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LIMITING AVERAGE COST CONTROL PROBLEMS
IN A CLASS OF DISCRETE-TIME STOCHASTIC SYSTEMS

Abstract. We consider a class of Rd-valued stochastic control systems,
with possibly unbounded costs. The systems evolve according to a discrete-
time equation xt+1 = Gn(xt, at) + ξt (t = 0, 1, . . .), for each fixed n =
0, 1, . . . , where the ξt are i.i.d. random vectors, and the Gn are given func-
tions converging pointwise to some function G∞ as n→∞. Under suitable
hypotheses, our main results state the existence of stationary control poli-
cies that are expected average cost (EAC) optimal and sample path average
cost (SPAC) optimal for the limiting control system xt+1 = G∞(xt, at) + ξt
(t = 0, 1, . . .).

1. Introduction. We are concerned with a discrete-time Rd-valued
stochastic control process evolving according to the system equation

(1) xt+1 = Gn(xt, at) + ξt (t ∈ N)

(with N := {0, 1, . . .}), for each fixed n ∈ N, where xt and at denote the state
and control variables, respectively, and {ξt} is a sequence of independent
and identically distributed (i.i.d.) random vectors. Suppose that {Gn} is a
sequence of given functions converging pointwise to some function G∞, that
is,

(2) Gn(x, a)→ G∞(x, a) for all (x, a),

and consider the limiting control system

(3) xt+1 = G∞(xt, at) + ξt (t ∈ N).
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In this paper we give conditions for the existence of expected average cost
(EAC) optimal and sample path average cost (SPAC) optimal policies for
the limiting control system (3).

The motivation to study models of the type (1) comes from our interest
in time-varying control systems of the form

(4) xn+1 = Gn(xn, an) + ξn (n ∈ N),

where the drift term Gn(x, a) tends to “stabilize” as in (2). Such kind of
systems appears, for example, in the modelling of some biotechnological
processes ([2, 10]).

Our study is partly a sequel to [9], where we considered related α-
discounted cost (α-DC) problems, for α ∈ (0, 1). In fact, our approach in the
present average cost (AC) case is similar to that in [9] in the sense that we
first consider the AC problems for the time-invariant system for each fixed
n ∈ N, and then we let n → ∞ to obtain the corresponding AC results for
the limiting system (3). A key fact to get the latter results is that, from (2),
we obtain the convergence

(5) Qn(B |x, a)→ Q∞(B |x, a),

where, for each n ∈ N ∪ {∞}, Qn denotes the transition law of (1), namely,

(6) Qn(B |x, a) := Prob(xt+1 ∈ B |xt = x, at = a) (t ∈ N).

(A precise statement of (5) is given in Lemma 10(iii).)
Still another connection with [9] is that the existence of EAC optimal

policies is obtained via the well known “vanishing discount” approach (see,
for instance, [1, 3, 4, 5], [6, Chapter 4], [7, Chapter 10]). Thus an important
ingredient in the proof of Theorem 4 below is the α-DC optimality equation
in [9, Theorem 3] for n =∞. Finally, the existence of SPAC optimal policies
is obtained as a consequence of Theorem 4 and recent results in [8].

The remainder of the paper is organized as follows. In §2 we introduce
some terminology and the AC criteria we are interested in. In §3 we present
the hypotheses and state our main results, Theorem 4 and Corollary 8, which
are proved in §4.

2. Markov control models. For each fixed n = 0, 1, . . . ,∞, we first
introduce the Markov control model Mn associated with the system (1).
That is,

(7) Mn := (X,A, {A(x) | x ∈ X}, Qn, c) for n = 0, 1, . . . ,∞,

with state space X = Rd (or a Borel subset of Rd) and control (or action)
set A, which is assumed to be a Borel space, namely, a Borel subset of some
complete separable metric space. The spaces X and A are endowed with
their Borel σ-algebras B(X), B(A). For each x ∈ X, the set A(x) ∈ B(A)
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in (7) stands for the (nonempty) set of admissible controls (or actions) when
the state is x. Moreover, we suppose that the set

K = {(x, a) | x ∈ X, a ∈ A(x)}
of admissible state-action pairs is a Borel subset of X × A. Finally, Qn
denotes the transition law in (6), defined for all B ∈ B(X) and (x, a) ∈ K,
whereas c : K → R is a measurable function that represents the cost-per-
stage.

