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STATIONARY OPTIMAL POLICIES IN A CLASS
OF MULTICHAIN POSITIVE DYNAMIC PROGRAMS WITH
FINITE STATE SPACE AND RISK-SENSITIVE CRITERION

Abstract. This work concerns Markov decision processes with finite state
space and compact action sets. The decision maker is supposed to have a
constant-risk sensitivity coefficient, and a control policy is graded via the
risk-sensitive expected total-reward criterion associated with nonnegative
one-step rewards. Assuming that the optimal value function is finite, under
mild continuity and compactness restrictions the following result is estab-
lished: If the number of ergodic classes when a stationary policy is used
to drive the system depends continuously on the policy employed, then
there exists an optimal stationary policy, extending results obtained by Schäl
(1984) for risk-neutral dynamic programming. We use results recently es-
tablished for unichain systems, and analyze the general multichain case via
a reduction to a model with the unichain property.

1. Introduction. This work deals with Markov decision processes
(MDPs) with finite state space, compact action sets and nonnegative re-
wards that, together with the transition law, are continuous functions of
the actions. The decision maker is assumed to have a constant (and non-
null) risk-sensitivity coefficient, which leads to evaluate random rewards via
an expected value involving an exponential utility function (Pratt (1964),
Fishburn (1970)), and the perfomance of a decision policy is measured by
the corresponding risk-sensitive expected total-reward criterion. Although
the Markov chain associated with a stationary policy can have several min-
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imal closed sets (the multichain case), their number is supposed to depend
continuously on the policy employed. Under this latter structural stability
condition (Schweitzer (1968)), the main result of this note, stated as Theo-
rem 3.1 below, establishes the existence of an optimal stationary policy.

The result in this work extends theorems in Schäl (1984, 1986), where
optimal stationary policies were obtained for risk-neutral multichain dy-
namic programs via the discounted criterion, and in Cavazos-Cadena and
Montes-de-Oca (2000a), where risk-sensitive unichain MDPs were analyzed.
The strategy to prove Theorem 3.1 does not uses the discounted criterion,
but is based on the construction of a new MDP satisfying the unichain
property, so that, essentially, the main result of this note is obtained from
Theorem 4.1 in the last mentioned work.

The organization of the present paper is as follows: After a short de-
scription of the decision model, Section 2 contains the basic notions and the
properties of the optimal value function that will be used later on. Next,
in Section 3 the result on the existence of optimal stationary policies for
multichain MDPs is stated as Theorem 3.1, and the strategy to establish
this result is described. The necessary preliminaries to follow the outlined
route are established in Section 4, and the proof of Theorem 3.1 is given in
Section 5 before the concluding remarks in Section 6.

2. Decision model. Throughout the remainder of the paper M =
(S,A, {A(x)}, R, P ) denotes the usual MDP, where the state space S is as-
sumed to be a finite set endowed with the discrete topology, the metric
space A is the control (or action) set and, for each x ∈ S, A(x) ⊂ A is the
nonempty subset of admissible actions at state x. On the other hand, R(·, ·)
is the reward function defined on the class K := {(x, a) | a ∈ A(x), x ∈ S}
of admissible pairs, and P = [px y(·)] is the controlled transition law. The
interpretation of M is as follows: At each time t ∈ N := {0, 1, . . .} the
state of a dynamical system is observed, say Xt = x ∈ S, and an action
At = a ∈ A(x) is chosen. As a consequence, a reward R(x, a) is earned and,
regardless of which states and actions were observed and applied before t,
the state of the system at time t+ 1 will be Xt+1 = y ∈ S with probability
px y(a); this is the Markov property of the decision model.

Assumption 2.1. (i) For each x ∈ S, the action set A(x) is a compact
subspace of A.

(ii) For every x, y ∈ S, the mapping a 7→ px y(a) is continuous on A(x).
(iii) The reward function is nonnegative: R(x, a) ≥ 0, (x, a) ∈ K.
(iv) For each x ∈ S, a 7→ R(x, a) is a continuous function on A(x).

Policies. A policy is a (measurable) rule for choosing actions which, at
each time t ∈ N, may depend on the current state as well as on the record
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of previous states and controls. For the initial state X0 = x and the policy
π ∈ P being used to drive the system, under Assumption 2.1 the distri-
bution of the state-action process {(Xt, At)} is uniquely determined via
the Ionescu Tulcea’s theorem (see, for instance, Hernández-Lerma (1989),
Hinderer (1970), or Puterman (1994)); such a distribution is denoted by
Pπ[ · |X0 = x], whereas Eπ[ · |X0 = x] stands for the corresponding ex-
pectation operator. Set F :=

∏
x∈S A(x), so that F consists of all (choice)

functions f : S → A satisfying that f(x) ∈ A(x) for every x ∈ S; since each
set A(x) is a compact subset of the metric space A, F itself is a compact
metric space in the product topology (Dugundji (1966)). A policy π ∈ P is
stationary if there exists f ∈ F such that the action prescribed by π when
Xt = x is observed is always f(x); the class of stationary policies is naturally
identified with F.

