], numeri-
cal [15], laboratory [14] and expedition studies [10]. In this paper we propose
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a rather abstract mathematical approach, which belongs to the first group
of studies. We hope it will be interesting not only for applied mathemati-
cians but also for ocean physicists and engineers. Two mathematical theories
are used to study DDC: the theory of nonlinear partial differential equations
and the theory of infinite-dimensional dynamical systems. The first one gives
tools (theorem on existence and uniqueness of solutions) to develop the sec-
ond one. The methods used in this paper (in Sections 3 and 4) come from
the books of Temam [12] and Robinson [8] as well as a paper of Foiaş et
al. [2].

This paper is organized as follows. In Section 2 the main physical motiva-
tions coming primarily from oceanology are presented. Two cases of hydro-
dynamic instabilities are particularly interesting: the so-called salt fingers
and diffusive convection. The basic governing equations are given in Sec-
tion 3. The major part of that section is devoted to the proof of existence
and uniqueness of weak solutions. In Section 4 we prove the existence of
the absorbing set and, most importantly, of the global attractor. Finally, in
Section 5 we attempt to give a physical interpretation in terms of the attrac-
tor’s dimension and dimensionless parameters appearing in the model. We
also propose some potential directions of further research.

Notations. In order to avoid any misunderstandings, we have gathered
here some useful notations that we use in this paper. We write scalars in
normal font and vectors in bold,

u, ψ, u,ψ.

The problem is set in space dimension 2 where x stands for the horizontal
axis and z for the vertical axis,

x = (x, z),

and the versors from the canonical basis in R2 are

ex = (1, 0), ez = (0, 1).

The partial derivatives in R2 are denoted by ∂x, ∂z, and

∇ = (∂x, ∂z).

We write the scalar product in Rn as

x · y,
while the divergence of a vector u is denoted by

divu = ∇ · u.
If H is a Hilbert space, its dual is denoted by H∗. In numerous estimations
a lot of constants appear and we usually denote them by

C,C1, C2, . . .
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Sometimes our notations may be ambiguous, e.g. | · | usually stands for the
norm in H,

‖u‖H = |u|,
but sometimes it may denote the absolute value,

|(Lu,ψ)|,
or the measure of Ω,

|Ω|.
The notations used for numerous function spaces, e.g. Ck(Ω), Lp(Ω) or
Hk(Ω), as well as the spaces of functions with values in a Banach space
X, e.g. C([a, b];X) or Lp(a, b;X), are standard. In case of doubt we refer
to [8].

2. Physical motivations. Before we start our strictly mathematical
treatment we shall mention some physical motivations lying behind the
model. DDC related to oceanology is often called “thermohaline convection”.
It has large influence on vertical and horizontal mixing of ocean water and
thus on global ocean circulation and climate change [9]. Thermohaline con-
vection is no longer an “oceanographic curiosity”, as it was in the early 60s.

2.1. Mechanisms of hydrodynamic instabilities in oceanology. Our start-
ing point is the question: what influences the ocean density distribution?
Roughly speaking, the density % of sea water is determined by its tempera-
ture T and salinity S. We are primarily interested in vertical changes of these
variables so we have T = T (z), S = S(z) and so % = %(z). The equation of
state is then
(1) % = %0[1− α(T − T0) + β(S − S0)],

where %0, T0 and S0 are fixed values related to the level z = z0, and α and β
are positive constants denoting the thermal and salt expansion coefficients
respectively.

A particularly interesting issue in ocean physics is stability of the vertical
density distribution. We say that the density distribution is stable when the
water density grows with depth, unstable when it diminishes with depth, and
neutral when it is constant. Differentiation of (1) with respect to z gives
(2) ∂z% = %0(β∂zS − α∂zT ),

so the stability of the water density distribution depends on the sign of the
bracketed expression.

Let us consider the distribution of water temperature, salinity and density
in an ocean layer between the planes z = z0 and z = z1, where z0 < z1. As
boundary values we set

T (z0) = T0, S(z0) = S0, T (z1) = T1, S(z1) = S1.
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Furthermore, let us assume that T and S are linear between the planes z0
and z1 and constant above z1 and below z0 (Fig. 1), which is a frequent
case in oceans. We shall see in (9) that linearity of T and S is not really an
assumption, but a conclusion that comes from the equations.

Fig. 1. Vertical distribution of physical water characteristics: a. generating the “salt fin-
gers”, b. generating the mechanism of diffusive convection

There are four distinct cases resulting from the signs of T0 − T1 and
S0 − S1. Two of them are particularly interesting from the stability point of
view:

1. T0 < T1 and S0 < S1 in such a way (i.e. for proper values of α and β)
that ∂z% > 0 according to (2), which means a natural (stabilizing) fall
of temperature with depth and an inverse (destabilizing) distribution
of salinity causing a relatively stable density distribution (Fig. 1a).

2. T0 > T1 and S0 > S1 in such a way that ∂z% > 0 according to (2),
which means an inverse (destabilizing) distribution of temperature and
a natural (stabilizing) rise of salinity with depth causing a relatively
stable density distribution (Fig. 1b).

Two other cases lead to absolutely stable (T0 < T1 and S0 > S1) or unstable
(T0 > T1 and S0 < S1) density distribution and in this sense they are less
interesting.