Let Π be the set of all (randomized, history-dependent) admissible con-
trol policies. If necessary, see [1, 3, 6, 7, 8] for further information on those
policies. Let F be the set of all measurable functions f : X→ A with values
f(x) in A(x) for all x ∈ X. As usual, for Markov control processes, we will
identify F with the subfamily ΠDS of Π that consists of the (determinis-
tic) stationary policies. (The Borel measurability of K and Assumption 2(a)
below ensure that F—hence Π—is nonempty.)

For notational ease, let us define

c(x, f) := c(x, f(x)) and Qn(· |x, f) := Qn(· |x, f(x)),

for all f ∈ F, x ∈ X and n = 0, 1, . . . ,∞.

AC criteria. For each fixed n = 0, 1, . . . ,∞, let J0
n(π, x) be the long-run

sample path average cost (SPAC) using the policy π ∈ Π, for the initial
state x0 = x, when the control model is Mn in (7); see also (1). That is,

(8) J0
n(π, x) := lim sup

t→∞

1
t

t−1∑

i=0

c(xi, ai).

A policy π∗ ∈ Π is said to be SPAC optimal for the control model Mn if
there exists a constant %̂n such that

J0
n(π∗, x) = %̂n P (n)π∗

x -a.s. ∀x ∈ X, and(9)

J0
n(π, x) ≥ %̂n P (n)π

x -a.s. ∀π ∈ Π, x ∈ X,

where P (n)π
x denotes the probability measure corresponding to Mn when

using the policy π, for the initial state x0 = x. The constant %̂n is called the
optimal sample path average cost for the model Mn.

The “expected” analogue of (8) is the long-run expected average cost
(EAC):

(10) Jn(π, x) := lim sup
t→∞

1
t
E(n)π
x

( t−1∑

i=0

c(xi, ai)
)
.

The corresponding value function is

(11) J∗n(x) := inf
π∈Π

Jn(π, x) ∀x ∈ X.
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A policy π∗ ∈ Π is said to be EAC optimal for the control model Mn if it
attains the infimum in (11).

In the following section we show the existence of stationary policies
that are SPAC and EAC optimal for the model Mn, for each fixed n =
0, 1, . . . ,∞, and the convergence of the optimal costs J∗n and %̂n as n→∞.

3. Main results. We shall require three different sets of hypotheses.
The first one, Assumption 1, refers to the system (4):

Assumption 1. (a) For each n ∈ N, the function Gn : K → X is con-
tinuous, and, furthermore, there exists a continuous function G∞ : K→ X
for which (2) holds for all (x, a) ∈ K.

(b) The X-valued random disturbances ξt are i.i.d., and their common
distribution is absolutely continuous (with respect to the Lebesgue measure)
with a continuous, bounded and positive density γ.

The next two assumptions are more specific to the control model (7),
and have already been used in previous works—see for instance [3, 8, 15] or
[7, Chapter 10].

Assumption 2. For each state x ∈ X:

(a) A(x) is a (nonempty) compact subset of A, and
(b) c(x, ·) is lower semicontinuous (l.s.c.) on A(x).
(c) Moreover, c(x, a) is nonnegative, and there exist a constant c1 ≥ 0

and a measurable function w ≥ 1 on X such that, for each x ∈ X and n ∈ N,

sup
a∈A(x)

c(x, a) ≤ c1w(x).

Notation. Let w(·) be as in Assumption 2, and let Bw(X) be the Ba-
nach space of measurable functions u : X → R with a finite w-norm ‖u‖w,
which is defined as

(12) ‖u‖w := sup
x∈X
|u(x)|/w(x).