Under the action of each policy f ∈ F the state process {Xt} is a Markov
chain with stationary transition mechanism (Ross (1970)), and the following
terminology will be used.

Definition 2.1. Let f ∈ F be fixed.

(i) A nonempty set C ⊂ S is f -closed if
∑
y∈C px y(f(x)) = 1 for every

x ∈ C.
(ii) C∗ ⊂ S is a minimal f -closed set if

(a) C∗ is f -closed, and
(b) if an f -closed set C satisfies C ⊂ C∗, then C = C∗.

(iii) The function E : F→ N is given by

E(f) = number of minimal f -closed sets.

(iv) The decison model M is unichain if E(f) = 1 for every f ∈ F,
whereas M is multichain when E(·) is not identically one.

Remark 2.1 (Section 8 of Billingsley (1995), Chapter 3 of Loève (1977)).

(i) Since the state space is finite, for each f ∈ F the class of minimal
f -closed sets coincides with the family of ergodic classes of the Markov
chain associated with f . More precisely, let C∗1 , . . . , C

∗
k be the minimal f -

closed sets and denote by R(f) the set of all (necessarily positive) recurrent
states with respect to the Markov chain induced by f . With this notation,
statements (a)–(c) below are valid:

(a) Pf [Xn = y for some n ∈ N \ {0} |X0 = x] = 1 for all x, y ∈ C∗i and
i = 1, . . . , k,

(b) for each x ∈ C∗i and i = 1, . . . , k,

Pf [Xn ∈ C∗i for all n ∈ N |X0 = x] = 1,
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(c) C∗i ∩ C∗j = ∅ if i 6= j, and
(d) R(f) = C∗1 ∪ . . . ∪ C∗k .

(ii) For a minimal f -closed set C∗, there exists a probability distribution
µ : S → [0, 1] such that µ(y) = 0 for y ∈ S \ C∗, and

(2.1) µ(y) =
∑

x

µ(x)px y(f(x)), y ∈ S,

i.e., µ is an invariant distribution of the Markov chain induced by f .
Conversely,

(iii) Suppose that the probability distribution µ : S → [0, 1] satisfies
(2.1). Then the support of µ, defined by supp(µ) = {x ∈ S | µ(x) 6= 0},
contains a minimal f -closed set.

Utility function and performance index. For λ ∈ R, hereafter referred to
as the (constant) risk-sensitivity coefficient , define the corresponding utility
function Uλ : R→ R as follows: For x ∈ R,

(2.2) Uλ(x) :=
{

sign(λ)eλx if λ 6= 0,
x when λ = 0;

notice that
(2.3) Uλ(x+ c) = eλcUλ(x), x, c ∈ R, λ 6= 0.

A controller with risk-sensitivity λ grades a random reward Y via the ex-
pectation of Uλ(Y ). If the initial state is X0 = x ∈ S, and policy π is used
to drive the system, the expected utility of the total reward earned at times
t ∈ N is Eπx [Uλ(

∑∞
t=0R(Xt, At))]. The λ-sensitive expected total reward at

x under policy π, denoted by Vλ(π, x), is implicitly determined by

(2.4) Uλ(Vλ(π, x)) = Eπ

[
Uλ

( ∞∑

t=0

R(Xt, At)
) ∣∣∣X0 = x

]
,

an expression that, for λ 6= 0, is equivalent to

(2.5) Vλ(π, x) =
1
λ

log(Eπ[eλ
∑∞
t=0 R(Xt,At) |X0 = x]);

see (2.2) and notice that, since the reward function is nonnegative, the
expectations in the above expressions are well defined and the inequality
0 ≤ Vλ(π, x) is always valid. The λ-optimal value function is

(2.6) V ∗λ (x) = sup
π
Vλ(π, x), x ∈ S,

and a policy π∗ is λ-optimal if Vλ(π∗, x) = V ∗λ (x) for all x ∈ S.

Assumption 2.2. For each x ∈ S, V ∗λ (x) is finite.

Remark 2.2. When λ > 0, the utility function Uλ(·) is convex, and via
Jensen’s inequality, (2.2) and (2.4) yield that Vλ(π, x) ≥ V0(π, x); similarly,
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Vλ(π, x) ≤ V0(π, x) if λ < 0. A decision maker grading a random reward Y
according to the expectation of Uλ(Y ) is referred to as risk-seeking if λ > 0,
or risk-averse when λ < 0; if λ = 0, the controller is risk-neutral.

Risk-sensitive optimality equation. Throughout the remainder the risk-
sensitivity coefficient λ is supposed to be nonnull. In this case, under As-
sumptions 2.1 and 2.2, V ∗λ (·) in (2.6) satisfies the following λ-optimality
equation (λ-OE):

(2.7) Uλ(V ∗λ (x)) = sup
a∈A(x)

[
eλR(x,a)

∑

y

px y(a)Uλ(V ∗λ (y))
]
, x ∈ S;

see, for instance, Ávila-Godoy (1998), or Cavazos-Cadena and Montes-de-
Oca (2000a). Moreover, since the state space is finite, the term within brack-
ets in this equality is a continuous function of a ∈ A(x), and the compactness
of action sets immediately yields that there exists a policy f ∈ F such that,
for each x ∈ S, f(x) ∈ A(x) maximizes the right-hand side of the λ-OE.