2.2. Salt fingers and oscillatory convection. First of all let us consider
case 1. Suppose a parcel of water in the upper (warm and salty) layer shifts
slightly downwards as a result of small perturbations. Now, as heat diffuses
much faster than salt, which is in fact the key issue in DDC, the parcel of
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water will quickly transmit its heat surplus to the surrounding colder water.
Therefore it will become heavier than the surrounding water (as it contains
more salt) and will start to sink. At the same time another parcel of water
in lower (colder and fresher) layer shifts slightly upwards as a result of small
perturbations. Again, due to faster diffusion of heat, the surrounding warm
water will transmit heat to the parcel of water. After some time buoyant
forces will cause it to rise. A checkerboard of channels (called fingers) will
thus be created: rising fresh fingers vs. sinking salt fingers (Fig. 2). This kind
of phenomenon is not only understood theoretically, but also confirmed in
laboratory and numerical experiments [1, 13].

Fig. 2. Salt fingering mechanism

In the opposite case (of warm salty water underneath cold fresh water)
consider a parcel of water which is slightly shifted due to small perturbations.
Then diffusion of heat will make it equalize its temeperature with surround-
ing water and afterwards buoyancy forces will drive it back to its initial
position. In this way an oscillatory motion will be produced with stabilizing
effect of the difference in diffusivities and competing effect of thermal in-
stablity leading to free convection known from the classical Bénard problem
[2, 13]. Depending on the value of the Rayleigh number (to be defined later),
laminar convection may be transformed into turbulent convection. However,
the oscillatory convection phenomenon is less understood than salt fingers.
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3. Existence and uniqueness of solutions

3.1. Governing equations. Consider the following set of PDEs:

∂tu+ (u · ∇)u+
1
%0
∇p− ν∆u = [α(T − T0)− β(S − S0)− 1]gez,(3)

∇ · u = 0,(4)
∂tT + (u · ∇)T = κT∆T,(5)
∂tS + (u · ∇)S = κS∆S,(6)

where u = (u1, u2) is the velocity field, p is the pressure, T is the temperature
and S the salinity (to fix ideas; it could be the concentration of any solute).
The constants %0, ν, g, α, β, κT and κS denote respectively: the fluid density,
fluid kinematic viscosity, standard gravity, heat and salt expansion coeffi-
cients, heat and salt diffusion coefficients. Equation (3) is a modified form
of the classical Navier–Stokes equation with the RHS term, body force f ,
depending on the temperature T and salinity S. Such a force may be in-
terpreted as the buoyancy force. The continuity equation (4) expresses the
mass conservation rule for the incompressible fluid. Equations (5)–(6) are
nonlinear convection-diffusion equations.

Fig. 3. The model setting

The problem (3)–(6) is set in a rectangle Ω = [0, L]× [0, d] (Fig. 3). We
impose periodic boundary conditions in the x direction for mathematical
convenience:

(7) φ|x=L = φ|x=0, ∂xφ|x=L = ∂xφ|x=0 for φ = u, T, S.

At z = 0 and z = d we impose Dirichlet boundary conditions

(8) u|z=0 = u|z=d = 0, T|z=0 = T0, T|z=d = T1, S|z=0 = S0, S|z=d = S1.

We could have set the problem in space dimension 3 as well, which would
be more physically relevant. However, in that case we would not be able to
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prove existence of solutions. Problems of this kind always arise when the
model is based on highly nonlinear PDEs, such as Navier–Stokes equations.

Some authors [5] refer to the equations (3)–(6) as the Oberbeck–Boussi-
nesq equations. We shall refer to them however as the DDC equations.

One can easily check that the stationary solution of the problem (3)–(6)
together with the boundary conditions (7)–(8) is

(9) ũ = 0, T̃ (z) = −T0 − T1

d
z + T0, S̃(z) = −S0 − S1

d
z + S0.

These solutions correspond to the linear vertical distributions of temperature
and salinity described in the previous section (Fig. 1).

We shall perform the standard dimensional analysis in order to diminish
the number of parameters involved. The variable change according to

x′ =
1
d
x, t′ =

κT
d2

t, u′ =
d

κT
u, T ′ =

T − T0

T0 − T1
,

S′ =
S − S0

S0 − S1
, p′ =

d2

%0κ2
T

p,

leads to the new system of equations

∂tu+ (u · ∇)u+∇p− ν

κT
∆u(10)

+
d3g

κ2
T

[1− α(T0 − T1)T + β(S0 − S1)S]ez = 0,

∇ · u = 0,(11)
∂tT + (u · ∇)T = ∆T,(12)

∂tS + (u · ∇)S =
κS
κT

∆S,(13)

where we have omitted the primes for convenience. In dimensionless variables
the stationary solution (9) is

(14) ũ = 0, T̃ (z) = −z, S̃(z) = −z.
Instead of working with the variables u, p, T and S, we shall decompose each
variable into a sum of the stationary solution and its perturbation, according
to ω = ω̃ + ω̂ for ω = u, p, T, S. The system (10)–(13) may be reformulated
into

∂tu+ (u · ∇)u+∇p− P∆u+ (PR̃S − PRT )ez = 0,(15)
∇ · u = 0,(16)
∂tT + (u · ∇)T = ∆T + u2,(17)
∂tS + (u · ∇)S = τ∆S + u2.(18)

Again, we have omitted the hats on the variables u, p, T, S. The dimension-
less parameters appearing in (15)–(18) are: P , the Prandtl number; R̃, the
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salinity Rayleigh number; R, the Rayleigh number; and γ, the Lewis number.
They read

(19) P =
ν

κT
, R =

gαd3(T0 − T1)
νκT

, R̃ =
gβd3(S0 − S1)

νκT
, τ =

κS
κT
.