Further, B0(X) ⊂ Bw(X) denotes the subspace of bounded measurable
functions on X. We write an integral as µ(u) :=

�
u dµ, whenever it is well

defined.

Assumption 3. There exist a probability measure ν and two constants
γ > 0 and β ∈ (0, 1) for which the following holds: for each f ∈ F and
n ∈ N, there is a measurable function 0 ≤ lf,n(·) ≤ 1 such that

(a) Qn(B |x, f) ≥ lf,n(x)ν(B) ∀x ∈ X, B ∈ B(X);
(b) ν(lf,n) :=

�
X lf,n dν ≥ γ;

(c) ν(w) :=
�
X w dν = ‖ν‖w <∞; and



Limiting average cost control problems 115

(d) for all x ∈ X,

(13) �
X

w(y)Qn(dy |x, f) ≤ βw(x) + lf,n(x)ν(w).

For a discussion of Assumption 3, as well as related ergodicity conditions
and examples, see, for instance, [7, §10.2.C] or [8, Remark 6.1]. Similar
ergodicity conditions have been used by other authors, in particular [11, 14]
or [16, 17].

We now state our first result, which is proved in §4.

Theorem 4. Suppose that Assumptions 1 to 3 hold. Then:

(a) For each n = 0, 1, . . . ,∞, there exist a constant %n, a nonnegative
function hn in Bw(X), and a stationary policy fn ∈ F such that , for each
state x ∈ X, the Average Cost Optimality Inequality (ACOI ) holds, i.e.,

(14) %n + hn(x) ≥ min
a∈A(x)

[
c(x, a) + �

X

hn(y)Qn(dy |x, a)
]
,

and , moreover , fn(x) ∈ A(x) attains the minimum in (14), so that

(15) %n + hn(x) ≥ c(x, fn) + �
X

hn(y)Qn(dy |x, fn).

In addition, fn is EAC optimal for the modelMn, with %n being the optimal
value:

(16) %n = J∗n(x) ∀x ∈ X.

(b) The sequence {%n} converges to %∞ as n→∞.

Remark 5. The ACOI (14) is not the same as in the standard EAC
optimality results. Indeed, as Assumptions 1 to 3 are stated for each finite
n ∈ N, it is well known that the ACOI (14) holds for finite n ∈ N. The
interesting point of Theorem 4 is that (14) also holds for n =∞.

Remark 6. Theorem 4 is proved in §4 via the α-DC optimality (see [9]),
using the “vanishing discount” approach (see [1, 3, 4, 6, 7]), so let us recall
the definition of the α-DC cost, α ∈ (0, 1), for the control modelMn, using
the policy π ∈ Π with the initial state x0 = x:

(17) V αn (π, x) := E(n)π
x

( ∞∑

t=0

αtc(xt, at)
)
.

The corresponding optimal α-DC function is

(18) V αn (x) := inf
π∈Π

V αn (π, x).

It will be shown that, for all x ∈ X and n = 0, 1, . . . ,∞,

(19) %n = J∗n(x) = lim sup
α↗1

(1− α)V αn (x).
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Result (b) of Theorem 4 can then be viewed as a further result of [9], where
the convergence of V αn (x) to V α∞(x) was proved for all x ∈ X and each fixed
α ∈ (0, 1).

As a consequence of Theorem 4, we may show the existence of SPAC
optimal policies under the following assumption.

Assumption 7. There exists a constant c2 ≥ 0 such that

c2(x, a) ≤ c2w(x) ∀(x, a) ∈ K.

With this additional assumption we have:

Corollary 8. Suppose that Assumptions 1, 2, 3 and 7 are satisfied.
Then, for each n = 0, 1, . . . ,∞, a stationary policy is EAC optimal for the
model Mn if and only if it is SPAC optimal for Mn; hence, by Theorem 4,
there exists a policy fn ∈ F that is SPAC optimal forMn and , furthermore,
%n is the optimal sample path average cost , that is, %n = %̂n where %̂n is the
constant in (9). In particular ,

%̂∞ = lim
n→∞

%n = lim
n→∞

lim sup
α↗1

(1− α)V αn (x) ∀x ∈ X.