Lemma 2.1. Suppose that Assumptions 2.1 and 2.2 hold , and let the
stationary policy f ∈ F be such that

(2.8) Uλ(V ∗λ (x)) = eλR(x,f(x))
∑

y

px y(f(x))Uλ(V ∗λ (y)), x ∈ S.

If , additionally , E(f) = 1, then f is λ-optimal.

According to this lemma, a stationary policy f obtained by maximizing
the right-hand side of (2.7) is λ-optimal whenever f induces a Markov chain
with a single ergodic class. A proof can be found in Cavazos-Cadena and
Montes-de-Oca (2000a), where it was also shown that the λ-optimality of
the policy f in (2.8) cannot be generally ensured when E(f) 6= 1. To analyze
the existence of optimal stationary policies in the general multichain case,
the following characterization of V ∗λ (·) as the minimal solution of the λ-OE
will be useful.

Lemma 2.2 (Cavazos-Cadena and Montes-de-Oca (2000a)). Given λ 6=0,
suppose that the model M satisfies Assumption 2.1 and let W : S → [0,∞)
be such that

Uλ(W (x)) ≥ sup
a∈A(x)

[
eλR(x,a)

∑

y∈S
px y(a)Uλ(W (y))

]
, x ∈ S.

In this case W (·) ≥ V ∗λ (·).

Finally, for every subset G of the state space, define the first positive
arrival time to G by

(2.9) TG = min{n > 0 | Xn ∈ G},
where, as usual, the minimum of the empty set is ∞.
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3. Main result. As already mentioned, the main purpose of this note
is to analyze the existence of λ-optimal stationary policies for multichain
MDPs. In addition to Assumptions 2.1 and 2.2, this problem will be studied
under the following requirement, which is referred to as the structural sta-
bility condition (Schweitzer (1968), Schäl (1986), Cavazos-Cadena, Feinberg
and Montes-de-Oca (2000)).

Assumption 3.1. The function E(·) is continuous.

Remark 3.1. (i) Under Assumption 2.1(ii), it is not difficult to see that
E(·) is always an upper semicontinuous function, i.e., if {fn} ⊂ F is such
that limn fn = f ∈ F, then lim supn E(fn) ≤ E(f) (Schäl (1984)). However,
strict inequality can occur. For instance, in Examples 4.1 and 4.2 in Cavazos-
Cadena and Montes-de-Oca (2000a), the stationary policies can be indexed
by the set [0, 1], and lima↓0 fa = f0, but E(f0) = 2 > 1 = E(fa) for every
a ∈ (0, 1], so that an ergodic class “suddenly” appears when approaching
policy f0; such a phenomenon cannot occur under Assumption 3.1. As a
consequence of Theorem 3.1 below, in the two examples mentioned above the
lack of λ-optimal stationary policies can be traced back to the discontinuity
of the function E(·).

(ii) Since E(·) is integer-valued, under Assumption 3.1 this function must
be constant in each connected component of the space F. In particular, if
all the action sets are connected, so is F and E(·) must be constant on its
whole domain when Assumption 3.1 holds (Dugundji (1966)).

The following is the main result of this paper.

Theorem 3.1. Let λ 6= 0 be fixed , and suppose that Assumptions 2.1,
2.2 and 3.1 hold. In this case, there exists a λ-optimal stationary policy for
the model M .

This theorem extends results that, for risk-neutral dynamic program-
ming, were obtained by Schäl (1984) via the discounted criterion; see also
Cavazos-Cadena, Feinberg and Montes-de-Oca (2000). Roughly, in the
present risk-sensitive context, Theorem 3.1 will be derived, after performing
an appropriate reduction to the unichain case, from Lemma 2.1. The start-
ing point in this route is Theorem 3.2 below, whose statement involves the
following notation.

Definition 3.1. Suppose that the MDP M = (S,A, {A(x)}, R, P ) sat-
isfies Assumptions 2.1 and 2.2.

(i) The kernel K of the optimal value function V ∗λ (·) is given by

K = {x ∈ S | V ∗λ (x) = 0}.
(ii) Given an object ∆ outside of S and a fixed action a∆ ∈ A, define a
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new MDP
M̃ = (S̃, A, {Ã(x)}, R̃, P̃ )

as follows:

S̃ = {∆} ∪ (S \ K), Ã(x) = A(x), x ∈ S \ K, Ã(∆) = {a∆};
the reward function R̃ is defined by

R̃(x, a) = R(x, a), x ∈ S \ K, a ∈ A(x), R̃(∆, a∆) = 0,

whereas the transition law P̃ = [p̃x y(·)] is determined as follows:

p̃∆∆(a∆) = 1,

and for x ∈ S \ K,

p̃x y(a) =
{
px y(a) if y ∈ S \ K,∑
z∈K px z(a) if y = ∆.