After all these modifications the set Ω and the boundary conditions have also
changed. We have Ω = [0, l]× [0, 1], where l = L/d, whereas the conditions
(7)–(8) are now

φ|x=l = φ|x=0, ∂xφ|x=l = ∂xφ|x=0,(20)
φ|z=0 = φ|z=1 = 0,(21)

for φ = u, T, S.

3.2. Variational formulation. Prior to formulating the existence theo-
rem, we need to define the proper function spaces.

Definition 3.1. Let H = H1 ×H2 ×H2, where

H1 = {f ∈ L2(Ω)2 : ∇ · f = 0 and f satisfies (20)–(21)},
H2 = {f ∈ L2(Ω) : f satisfies (20)–(21)}.

We have thus incorporated the divergence-free condition and the bound-
ary condition into the definition of the function spaces, which is a standard
technique.H is certainly a Hilbert space with the scalar product (·, ·) induced
from L2. The respective norm will be denoted by | · |. The same notations
will be used for H1 and H2, which should not lead to any confusion.

Definition 3.2. Let V = V1 × V2 × V2, where

V1 = {f ∈ H1(Ω)2 : ∇ · f = 0 and f satisfies (20)–(21)},
V2 = {f ∈ H1(Ω) : f satisfies (20)–(21)}.

The reader should distinguish the space H1, which has appeared in Def-
inition 3.1, from the standard Sobolev space H1. The spaces V1, V2 and V
are Hilbert spaces with the scalar product induced from H1,

(f, g)H1 = (f, g) + (∇f,∇g).
Since Ω is bounded and the boundary conditions (20)–(21) are periodic in
the x direction and uniform in z direction, the Poincaré (1) inequality holds:

(22) |f | ≤ CP |∇f |,
so V2 can also be equipped with the inner product

((f, g)) =
�

Ω

∇f · ∇g dx

(1) From now on the constant CP will always denote the constant from the Poincaré
inequality.
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and the respective (equivalent) norm, which will be denoted by ‖ · ‖. The
same notations will be used for V1 and V , which should not lead to any
ambiguities.

We proceed to the variational formulation of the problem (15)–(18) with
the boundary conditions (20)–(21). Let v = (u, T, S) and ψ = (φ, θ, η) ∈ V .
We now take the inner product of (15), (17), (18) with φ, θ, η respectively
and integrate the appropriate terms by parts to obtain

d

dt
(u,φ) +

�

Ω

(u · ∇)u · φ dx+ P [((u,φ)) + R̃(S, φ2)−R(T, φ2)] = 0,(23)

d

dt
(T, θ) +

�

Ω

(u · ∇)Tθ dx+ ((T, θ))− (u2, θ) = 0,(24)

d

dt
(S, η) +

�

Ω

(u · ∇)Sη dx+ τ((S, η))− (u2, η) = 0.(25)

The pressure term has dropped out, since the vectors from V1 are divergence-
free. Let us now consider the bilinear form

(26) a(v,ψ) = P ((u,φ)) + ((T, θ)) + τ((S, η)),

and the associated linear operator

(27) (Av,ψ) = a(v,ψ).

Then A is bounded from V into V ∗ and from D(A) into H, where D(A) is
defined as

(28) D(A) = {v ∈ V : ∂xv|x=0 = ∂xv|x=l} ∩H2(Ω)4.

Let vi = (ui, Ti, Si) ∈ V for i = 1, 2, 3. Consider the following trilinear form
b in V :

(29) b(v1,v2,v3) =
�

Ω

(u1·∇)u2·u3 dx+
�

Ω

(u1·∇)T2T3 dx+
�

Ω

(u1·∇)S2S3 dx.

Then b is continuous in V and we may associate with it a continuous bilinear
operator B: V × V → V ∗ in the following way:

(B(v1,v2),v3) = b(v1,v2,v3).

Finally, let us define the bounded linear operator L in H by

(30) L : v = {u, T, S} 7→ Lv = {(PR̃S − PRT )ez,−u2,−u2}.
Adding the equations (23)–(25) we obtain

(31)
d

dt
(v,ψ) + b(v,v,ψ) + a(v,ψ) + (Lv,ψ) = 0, ∀ψ ∈ V.

Putting B(v,v) = B(v) we have

(32)
dv

dt
+Av +B(v) + Lv = 0.
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Now we shall deal with some elementary but useful properties of the
operators A,B and L.

Lemma 3.1. The form a defined in (26) is bilinear , continuous and co-
ercive in V . The associated operator A is linear and continuous from V into
V ∗, and unbounded self-adjoint from D(A) into H.

Lemma 3.2. Let u ∈ H and v,w ∈ V . The trilinear form b defined in
(29) is antisymmetric:

b(u,v,w) = −b(u,w,v),
and in particular

(33) b(u,v,v) = 0.