4. Proofs. Before proving Theorem 4 itself we shall state some prelim-
inary facts.

Lemma 9. For each fixed n in N, the state process {xt} (t = 0, 1, . . .),
following the model Mn under a stationary policy f ∈ F, is a Markov chain
that , under Assumption 1, is aperiodic and λ-irreducible, where λ denotes
the Lebesgue measure. If Assumption 3 is also satisfied , then the chain is
positive Harris-recurrent. We denote by µf,n the corresponding (unique) in-
variant probability measure (i.p.m.), which satisfies µf,n(w) < ∞ and the
following property : there exist two constants R ≥ 0 and r ∈ (0, 1) such that

(20)
∣∣∣ �
X

u(y)Qtn(dy |x, f)− µf,n(u)
∣∣∣ ≤ Rrt‖u‖ww(x)

for all f ∈ F, x ∈ X, u ∈ Bw(X), n ∈ N and t = 0, 1, . . . , which means, in
other words, that {xt} is w-geometrically ergodic.

Proof. Choose arbitrary n in N and f in F. Then, by Assumption 1(b),
we may write Qn as

(21) Qn(B |x, f) = �
B

γ[s−Gn(x, f(x))] ds.

As the density γ is positive, Qn(B |x, f) > 0 for all x ∈ X if λ(B) > 0.
Moreover, it is easy to check that {xt} has the weak Feller property, and
{xt} is, therefore, λ-irreducible.
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The aperiodicity is a straightforward consequence of the λ-irreducibility
and the fact that γ is positive.

The positive Harris-recurrence is proved, for example, in [15, Lemma 4.1],
and the w-geometric ergodicity of {xt} is due to [3, Lemmas 3.3 and 3.4],
which follows ideas of [12, 13]. Furthermore, the fact that R and r are
independent of f comes directly from the latter references, while the inde-
pendence of n results from Assumption 3, because γ, β and ν are supposed
to be independent of n, and {lf,n} is uniformly bounded in n.

Lemma 10. (a) If Assumption 1 holds, then for each n = 0, 1, . . . ,∞:

(i) The transition law Qn is strongly continuous, that is, Qn(B | ·) is
continuous on K for every Borel set B∈B(X). (Equivalently ,

�
u(y)Qn(dy | ·)

is continuous on K for each function u in B0(X).)
(ii) The function u′(·) :=

�
u(y)Qn(dy | ·) is l.s.c. on K for every non-

negative function u in Bw(X); in particular , u′(x, ·) is l.s.c. on A(x) for
each x ∈ X.

(iii) Qn(· |x, a) converges setwise to Q∞(· |x, a) as n → ∞; that is, (5)
holds for each B ∈ B(X).

(b) As a consequence of (ii) and Assumption 2(b), for each n=0,1, . . . ,∞,
x ∈ X and u ∈ Bw(X) nonnegative, the function c(x, ·) +

�
u(y)Qn(dy|x, ·)

is l.s.c. on A(x).

Proof. Part (i) follows from (21) and the continuity of γ and Gn. The
Monotone Convergence Theorem and the Dominated Convergence Theorem
are respectively used to prove (ii) and (iii). See [9].

Lemma 11. Under Assumptions 1 to 3:

(a) Assumption 3 holds for n =∞; that is, for each f in F, there exists
a measurable function 0 ≤ lf,∞(·) ≤ 1 that satisfies the inequalities (a), (b)
and (d) of Assumption 3.

(b) The results of Lemma 9 hold for n =∞.

Proof. (a) We will show that lf,∞ := lim supn→∞ lf,n satisfies inequali-
ties (a), (b) and (d) in Assumption 3.