(iii) The optimal value function and the class of all policies for the model
M̃ are denoted by Ṽ ∗λ (·) and P̃, respectively.

Remark 3.2. (i) Let x ∈ K and a ∈ A(x) be fixed. From the λ-OE in
(2.7) it follows that

Uλ(0) = Uλ(V ∗λ (x)) ≥ eλR(x,a)
∑

y∈S
px y(a)Uλ(V ∗λ (y))(3.1)

=
∑

y∈S
px y(a)Uλ(R(x, a) + V ∗λ (y)),

where the equality is due to (2.3). Since R(·, ·) and V ∗λ (·) are nonnega-
tive and the utility function is strictly increasing, (3.1) yields that Uλ(0) ≥∑
y∈S px y(a)Uλ(R(x, a) + V ∗λ (y)) ≥ Uλ(0), and consequently, R(x, a) +

V ∗λ (y) = 0 if px y(a) > 0. This discussion can be summarized as follows:

(3.2) R(x, a) = 0 and
∑

y∈K
px y(a) = 1, x ∈ K, a ∈ A(x).

(ii) The models M and M̃ are closely related; in fact, starting at the
same state x ∈ S \ K, the state-action processes {(Xt, At)} and {(X̃t, Ãt)}
corresponding to the two models evolve in the same way, and the associated
reward streams coincide, while the systems stay in S \ K, but a transition
into K in the model M corresponds to a transition into state ∆ for the model
M̃ , where the system remains forever earning a null reward. Thus, it can be
said that M̃ is obtained from M by “collapsing” the kernel K into a single
absorbing state.

Theorem 3.2. Let λ 6= 0 and suppose that Assumptions 2.1 and 2.2
hold.
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(i) For each x ∈ S \ K, V ∗λ (x) = Ṽ ∗λ (x).
(ii) Let f and f̃ be stationary policies for the models M and M̃ , respec-

tively , which satisfy
f(x) = f̃(x), x ∈ S \ K.

In this case, Vλ(f, x) = Ṽλ(f̃ , x) for every x ∈ S \ K.
(iii) The model M̃ is unichain if the following condition holds (see (2.9)):

(3.3) Pf [TK <∞|X0 = x] = 1, f ∈ F, x ∈ S.
(iv) If , in addition to Assumptions 2.1 and 2.2, (3.3) holds, then there

exists a λ-optimal stationary policy for the model M . Moreover , if f ∈ F is
obtained by maximizing the right-hand side of the λ-OE , i.e.,

Uλ(V ∗λ (x)) = eλR(x,f(x))
∑

y

px y(f(x))Uλ(V ∗λ (y)), x ∈ S,

then f is λ-optimal for the model M .

This result follows, essentially, from the relation between the models M
and M̃ described in Remark 3.1. Since Theorem 3.2 plays a central role in
this paper, a detailed proof will be provided.

Proof. (i) Define the functions W̃ : S̃ → [0,∞) and W : S → [0,∞) as
follows:

(3.4)
W̃ (x) = V ∗λ (x), x ∈ S \ K, W̃ (∆) = 0,

W (x) = Ṽ ∗λ (x), x ∈ S \ K, W (x) = 0, x ∈ K.
From the optimality equation for the model M it follows that for each x ∈ S
and a ∈ A(x),

Uλ(V ∗λ (x)) ≥ eλR(x,a)
∑

y

px y(a)Uλ(V ∗λ (y))

= eλR(x,a)
[ ∑

y∈S\K
px y(a)Uλ(V ∗λ (y)) +

(∑

y∈K
px y(a)

)
Uλ(0)

]
;

for the equality, recall that V ∗λ (x) = 0 when x ∈ K. Combining this ex-
pression with the definition of the components of the model M̃ and the
specification of W̃ in (3.4), we deduce, for every x ∈ S \ K and a ∈ Ã(x),

Uλ(W̃ (x)) ≥ eλR̃(x,a)
∑

y∈S̃

p̃x y(a)Uλ(W̃ (y)).

Moreover, since the single action at state∆, namely a∆, satisfies R̃(∆, a∆) =
0 and p̃∆∆(a∆) = 1, the above inequality also holds for x = ∆ and a = a∆.
Then, since M̃ clearly satisfies Assumption 2.1, Lemma 2.2 applied to M̃
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yields that

(3.5) W̃ (·) ≥ Ṽ ∗λ (·);
in particular, Ṽ ∗λ (·) is a finite function, and the optimality equation for the
model M̃ yields that for every x ∈ S̃ and a ∈ Ã(x),

Uλ(Ṽ ∗λ (x)) ≥ eλR̃(x,a)
∑

y∈S̃

p̃x y(a)Uλ(Ṽ ∗λ (y))

= eλR̃(x,a)
[ ∑

y∈S\K
p̃x y(a)Uλ(Ṽ ∗λ (y)) + p̃x∆(a)Uλ(0)