Lemma 3.3. If u,v,w ∈ V then there exists a constant k such that

|b(u,v,w)| ≤ k|u|1/2‖u‖1/2‖v‖ |w|1/2‖w‖1/2.

If u ∈ V , v ∈ D(A) and w ∈ H then there exists a constant k̃ such that

(34) |b(u,v,w)| ≤ k̃|u|1/2‖u‖1/2|v|1/2|Av|1/2|w|.

Lemma 3.4. The operator L defined in (30) is linear and continuous from
V into V ∗. Furthermore, there exists a positive constant C such that

(35) |(Lv,ψ)| ≤ C|v| |ψ|, ∀v,ψ ∈ V.

The proofs of all these lemmas are analogous to the proofs of the prop-
erties of the operators appearing in the classical Navier–Stokes equations
[8, 12]. This is undoubtedly an advantage coming from the simplicity of the
functional analytic problem setting.

3.3. The existence and uniqueness theorem

Definition 3.3. Let v0 ∈ H. A weak (variational) solution to the prob-
lem (32) with initial condition v0 is a function v ∈ C([0,∞);H)∩L2

loc(R+;V )
such that

1. for all T > 0 the equality (31) holds in L2(0, T ;V ∗), i.e.

(36)
T�

0

(
dv

dt
,ψ

)
dt+

T�

0

b(v,v,ψ) dt+
T�

0

a(v,ψ) dt+
T�

0

(Lv,ψ) dt = 0

for all ψ in L2(0, T ;V ),
2. v(0) = v0.

It is not difficult to check that the equality (36) holds also in V for almost
every t ∈ [0, T ], which is probably more intuitive than the above statement.
We refer the interested reader to [8]. Let us now formulate the main theorem
of this section.
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Theorem 3.5. For a given v0 in H there exists a weak solution to the
problem in question. This solution depends continuously on the initial con-
dition v0, and in particular is unique. Furthermore, for all t > 0 the map
v0 7→ v(t) is continuous in H.

Proof. We shall apply the Galerkin method in the following steps:

1. Existence of approximate solutions in a finite-dimensional subspace
of H.

2. Uniform boundedness of approximate solutions in V .
3. Existence of solution to the initial problem by passing to the limit in

the identities defining approximate solutions.
4. Raising regularity: continuity into H.
5. Uniqueness of the weak solution and continuous dependence on the

initial condition v0.

Let Vm = lin{w1, . . . ,wm} be a subspace of V such that the family {wj} is
orthonormal in H and orthogonal in V . Let v =

∑∞
j=1 cj(t)wj(x). Then we

may define a projection of v ∈ V onto the subspace Vm as

Pmv =
m∑
j=1

cj(t)wj(x), wj ∈ V.

We set vm = Pmv. For all m we call vm fulfilling

(37)
d

dt
(vm,wi) + b(vm,vm,wi) + a(vm,wi)

+ (Lvm,wi) = 0, i = 1, . . . ,m,

and the initial condition vm(0) = Pmv0 the approximate solution to (36).
We rewrite (37) as

d

dt
cm(t) +

m∑
j,k=1

cj(t)ck(t)b(wj ,wk,wi)

+λici(t) +
m∑
j=1

cj(t)(Lwj ,wi) = 0,

hence we obtain a set of m ODEs, which has a solution on a finite time in-
terval [0, Tm). Existence on [0,∞) and uniform boundedness are more subtle
issues resulting from a priori estimates and the maximum principle. We take
vm in place of wi in (37) and integrate over Ω to obtain

(38)
1
2
d

dt
|vm|2 + b(vm,vm,vm) + a(vm,vm) = −(Lvm,vm),

where the nonlinear term disappears thanks to Lemma 3.2. Coerciveness of
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a (Lemma 3.1) together with the estimate (35) from Lemma 3.4 gives

(39)
1
2
d

dt
|vm|2 + C1‖vm‖2 ≤ C2|vm|2.

In order to obtain the existence of solutions vm(t) on [0, T ) for all T > 0 we
use the Poincaré inequality (see (22) to deduce that

d

dt
|vm|2 ≤

(
2C2 −

2C1

C2
P

)
|vm|2.

From the classical Gronwall lemma we get

|vm(t)|2 ≤ |vm(0)|2 exp(C3t),

where C3 = 2C2 − 2C1/C
2
P is usually a positive constant. This very rough

estimate is sufficient to prolong the solutions vm on arbitrarily long time
intervals. In order to obtain a stronger result, we need to improve the bounds
on RHS in (38). One way to do that is to assume the boundedness of the
temperature and salinity at t = 0, which is quite a strong hypothesis, though
physically obvious. We shall call the lemma below the maximum principle.
It is formulated in terms of T, S satisfying the initial equations (5)–(6).

Lemma 3.6. Let v = (u, T, S) be a solution to (3)–(8) and let T and S
satisfy

(40) T1 ≤ T (x, 0) ≤ T0, S1 ≤ S(x, 0) ≤ S0 ∀x ∈ Ω.
Then

(41) T1 ≤ T (x, t) ≤ T0, S1 ≤ S(x, t) ≤ S0 ∀x ∈ Ω, t ≥ 0.