Let B ∈ B(X), x ∈ X, and f ∈ F. Then, from Lemma 10(iii), taking
the upper limit in Assumption 3(a) we deduce that

Q∞(B |x, f) ≥ lf,∞(x)ν(B).

Similarly, taking the upper limit in Assumption 3(b), by Fatou’s Lemma we
get

γ ≤ lim sup
n→∞

�
X

lf,n(x)ν(x) dx ≤ �
X

lf,∞(x)ν(x) dx.
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Now, to prove (13) for n = ∞, let {uk} be a nondecreasing sequence in
B0(X) such that uk(x) ↑ w(x) for all x ∈ X. Choose arbitrary x ∈ X and
f ∈ F. Then, by (13), for each k, n in N,

� uk(y)Qn(dy |x, f) ≤ � w(y)Qn(dy |x, f) ≤ βw(x) + lf,n(x)ν(w).

Taking the lower limit as n→∞, we infer by Lemma 10(iii) and an extension
of Fatou’s Lemma (see [7, Lemma 8.3.7]) that

� uk(y)Q∞(dy |x, f) ≤ lim inf
n→∞

� uk(y)Qn(dy |x, f)

≤ βw(x) + lim inf
n→∞

lf,n(x)ν(w)

≤ βw(x) + lf,∞(x)ν(w).

Thus, letting k →∞, we obtain (by monotone convergence)

� w(y)Q∞(dy |x, f) ≤ βw(x) + lf,∞(x)ν(w).

(b) This follows from (a) and Assumption 1.

Choose arbitrary B ∈ B(X), n = 0, 1, . . . ,∞, and f ∈ F. Let µn,f be
the unique i.p.m. of Qn(B |x, f) in Lemmas 9 and 11(b), i.e.,

(22) µn,f (·) = �
X

Qn(· |x, f)µn,f(dx).

The following Lemma 12 proves the convergence of µn,f , as n→∞, for all
f ∈ F. To state it, for each α ∈ (0, 1), let us first define the α-discounted
cost V αn (f, x, IB) when c(x, a) is replaced by the indicator function IB(·) of
B ∈ B(X), i.e.,

(23) V αn (f, x, IB) :=
∞∑

t=0

αtE(n)f
x IB(xt) =

∞∑

t=0

αtQtn(B |x, f)

for all x ∈ X.

Lemma 12. (a) Under Assumption 1, for all f ∈ F, x ∈ X, B ∈ B(X)
and α ∈ (0, 1),

(24) V αn (f, x, IB)→ V α∞(f, x, IB) as n→∞.
(b) Moreover , if in addition Assumptions 2 and 3 hold , then

(25) µn,f (B)→ µ∞,f (B) as n→∞.
Proof. (a) By Lemma 10(iii), and by the formula

Qtn(B |x, f) = �
X

Qt−1
n (B | y, f)Qn(dy |x, f), t ≥ 1,
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a straightforward induction argument and the Bounded Convergence Theo-
rem give

lim
n→∞

Qtn(B |x, f) = Qt∞(B |x, f), t = 0, 1, . . .

Therefore, by (23) and the Bounded Convergence Theorem again, we
get (24).

(b) Let B ∈ B(X), n = 0, 1, . . . ,∞, f ∈ F and x ∈ X.
From the definition (23) of V αn (f, x, IB) and a straightforward calculation

(or from formula (5.3.10) in [6] with µn,f (B) in lieu of J(π, x)), we get

V αn (f, x, IB) =
µn,f (B)
1− α + (1− α)

∞∑

t=1

αt−1
( t−1∑

k=0

Qkn(B |x, f)− tµn,f (B)
)
,

which can be written as

µn,f (B) = (1−α)V αn (f, x, IB)−(1−α)2
∞∑

t=1

αt−1
t−1∑

k=0

(Qkn(B |x, f)−µn,f (B)).