]
;

where the equality used the fact that Ṽ ∗λ (∆) = 0; recall that ∆ is absorbing
and that R(∆, a∆) = 0. By Definition 3.1 and the specification of W (·) in
(3.4), this yields that, for every x ∈ S \ K and a ∈ A(x),

Uλ(W (x)) ≥ eλR(x,a)
[ ∑

y∈S\K
px y(a)Uλ(W (y)) +

∑

y∈K
px y(a)Uλ(W (y))

]
,

whereas, using (3.2), it is not difficult to verify that this inequality also holds
for x ∈ K and a ∈ A(x). Thus, Lemma 2.2 applied to the model M yields
that W (·) ≥ V ∗λ (·), and the conclusion follows by combining this inequality
with (3.4) and (3.5).

(ii) Let f and f̃ be stationary policies for the models M and M̃ , respec-
tively, and assume that f(x) = f̃(x) for x ∈ S \ K. Consider the model
Mf = (S,A, {Af (x)}, R, P ) obtained from M by setting Af (x) = {f(x)}
for every x ∈ S, so that f(x) is the only available action at x for the
model Mf . Similarly, let M̃f̃ be the model obtained from M̃ by restrict-

ing the admissible actions at each x ∈ S̃ to the singleton {f̃(x)}, i.e.,
M̃f̃ = (S̃, A, {Ãf̃ (x)}, R̃, P̃ ), where Ãf̃ (x) = {f̃(x)} for each x ∈ S̃. In this

case, f and f̃ are the single stationary policies for the models Mf and M̃f ,
so that the corresponding optimal value functions are Vλ(f, ·) and Ṽλ(f̃ , ·),
respectively. By observing that Vλ(f, x) ≤ V ∗λ (x) = 0 for every x ∈ K, the
equality of Vλ(f, ·) and Ṽλ(f̃ , ·) can be established along the same arguments
used in the proof of part (i).

(iii) Let f̃ be an arbitrary stationary policy for the model M̃ , and define
f ∈ F by f(x) = f̃(x) if x ∈ S \ K, and f(x) = g(x) for x ∈ K, where g ∈ F
is arbitrary but fixed. It will be shown, by induction, that for every n ∈ N,

(3.6) Pf̃ [T∆ > n | X̃0 = x] = Pf [TK > n |X0 = x], x ∈ S \ K.
For n = 0 both sides of this equality reduce to one; see (2.9). Assuming
that (3.6) holds for n = k ∈ N, observe that, by the Markov property, the
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definition of the stopping times T∆ and TK yields

Pf̃ [T∆ > k + 1 | X̃0 = x] =
∑

y∈S\K
p̃x y(f̃(x))Pf̃ [T∆ > k | X̃0 = y]

=
∑

y∈S\K
px y(f(x))Pf [TK > k |X0 = y]

= Pf [TK > k + 1 |X0 = x]

where the second equality used the induction hypothesis, as well as the
specifications of policy f and the transition law [p̃x y(·)] in Defnition 3.1.
Thus, (3.6) holds for every n ∈ N, and taking limit as n goes to∞, we deduce
that Pf̃ [T∆ =∞| X̃0 = x] = Pf [TK =∞|X0 = x] for every x ∈ S\K. Under

(3.3), it follows that Pf̃ [T∆ =∞| X̃0 = x] = 0, so that

Pf̃ [T∆ <∞| X̃0 = x] = 1, x ∈ S \ K.

This equality shows that, under the action of policy f̃ , ∆ ∈ S̃ is accessible
from every state in S \ K; since the set {∆} is clearly minimal f̃ -closed, it
follows that E(f̃) = 1 and then M̃ is unichain.

(iv) Under (3.3), M̃ is a unichain MDP (by part (iii)) which satisfies
Assumptions 2.1 and 2.2. Therefore, by Lemma 2.1, there exists a λ-optimal
stationary policy f̃ for M̃ . If f ∈ F is such that f(x) = f̃(x) for x ∈ S \ K,
then parts (i) and (ii) yield that Vλ(f, x) = Ṽλ(f̃ , x) = Ṽ ∗λ (x) = V ∗λ (x) for
every x ∈ S \ K; since 0 ≤ Vλ(f, x) ≤ V ∗λ (x) = 0 for x ∈ K, it follows that f
is λ-optimal for model M . To conclude, suppose that

Uλ(V ∗λ (x)) = eλR(x,f(x))
∑

y∈S
px y(f(x))Uλ(V ∗λ (y)), x ∈ S,

set f̃(x) = f(x) for x ∈ S \K, and f̃(∆) = a∆. In this case, straightforward
calculations using Definition 3.1 show that

Uλ(Ṽ ∗λ (x)) = eλR̃(x,f̃(x))
∑

y∈S̃

px y(f̃(x))Uλ(Ṽ ∗λ (y)), x ∈ S̃;

since M̃ is unichain, f̃ is λ-optimal, by Lemma 2.1, and then, since f(x) =
f̃(x) for x ∈ S \ K, the above argument yields that f is λ-optimal for the
original model M .