Proof. We will show that T1 ≤ T (x, t) (proof of the remaining inequali-
ties is analogous). Define

(42) γ(x, t) := max{(T − T0)(x, t), 0}.
We want to show that γ(x, t) = 0 for all t ≥ 0, supposing that γ(x, 0) = 0.
Since T is a solution to (5) and γ is of the same regularity as T , we have
γ ∈ L2(0, s;H1(Ω)) for all s > 0. Furthermore, γ vanishes at z = 0 and z = d
and is periodic along the x-axis, hence it satisfies the Poincaré inequality.
We multiply (5) by γ and integrate over Ω to obtain�

Ω

∂tTγ dx+
�

Ω

(u · ∇)Tγ dx− κT
�

Ω

∆Tγ dx = 0.

The definition of γ in (42) and integration of the last term by parts give�

Ω

γ∂tγ dx+
�

Ω

(u · ∇)γγ dx+ κT
�

Ω

|∇γ|2 dx = 0.

Thanks to Lemma 3.2 we may rewrite it equivalently as
1
2
d

dt
|γ(t)|2 + CPκT |γ(t)|2 ≤ 0,
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where we have used the Poincaré inequality. Hence γ is a nonincreasing
positive function and since γ(0) = 0 we have γ(t) = 0 for all t > 0.

We may reformulate the maximum principle in terms of T and S being
dimensionless perturbations of the stationary solution. In place of (40)–(41)
we have respectively

−1 ≤ T (x, 0), S(x, 0) ≤ 1 ∀x ∈ Ω,(43)
−1 ≤ T (x, t), S(x, t) ≤ 1 ∀x ∈ Ω, t > 0.(44)

Now we shall find uniform bounds on the approximate solutions. By the
definition of the operator L and the Schwarz inequality, the equality (38)
yields

|(Lvm,vm)| ≤ C|um2|(|Tm|+ |Sm|),

where C depends on P,R and R̃. Next, thanks to the Poincaré inequality
and the maximum principle we obtain

|(Lvm,vm)| ≤ CCP ‖vm‖(|Ω|1/2 + |Ω|1/2) = C̃‖vm‖,

and by Young’s inequality with ε = C1, where C1 is the coerciveness constant
of the bilinear form a,

|(Lvm,vm)| ≤ C1‖vm‖2

2
+

C̃2

2C1
.

Using the last inequality in (38) as well as Lemma 3.1, we obtain the uniform
(with respect to m) bound on the LHS,

(45)
d

dt
|vm|2 + C1‖vm‖2 ≤

C̃2

C1
.

Hence we conclude (using the Gronwall lemma and Poincaré inequality once
again) that

(46) vm ∈ L∞(0, T ;H) ∩ L2(0, T ;V )

for all T > 0 uniformly with respect to m.
Now we shall find a bound on dvm/dt. We rewrite (37) as

(47)
dvm
dt

= −Avm − PmB(vm,vm)− Lvm.

From (46) and the continuity of A and L we deduce that

Avm, Lvm ∈ L2(0, T ;V ∗).

In order to find a bound on the nonlinear term in (47) we observe that
T�

0

‖PmB(vm(s),vm(s))‖2∗ ds ≤
T�

0

‖B(vm(s),vm(s))‖2∗ ds.
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From the contnuity of the trilinear form b and its antisymmetry (Lemmas
3.2 and 3.3) we deduce that

‖B(u,u)‖∗ ≤ c|u| ‖u‖.
In the end we obtain

‖PmB(vm,vm)‖2L2(0,T ;V ∗) ≤ c
T�

0

|vm(s)|2‖vm(s)‖2 ds

≤ c‖vm‖2L∞(0,T ;H)‖vm‖
2
L2(0,T ;V ).

By (46) we have shown that PmB(vm,vm), and hence dvm/dt, are uniformly
bounded in L2(0, T ;V ∗).

Now we move to the next step of the proof, which is the passage to the
limit in the equality (47). We begin with the definition of weak∗ convergence.

Definition 3.4. Let X be a Banach space. A sequence fn ∈ X∗ con-
verges weak∗ to f , written

fn ⇀
∗ f,

if fn(x)→ f(x) for every x ∈ X.

Notation. We denote the standard convergence by →, weak convergence
by ⇀, and weak∗ convergence by ⇀∗.

Theorem 3.7 (Alaoglu, [8]). Let X be a reflexive Banach space and fn
a bounded sequence in X∗. Then fn has a subsequence which converges weak∗
in X∗.

From (46) and the Alaoglu theorem we deduce that vm has a subsequence
(not relabelled) converging weakly in L2(0, T ;V ) and weak∗ in L∞(0, T ;H)
to a function v which satisfies

(48) v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ).

Next, since dvm/dt is bounded in L2(0, T ;V ∗), we may extract a subsequence
(not relabelled) which converges weakly to some h,

(49)
dvm
dt

⇀ h in L2(0, T ;V ∗),

and integrating by parts we deduce that h = dv/dt. In particular, in (49)
we also have weak∗ convergence. One can also easily check that

Avm ⇀∗ Av, Lvm ⇀∗ Lv in L2(0, T ;V ∗).

There remains the convergence of the nonlinear term. The proof is not
difficult but a little messy. First we formulate a following compactness the-
orem:

Theorem 3.8 ([8]). Let X ⊂⊂ H ⊂ Y be Banach spaces and let X be
reflexive. Suppose that a sequence un is uniformly bounded in L2(0, T ;X)
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and dun/dt in Lp(0, T ;Y ) for some p > 1. Then there exists a subsequence
um which converges strongly in L2(0, T ;H).