To estimate |µn,f (B)−µ∞,f (B)|, we write µn,f (B)−µ∞,f (B) = Iα,n+IIα,n,
where

Iα,n = (1− α)[(V αn (f, x, IB)− V α∞(f, x, IB)],

and

IIα,n = − (1− α)2
∞∑

t=1

αt−1
t−1∑

k=0

{(Qkn(B |x, f)− µn,f (B))

− (Qk∞(B |x, f)− µ∞,f (B))}.
From part (a), we see that for each α ∈ (0, 1), Iα,n → 0 as n→∞.

Moreover, taking u(·) = IB(·) in (20) gives

|Qkn(B |x, f)− µf,n(B)| ≤ Rrkw(x) ∀k = 0, 1, . . .

We then deduce that

|IIα,n| ≤ (1− α)2
∞∑

t=1

αt−1
t−1∑

k=0

2Rrkw(x) ≤ (1− α)
2R

1− rw(x).

As α is arbitrary, letting α → 1, we obtain the convergence of |IIα,n| to 0,
for all n, which finally gives (25).

Lemma 13. Under Assumptions 1 to 3, for all f ∈ F, x ∈ X and n =
0, 1, . . . ,∞,

(26) Jn(f) := �
X

c(y, f)µf,n(dy) = lim
N→∞

1
N
E(n)f
x

(N−1∑

i=0

c(xi, f)
)
.

Proof. By Assumption 2(c), c(·, f) is in Bw(X) for all f ∈ F. Then (26)
follows from (20) with u(·) := c(·, f).
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Lemma 14. Under Assumptions 1 to 3, for all u ∈ Bw(X), x ∈ X,
π ∈ Π and n = 0, 1, . . . ,∞,

(27) lim
N→∞

1
N

sup
π
E(n)π
x |u(xN )| = 0.

Proof. Choose arbitrary u ∈ Bw(X), x ∈ X, π ∈ Π, t ∈ N, and n =
0, 1, . . . ,∞. Observe that (13) in Assumption 3 yields

(28) � w(y)Qn(dy |x, a) ≤ βw(x) + ν ∀x ∈ X, a ∈ A(x),

where ν := ‖ν‖w, and so

E(n)π
x w(xt) ≤ βE(n)π

x w(xt−1) + ν.

Iteration of this inequality gives

(29) E(n)π
x w(xt) ≤ βtw(x) + ν

t−1∑

i=0

βi ≤
(

1 +
ν

1− β

)
w(x)

as w(·) ≥ 1. On the other hand, from (12) we have

E(n)π
x |u(xt)| ≤ ‖u‖wE(n)π

x w(xt),

which together with (29) implies (27).

We are now ready for the proof of Theorem 4.

Proof of Theorem 4. (a) With Lemmas 9, 11 and 14 and the results in [9]
at hand, the proof of part (a), following the “vanishing discount” approach,
is more or less standard—see [1, 3, 4, 5] and [7, Theorem 10.3.1]. Hence we
shall only give the main ideas.

Let α ∈ (0, 1), x ∈ X, and n = 0, 1, . . . ,∞, and define

Mn(α) := inf
x∈X

V αn (x),(30)

%n(α) := (1− α)Mn(α),(31)

uαn(x) := V αn (x)−Mn(α),(32)

where V αn (x) is the optimal α-DC function (18) for the modelMn. Observe
that uαn(·) is a nonnegative function.

From (29) and Assumption 2(c), it is easy to verify that

0 ≤ V αn (x) ≤ c1
1− α

(
1 +

ν

1− β

)
w(x),

which implies

0 ≤ %n(α) ≤ c1
(

1 +
ν

1− β

)
inf
X
w(x).

Therefore, there is a number %n such that lim supα↗1 %n(α) = %n. For each
n, let {αn,k} ↗ 1 be a sequence of “discount factors” such that %n =
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limk→∞ %n(αn,k), and define

(33) hn(x) := lim inf
k→∞

u
αn,k
n (x) ∀x ∈ X.