According to Theorem 3.2, a λ-optimal stationary policy exists for a
model M satisfying Assumptions 2.1 and 2.2 whenever condition (3.3) oc-
curs; unfortunately, this latter requirement does not need to hold, even under
the additional Assumption 3.1. However, the strategy to establish Theo-
rem 3.1 will be based on Theorem 3.2, and can be described as follows: It
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will be shown that there exist closed sets Â(x) ⊂ A(x) such that the new
MDP M̂ = (S,A, {Â(x)}, R, P ) satisfies the following assertions (a) and (b):

(a) the optimal value functions of M̂ and M coincide, and
(b) condition (3.3) is satisfied for the model M̂ .

In this case, there exists a λ-optimal stationary policy for the model
M̂ , which in turn is also optimal for the original MDP. Moreover, every
stationary policy obtained by maximizing the right-hand side of the λ-OE
for M̂ is λ-optimal for the model M .

4. Preliminaries. This section contains the technical tools that will be
used to prove Theorem 3.1 as outlined above. The argument has been split
into four simple parts presented below as Lemmas 4.1–4.4.

Lemma 4.1. Let f ∈ F and G ⊂ S be arbitrary , and suppose that

(4.1) G ∩ C∗ 6= ∅ for every minimal f -closed set C∗.

In this case, for every x ∈ S,

(4.2) Pf [TG <∞|X0 = x] = 1.

Proof. Let C∗ be a given minimal f -closed set. Using (4.1), pick y ∈
G ∩ C∗ and observe that the definition of TG and Remark 2.1(i) together
yield that

P [TG <∞|X0 = x]

≥ Pf [Xn = y for some n ∈ N \ {0} |X0 = x] = 1, x ∈ C∗,
so that (4.2) is certainly valid when x ∈ C∗. Since the classR(f) of recurrent
states with respect to the Markov chain induced by f is the union of minimal
f -closed sets (see Remark 2.1(i) again), it follows that

(4.3) Pf [TG <∞|X0 = x] = 1, x ∈ R(f).

On the other hand, it is well known that, since the state space is finite,

P [TR(f) <∞|X0 = x] = 1, x ∈ S;

see, for instance, Billingsley (1995), or Loève (1977). Thus, via the Markov
property, (4.2) follows by combining this latter equality and (4.3).

Lemma 4.2. Suppose that f ∈ F is such that Vλ(f, x) < ∞ for every
x ∈ S. In this case

Vλ(f, x) = 0, x ∈ R(f).

Proof. Let C∗ be an arbitrary minimal f -closed set. As already noted
in Remark 2.1, each pair of states in C∗ communicate under the action of
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f , and each member of C∗ is positive recurrent under the action of f . Then
(Chapter 3 of Loève (1977), Section 8 of Billingsley (1995)) we have,

Pf [Xn = y for an infinite number of integers n |X0 = x] = 1, x, y ∈ C∗,
and since the reward function is nonnegative and the utility function is
strictly increasing, this yields that for each pair x, y ∈ C∗ and m ∈ N,

Uλ(Vλ(f, x)) = Ef

[
Uλ

( ∞∑

t=0

R(Xt, At)
) ∣∣∣X0 = x

]

≥ Ef
[
Uλ

( ∞∑

t=0

R(y, f(y))I[Xt = y]
) ∣∣∣X0 = x

]

≥ Ef [Uλ(mR(y, f(y))) |X0 = x]

= Uλ(mR(y, f(y))),

where I[Xt = y] denotes the indicator function of the event [Xt = y]. Thus,
Vλ(f, x)) ≥ mR(y, f(y)); since m ∈ N is arbitrary and R(·, ·) ≥ 0, this yields
that R(y, f(y)) for each y ∈ C∗. Therefore, since C∗ is an f -closed set it
follows that Pf [R(Xt, At) = 0 |X0 = x] = 1, for every t ∈ N and x ∈ C∗, so
that

Uλ(Vλ(f, x)) = Ef

[
Uλ

( ∞∑

t=0

R(Xt, At)
) ∣∣∣X0 = x

]
= Uλ(0),

and then Vλ(f, x) = 0 for each x ∈ C∗. The conclusion follows from recalling
that R(f) is the union of all the minimal f -closed sets.

The next step to prove Theorem 3.1 is the following result, which ensures
the existence of ε-optimal policies in the relative sense.

Lemma 4.3. Fix ε ∈ (0, 1), and suppose that Assumptions 4.1 and 4.2
hold. In this case, there exists a policy f ∈ F such that

Vλ(f, x) ≥ (1− ε)V ∗λ (x), x ∈ S.