In our case of X = V , Y = V ∗ and p = 2, the theorem states that vm is
strongly convergent in L2(0, T ;H). We want to show that

(50) PmB(vm,vm) ⇀∗ B(v,v) in L2(0, T ;V ∗).

In the first step we will show that

(51) B(vm,vm) ⇀∗ B(v,v) in L2(0, T ;V ∗).

Let ψ = (φ, θ, η) ∈ L2(0, T ;V), where V = V ∩ C∞0 (Ω)4. We introduce this
space in order to show the necessary convergence. From the definition of the
trilinear form b (29) and its antisymmetry we have

b(vm,vm,ψ) = −b(vm,ψ,vm)

= −
�

Ω

(um · ∇)φ · um dx−
�

Ω

(um · ∇)θTm dx−
�

Ω

(um · ∇)ηSm dx.

Hence (we recall that v = (u1, u2, T, S))

(52)
T�

0

b(v,v,ψ)− b(vm,vm,ψ) dt

=
2∑

i,j=1

T�

0

�

Ω

{[(um)i − ui](Diφj)uj + (um)i(Diφj)[(um)j − uj ]

+ [(um)i − ui](Diθ)T + (um)i(Diθ)(Tm − T )

+ [(um)i − ui](Diη)S + (um)i(Diη)(Sm − S)} dx dt.
There are two types of terms in the above equality: type 1,

T�

0

�

Ω

[(um)i − ui](Diθ)T dx dt,

and type 2,
T�

0

�

Ω

(um)i(Diθ)(Tm − T ) dx dt.

Both decay as m→∞. From the Schwarz inequality,∣∣∣T�
0

�

Ω

[(um)i − ui](Diθ)T dx dt
∣∣∣ ≤ ‖(um)i − ui‖L2(0,T ;H)‖(Diθ)T‖L2(0,T ;H)

and∣∣∣T�
0

�

Ω

(um)i(Diθ)(Tm − T ) dx dt
∣∣∣ ≤ ‖Tm − T‖L2(0,T ;H)‖(um)iDiθ‖L2(0,T ;H).
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By the regularity of θ, the uniform boundedness of (um)i in L2(0, T ;V ) and
Theorem 3.8, both RHSs tend to zero. Now, from the density of L2(0, T ;V)
in L2(0, T ;V ) we have (51).

We leave the remaining proof of (50) to the reader. One way to obtain
this property is to consider the family of functions

ψ =
k∑
j=1

ψjαj(t), ψj ∈ V, αj ∈ L2(0, T ; R),

which is dense in L2(0, T ;V ) and use the fact that V has an orthogonal
basis.

We have thus shown the weak∗ convergence in L2(0, T ;V ∗) of all the
terms in (47) for every T > 0, i.e. there exists a function v ∈ L2

loc(R+;V ) ∩
L∞(R+;H) such that the following equality holds in L2(0, T ;V ∗):

(53)
T�

0

(
dv

dt
,ψ

)
dt+

T�

0

b(v,v,ψ) dt+
T�

0

a(v,ψ) dt+
T�

0

(Lv,ψ) dt = 0

for every ψ ∈ L2(0, T ;V ) and T > 0.
We already have the existence of solutions, but their regularity is not

satisfactory. We emphasize that what have been done so far is, after small
changes, also valid in the 3D case. The difference between the 2D and 3D
cases lies in continuity and uniqueness of solutions. This is a consequence of
weaker estimates of the trilinear form b in the 3D case. However, for n = 2
we have the following lemma:

Lemma 3.9 ([8]). Let V and H be Hilbert spaces satisfying

V ⊂⊂ H ⊂ V ∗.
If

v ∈ L2(0, T ;V ) and
dv

dt
∈ L2(0, T ;V ∗),

then
v ∈ C(0, T ;H).

All the assumptions of this lemma are satisfied in our case, so the state-
ment is true. Since T > 0 may be chosen arbitrarily, we have the continuity of
solutions to the problem (32) from [0,∞) into H as stated in Definition 3.3.

To finish the proof of Theorem 3.5, there remains the uniqueness. The
procedure is standard so we limit ourselves to a sketch. Suppose u and v
are two different solutions to (32). We set w = u − v and take the scalar
product of the equation for w with w to obtain

1
2
d

dt
|w|2 + b(w,u,w) + b(v,w,w) + a(w,w) + (Lw,w) = 0.
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Then we use Lemmas 3.1–3.4 to estimate the appropriate terms. In the end,
from Young’s inequality we deduce that

d

dt
|w|2 ≤ |w|2

(
C2

2

C1
‖u‖2 + C3

)
,

and since the bracketed expression is integrable with respect to time, from
the Gronwall lemma, if only w(0) = 0 then w(t) = 0 for every t > 0.
Furthermore, if we take w(0) 6= 0 we have the continuous dependence on the
initial condition, as stated in Theorem 3.5, which terminates the proof.

4. Asymptotic dynamics. In this section we focus on the asymptotic
(as t → ∞) dynamics of solutions to the DDC equations (3)–(8), which we
reformulated in the variational form (47). In dynamical systems language we
have the problem

(54)
dv

dt
= F (v(t))

with v = (u, T, S) and with the initial condition

(55) v(0) = v0.