Note that hn(·) is nonnegative, by (32).
From the α-DC Optimality Equation obtained in [9], namely,

V αn (x) = min
a∈A(x)

[
c(x, a) + α �

X

V αn (y)Qn(dy |x, a)
]
,

and (30)–(32), we deduce

(34) %n(α) + uαn(x) = min
a∈A(x)

[
c(x, a) + α �

X

uαn(y)Qn(dy |x, a)
]
.

Now in (34) replace α with αn,k and take the lower limit as k →∞. Then,
by Fatou’s Lemma, we get the ACOI (14) for all n = 0, 1, . . . ,∞.

The existence of fn ∈ F that satisfies (15) is assured by Lemma 10(b)
and Assumption 2(a), if we use a well known measurable selector theorem
(see [6, Proposition D.5], for example). Moreover, by Lemma 14 and the fact
that the cost c(·, ·) is nonnegative, [7, Theorem 10.3.1] gives

(35) %n = inf
f∈F

Jn(f) = Jn(fn) = J∗n(x) ∀x ∈ X,

with Jn(f) as in (26).
Finally, as mentioned in Remark 6, the fact that

%n = lim sup
α↗1

(1− α)V αn (x) for all x ∈ X

can be obtained by noting that

|(1− α)V αn (x)− %n| ≤ (1− α)uαn(x) + |%n(α)− %n| ∀x ∈ X.

(b) Define % := lim infn→∞ %n and % := lim supn→∞ %n. The basic idea
of the proof is to show that
(36) % = % = %∞.

For each n ∈ N, the first equality in (35) yields

(37) %n ≤ Jn(f∞),

where f∞ is an EAC optimal policy for the modelM∞. Moreover, from Lem-
ma 13 we get Jn(f∞) :=

�
X c(y, f∞)µn,f∞(dy). Thus, by (25) and Fatou’s

Lemma, we deduce from (37) that

(38) % ≤ J∞(f∞) = %∞.
We now wish to prove

(39) % ≥ %∞.
To get this, let {nk} be a subsequence of {n} such that

% = lim
k→∞

%nk ,
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and in the ACOI (14) replace n with nk. Thus

(40) %nk + hnk(x) ≥ min
a∈A(x)

[
c(x, a) + �

X

hnk(y)Qnk(dy |x, a)
]
∀x ∈ X.

Now take the lower limit in (40) as k →∞ to get

(41) %+h(x) ≥ lim inf
k→∞

min
a∈A(x)

[
c(x, a)+ �

X

hnk(y)Qnk(dy |x, a)
]
∀x ∈ X,

where h(x) := lim infk→∞ hnk(x). Then, by Fatou’s Lemma, and by ap-
plying a general result on the interchange of limits and minima (see [6,
Lemma 4.2.4]), we obtain

(42) %+ h(x) ≥ min
a∈A(x)

[
c(x, a) + �

X

h(y)Q∞(dy |x, a)
]
∀x ∈ X.

Moreover, as in part (a), Lemma 10(b) and Assumption 2(a) yield the ex-
istence of a stationary policy f ∈ F that attains the minimum in (42); that
is, (42) becomes

(43) %+ h(x) ≥ c(x, f) + �
X

h(y)Q∞(dy |x, f) ∀x ∈ X.

On the other hand, iteration of the latter inequality yields, for all N =
1, 2, . . . ,

N%+ h(x) ≥
N−1∑

t=0

E(∞)f
x c(xt, f) + E(∞)f

x h(xN ) ≥
N−1∑

t=0

E(∞)f
x c(xt, f),

as h(·) is nonnegative. Hence dividing by N and letting N →∞, from (26)
we obtain % ≥ J∞(f). Finally, by (35), J∞(f) ≥ %∞ and (39) follows, which
together with (38) gives (36).

Proof of Corollary 8. Let n = 0, 1, . . . ,∞. From Lemmas 9 and 11(b),
the state process {xt}, following the model Mn under a stationary policy
f ∈ F, is an aperiodic and λ-irreducible Markov chain. The equivalence
between EAC optimality and SPAC optimality forMn is then a consequence
of [8, Theorem 3.7(b)] applied to each model Mn.
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