This lemma was recently established in Cavazos-Cadena and Montes-
de-Oca (2000c), where the argument relies on a strong form of the λ-OE in
(2.7); another proof, using a discounted dynamic programming operator, can
be found in Cavazos-Cadena and Montes-de-Oca (2000b). The remainder of
the section involves a construction based on Lemma 4.3 which, essentially,
looks for a policy f ∈ F which is a “good candidate” for λ-optimality. First,
for each n ∈ N, Lemma 4.3 yields the existence of a policy fn ∈ F satisfying

(4.4) Vλ(fn, ·) ≥
(

1− 1
n+ 2

)
V ∗λ (·);
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since the space F is compact metric, without loss of generality it can be
assumed, by taking a subsequence if necessary, that

(4.5) lim
n→∞

fn = f ∈ F.

Moreover, since E(fn) is an integer number less than or equal to the num-
ber of states, an additional subsequence can be taken so that, for a fixed
integer k,

(4.6) E(fn) = k, n ∈ N.
Lemma 4.4. Suppose that Assumptions 2.1, 2.2 and 3.1 hold. With the

notation in (4.4)–(4.6), the following assertions (i)–(ii) are true:

(i) E(f) = k, and
(ii) R(f) ⊂ K;

Proof. Part (i) follows from (4.6) and the continuity of E(·). To establish
part (ii), let C∗i (fn), i = 1, . . . , k, be the k disjoint minimal fn-closed sets,
and observe that Lemma 4.2 and (4.4) together imply that

(4.7)
k⋃

i=1

C∗i (fn) = R(fn) ⊂ K, n ∈ N.

Consider the Markov chain induced by fn, and for each n ∈ N and i =
1, . . . , k, let µi,n be the unique invariant distribution supported in C∗i (fn),
so that the following assertions (a)–(c) are satisfied for each n ∈ N:

(a) µi,n(y) =
∑
x µi,n(x)px y(fn(x)), y ∈ S, i = 1, . . . , k.

(b)
∑
x∈K µi,n(x) = 1, i = 1, . . . , k

(notice that this equality follows from the fact that supp(µi,n)=C∗i (fn)⊂K;
see (4.7)).

(c)
∑
x∈K |µi,n(x)− µj,n(x)| = 2 if i 6= j

(this assertion is equivalent to the statement that the supports of µi,n and
µj,n, namely C∗i (fn) and C∗j (fn), are disjoint when i 6= j).

Since the state space is finite, for each i=1, . . . , k the sequence {µi,n}n∈N
is tight. Therefore, by taking a subsequence if necessary, it can be assumed
that the following convergences hold, where µi(·), i = 1, . . . , k, are probabil-
ity distributions on S:

lim
n→∞

µi, n(·) = µi(·), i = 1, . . . , k.

When we combine these convergences with properties (a)–(c) above, the
following assertions follow via (4.5) and the continuity of the transition law:

(a′) For each i = 1, . . . , k, µi(y) =
∑
x µi(x)px y(f(x)), y ∈ S.

(b′)
∑
x∈K µi(x) = 1;

(c′)
∑
x∈K |µi(x)− µj(x)| = 2 if i 6= j.
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Thus, each µi is an invariant distribution of the Markov chain induced
by f , and via (b′), it follows that

supp(µi) ⊂ K, i = 1, . . . , k,

whereas (c′) immediately yields that

supp(µi) ∩ supp(µj) = ∅ if i 6= j.

As observed in Remark 2.1, for each i = 1, . . . , k, there exists a minimal f -
closed set C∗i contained in supp(µi), so that the last two displayed relations
together imply that

C∗i ⊂ K, i = 1, . . . , k, and C∗i ∩ C∗j = ∅ when i 6= j.

Since E(f) = k, these sets C∗i are all the k different minimal f -closed sets,
and the inclusion in the last displayed relation implies that R(f) = C∗1 ∪
C∗2 ∪ . . . ∪ C∗k ⊂ K, completing the proof of part (ii).

5. Proof of the main result. In this section a proof of Theorem 3.1
will be provided. For the sake of clarity, the essential part of the argument
is stated separately in the following lemma.

Lemma 5.1. Suppose that Assumption 3.1 holds, and let f ∈ F be such
that R(f) ⊂ G, where G ⊂ S is fixed. In this case, for every x ∈ S there
exists a closed neighborhood B(f(x)) ⊂ A of f(x) such that

(5.1) f ′ ∈
∏

x∈S
(B(f(x)) ∩A(x))

⇒ C∗ ∩G 6= ∅ for each minimal f ′-closed set C∗.

Proof. The argument is by contradiction. First, notice that, by Re-
mark 2.1(i), the inclusion R(f) ⊂ G is equivalent to the assertion that
all the minimal f -closed sets are contained in G, and let Bn(f(x)) be the
closed ball in A of radius 1/(n+ 1) with center f(x). Suppose that for each
n ∈ N, it is possible to find a stationary policy fn such that

(5.2) fn ∈
∏

x∈S
(Bn(f(x)) ∩ A(x)) and C∗n ⊂ S \G,

where C∗n is a minimal fn-closed set. Let µn be the invariant probability
distribution of the Markov chain induced by fn associated with C∗, i.e.,
µn(·) satisfies

(5.3) µn(y) =
∑

x

µn(x)px y(fn(x)), y ∈ S,

and supp(µn) = C∗n ⊂ S \G, so that

(5.4)
∑

x∈S\G
µn(x) = 1.
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Since the state space is finite, the sequence {µn}n∈N is tight and, for some
subsequence {µnk}, the following convergence holds for a probability distri-
bution µ on S:

(5.5) lim
k→∞

µnk(x) = µ(x), x ∈ S.