The problem (54)–(55) is well-posed for all t > 0, which is an immediate con-
sequence of Theorem 3.5. Thus we may define the corresponding semigroup
{S(t)}t≥0, i.e. a family of operators

S(t) : v0 ∈ H 7→ v(t) ∈ H,
with the usual semigroup properties:

S(0) = I, S(t)S(s) = S(s)S(t) = S(s+ t),

and S(t)v0 is continuous with respect to v0 and t.

4.1. Absorbing set. One of the basic ideas in studying asymptotic dy-
namics is the notion of an absorbing set.

Definition 4.1. A set B ⊂ H is an absorbing set in H if for every
bounded set X ⊂ H there exists a time t0 for which

S(t)X ⊂ B ∀t ≥ t0.
A semigroup S(t) is dissipative if it has a compact absorbing set.

Now we will show the existence of an absorbing set in the spaces H and V
for the semigroup generated by the DDC equations. Much work has already
been done; we will use the a priori estimates developed in the previous
section once again.

Proposition 4.1. For the two-dimensional DDC equations there exists
an absorbing set that is bounded in H.
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Proof. In the first step of the proof of Theorem 3.5 we have established
an estimate (45) on the approximate solutions vm, which is also valid for the
solution v:

d

dt
|v|2 + C1‖v‖2 ≤

C̃2

C1
.

Using the Poincaré inequality and Gronwall lemma we obtain

(56) |v(t)|2 ≤ |v(0)|2 exp
(
− C1

CP
t

)
+
C̃2CP
C2

1

,

where CP is the constant arising in the Poincaré inequality (depending only
on |Ω|), C1 = min{1, P, κ}, and C̃ depends on |Ω|, P and the rest of param-
eters appearing in the DDC equations: R and R̃. From (56) we deduce that
for every v0 ∈ H and ε > 0 there exists a time t0(v0, ε) such that for t ≥ t0,

(57) |v(t)| ≤ C̃2CP
C2

1

+ ε =: %ε.

We notice that for v0 in a bounded set B0 the time t0 may be chosen uni-
formly. Hence according to Definition 4.1, the ball

B1 = {v ∈ H : |v| ≤ %ε}

is absorbing in H.

An analogous statement is also valid in the phase space V .

Proposition 4.2. For the two-dimensional DDC equations there exists
an absorbing set that is bounded in V .

Proof. We take the scalar product in H of (32) with Av,

(58)
(
dv

dt
, Av

)
+ |Av|2 + b(v,v, Av) + (Lv, Av) = 0.

From the estimate (34), Schwarz inequality and coerciveness of a we deduce
that

C1
d

dt
‖v‖2 + |Av|2 ≤ k̃|v|1/2‖v‖|Av|3/2 + C2|Av| |v|

for some positive constants C1 and C2. Now we use Young’s inequality twice
on the RHS to get

C1
d

dt
‖v‖2 + |Av|2 ≤ |Av|

2

4
+ 2C2|v|2 +

|Av|2

4
+

27
4
k̃|v|2‖v‖4;

hence, after relabelling constants, we obtain

(59)
d

dt
‖v‖2 + C3|Av|2 ≤ C4|v|2 + C5|v|2‖v‖4.
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Since we only assume that v0 is in H and not necessarily in V , we cannot
use the classical Gronwall lemma. We need to apply the uniform Gronwall
lemma, which we state below.

Lemma 4.3 (Uniform Gronwall lemma, [12]). Let x, a, b be positive func-
tions on (t0,∞) such that

dx

dt
≤ ax+ b,

and
t+r�

t

x(s) ds ≤ X,
t+r�

t

a(s) ds ≤ A,
t+r�

t

b(s) ds ≤ B,

for some X,A,B, r > 0 and for every t ≥ t0. Moreover , let x be absolutely
continuous on (t0,∞). Then for t ≥ t0 + r we have

x(t) ≤
(
X

r
+B

)
exp(A).

We may drop the second term of the LHS of (59) so in our case x = ‖v‖2,
a = C5|v|2‖v‖2 and b = C4|v|2. Now we check the remaining three assump-
tions of the lemma. We return to the inequality (39), which was established
for the approximate solutions vm, but is also valid for the solution v. We
integrate it over the interval (t, t+ 1) to obtain

C1

t+1�

t

‖v(s)‖2 ds ≤ 1
2
|v(t)|2 + C2

t+1�

t

|v(s)|2 ds.

From (57) we deduce that there exists t0 such that for t ≥ t0 we have
t+1�

t

‖v(s)‖2ds ≤ %2
ε

2C1
(1 + 2C2) =: X.

We find the constants A and B in a similar way:
t+1�

t

C5|v(s)|2‖v(s)‖2 ds ≤ %2
εC5

t+1�

t

‖v(s)‖2 ds ≤ %2
εC5X =: A,

t+1�

t

C4|v(s)|2 ds ≤ C4%
2
ε =: B.

The uniform Gronwall lemma gives

‖v(t)‖2 ≤ (X +B) exp(A) = r2ε

for t ≥ t0 + 1. Hence, according to Definition 4.1, the ball

B2 = {v ∈ V : ‖v‖ ≤ rε}
is absorbing in V .
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4.2. Global attractor. We begin with the definition of a global attractor.