On the other hand, since Bn(f(x)) is a closed ball with radius 1/(n + 1),
(5.2) implies that limn→∞ fn = f , and the continuity of the transition law
and (5.3)–(5.5) together yield that

µ(y) =
∑

x

µ(x)px y(f(x)), y ∈ S,

and ∑

x∈S\G
µ(x) = 1.

Thus, µ is an invariant distribution of the Markov chain induced by f , whose
support is contained in S \G. Next, recall that supp(µ) contains a minimal
f -closed set C∗ (see Remark 2.1(iii)), and in this case C∗ ⊂ supp(µ) ⊂ S\G;
this is a contradiction since, as already noted, all the minimal f -closed sets
are contained in G. Thus, (5.1) holds when, for each x ∈ S, B(f(x)) =
Bn(f(x)) with n large enough.

Proof of Theorem 3.1. Let the stationary policy f be as in Lemma 4.4,
so that f is the limit of a sequence {fn} satisfying (4.4). By Lemma 4.4(ii),
R(f) ⊂ K. Using Lemma 5.1 with this policy f and the kernel K instead
of G, for each x ∈ S select a closed neighborhood B(f(x)) ⊂ A of f(x)
such that (5.1) holds, and define the new MDP M̂ = (S,A, {Â(x)}, R, P )
by setting Â(x) = B(f(x)) ∩ A(x), x ∈ S; notice that each set Â(x) is a
compact subset of A(x) and that the class P̂ of admissible policies for the
model M̂ is contained in P, so that

(5.6) V̂ ∗λ (x) = sup
π∈P̂

Vλ(π, x) ≤ sup
π∈P

Vλ(π, x) = V ∗λ (x), x ∈ S.

On the other hand, since each set B(f(x)) is a (closed) neighborhood of f(x),
the convergence in (4.5) implies that fn is an admissible stationary policy
for M̂ whenever n is large enough, so that (4.4) implies that V̂ ∗λ (·) ≥ V ∗λ (·),
and combining this with (5.6) we deduce that

(5.7) V̂ ∗λ (·) = V ∗λ (·).
To conclude observe that (5.1) implies that every f̂ ∈ ∏x∈S Â(x) satisfies
the condition (4.1) with G = K, so Lemma 4.1 implies that

Pf̂ [TK <∞|X0 = x] = 1, x ∈ S, f̂ ∈
∏

x∈S
Â(x).
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Thus, by Theorem 3.2(iv) applied to the model M̂ , there exists a policy
f̂ ∈ ∏x∈S Â(x) such that V̂λ(f̂ , ·) = V̂ ∗λ (·), and then f̂ is also optimal
for the model M , by (5.7). Moreover, every stationary policy obtained by
maximizing the right-hand side of the optimality equation corresponding to
M̂ is optimal for both models M̂ and M .

6. Conclusion. This work considered multichain MDPs with finite
state space and nonnegative rewards. Under the structural stability con-
dition in Assumption 3.1 and the continuity-compactness requirements in
Assumption 2.1, it was shown that an optimal stationary policy exists when-
ever the optimal value function is finite. In contrast with the usual approach
in the risk-neutral case, which is based on the discounted criterion (Schäl
(1984), (1986)), in the present framework Theorem 3.1 was derived via a re-
duction to a unichain MDP, for which the existence of an optimal stationary
policy had already been established. Finally, trying to extend Theorem 3.1 to
more general contexts, for instance, MDPs with more general state space or
rewards with unrestricted sign, seems to be an interesting problem; research
in this direction is currently in progress.
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M. Loève (1977), Probability Theory I , 4th ed., Springer, New York.



Stationary optimal policies 109

J. W. Pratt (1964), Risk aversion in the small and in the large, Econometrica 32, no. 1,
122–136.

M. L. Puterman (1994), Markov Decision Processes, Wiley, New York.
S. M. Ross (1970), Applied Probability Models with Optimization Applications, Holden-

Day, San Francisco.
M. Schäl (1984), Markovian decision models with bounded finite-state rewards, Operations

Research Proceedings 1983, Springer, Berlin, 470–473.
M. Schäl (1986), Markov and semi-Markov decision models and optimal stopping , in: Semi-

Markov Models, J. Janssen (ed.), Plenum Press, New York, 39–62.
P. J. Schweitzer (1968), Perturbation theory and finite Markov chains, J. Appl. Probab.

5, 401–413.

Departamento de Estad́ıstica y Cálculo
Universidad Autónoma Agraria Antonio Narro
Buenavista, Saltillo COAH 25315, México
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