Definition 4.2. Let {S(t)}t≥0 be a semigroup in a Banach space X.
A set A ⊂ X is a global attractor for the semigroup S(t) if A is compact,
invariant and attracts all bounded sets, i.e. for every bounded set B in X,

(60) dist(S(t)B,A)→ 0 as t→∞.

The dist in (60) is a semidistance defined in the following way:

dist(X,Y ) = sup
x∈X

inf
y∈Y
|x− y|.

The convergence in (60) is equivalent to the following one: for every ε > 0
there exists tε such that for t ≥ tε, S(t)B is included in Uε, the ε-neighbour-
hood of A. Furthermore, it is straightforward to check the following proper-
ties of the global attractor: A is unique, it is a maximal bounded invariant
set, and it is a minimal closed set attracting all the bounded sets.

In order to prove the existence of a global attractor for the semigroup
associated with the DDC equations we will use the general theorem on exis-
tence of a global attractor. First we have to introduce the notion of uniform
compactness of a semigroup.

Definition 4.3. A semigroup {S(t)}t≥0 in X is uniformly compact if
for every bounded set B ⊂ X there exists a time t0 = t0(B) such that the
set ⋃

t≥t0

S(t)B

is compact.

Theorem 4.4 ([7, 12]). Let {S(t)}t≥0 be a continuous semigroup in a
Banach space X. Assume there exists a bounded absorbing set B in X and
the semigroup {S(t)}t≥0 is uniformly compact. Then the ω-limit set of B,

ω(B) =
⋂
s≥0

⋃
t≥s
S(t)B,

is a global attractor.

Equipped with this theorem it is straightforward to prove the existence
of a global attractor in our case.

Theorem 4.5. The dynamical system on H generated by the two-dimen-
sional DDC equations has a global attractor.

Proof. The continuity of the semigroup and the existence of an absorb-
ing set B1 in H are already proven. We are left only with the asymptotic
compactness of the semigroup. We have shown in Proposition 4.2 that there
exists an absorbing set B2 in V . Now, since V is compactly embedded in H
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we deduce that for every bounded set B in V there exists a time t0 such that
the set ⋃

t≥t0

S(t)B

is bounded in V and, after taking closure, compact in H. Thus Theorem 4.4
implies that A = ω(B1) is a global attractor.

5. Conclusions. In this final section we give some remarks with an
emphasis on potentially interesting future research.

In infinite-dimensional dynamical systems governed by nonlinear PDEs
the question about existence of absorbing sets and global attractors is far
more complicated than in finite-dimensional dynamical systems governed by
ODEs. With some effort, especially in the proof of existence of weak solu-
tions, we have shown the existence of a global attractor in the phase space
H for the problem of double-diffusive convection. However, we cannot say
much about the structure of this theoretical object, which would be inter-
esting from the physical point of view. One of the most popular approaches
in studying the structure of a global attractor is via the notions of fractal
and Hausdorff dimension [8, 12].

C. Foiaş et al. [2] have shown, in a paper thematically close to ours, that
the global attractor’s fractal dimension in the Bénard problem satisfies

dim(A) ≤ cG(1 + P )2,

where c is a constant dependent only on the flow geometry, G is the Grashof
number, and P the Prandtl number. The Grashof number is a dimensionless
parameter that may be defined as

G =
R

P
,

where R is the Rayleigh number introduced in (19). The natural and equally
challenging question is whether the attractor’s dimension in the two-dimen-
sional DDC equations is also finite and what are its bounds, if any. One could
suspect, taking into consideration the similarity to the Bénard problem, that
the attractor’s fractal dimension is finite and satisfies

(61) dim(A) ≤ c R+ R̃

P
(1 + P )2,

where R̃ is the salinity Rayleigh number, also defined in (19). Though it
is only a hypothesis, let us take (61) for granted and try to find its physi-
cal interpretation. Assuming constant flow geometry and fluid viscosity, the
Rayleigh numbers R and R̃ are controlled mainly by the thermal and salin-
ity gradients, T0 − T1 and S0 − S1 respectively. The Prandtl number P
expresses the ratio of momentum diffusity and thermal diffusity, and may
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be considered constant for a “fixed” fluid. Hence, under some simplification,
the attractor’s fractal dimension is controlled by the values of T0 − T1 and
S0 − S1. The bigger these gradients are, the worse is the estimate. This
purely hypothetical result is in agreement with intuition just as in the Bé-
nard problem, in which the temperature gradient controls the transformation
from laminar into turbulent convection. We have described this mechanism
in Section 2.

We therefore consider studies on the attractor’s fractal (or Hausdorff)
dimension in the DDC problem as the most important (and interesting)
issue. Some other directions of further research include:

1. Raising regularity of weak solutions. Undoubtedly we have not reached
optimal results in this matter—we have just done what was necessary
to define the dynamical system. In [12] there are theorems which could
help raise the regularity of solutions.

2. Defining the dynamical system on the phase space V . With appropri-
ate theorems it would be interesting to compare the global attractors
on H and V .

3. Studying the three-dimensional DDC equations. This is problematic,
since at present we cannot show that the 3D Navier–Stokes equations
generate unique weak solutions. Hence consideration of the dynamical
system in the 3D case is somehow unjustified. On the other hand, the
topics pertaining to turbulence are currently extremely interesting, so
the 3D case is worth studying.
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