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THE EFFECT OF TIME DELAY AND HOPF BIFURCATION
IN A TUMOR-IMMUNE SYSTEM COMPETITION MODEL

WITH NEGATIVE IMMUNE RESPONSE

Abstract. We consider a system of delay differential equations modelling
the tumor-immune system competition with negative immune response and
three positive stationary points. The dynamics of the first two positive so-
lutions are studied in terms of the local stability. We are particularly inter-
ested in the study of the Hopf bifurcation problem to predict the occurrence
and stability of a limit cycle bifurcating from the second positive stationary
point, when the delay (taken as a parameter) crosses some critical values.
The results obtained provide the oscillations given by the numerical study
given in Galach (2003).

1. Introduction. In this paper, we consider a model concerning the
competition of tumor cells with the immune system. The modelling approach
considered by many authors uses ordinary and delay differential equations
(see [17, 20, 24, 25, 28, 31]). Other authors use kinetic equations that give a
complex description, at the cellular scale, in comparison with other simpler
models. Kinetic models are needed to describe heterogeneity of virulence
(see [1–5, 10]).

Modelling in other fields of biology also uses kinetic equations, for in-
stance [24] develops a kinetic theory approach to population dynamics, while
[2] deals with the development of suitable general mathematical structures
including a large variety of Boltzmann type models. Other authors use mod-
els stated by partial differential equations corresponding to population dy-
namics of cells with internal structure [29] or models based on interacting
agents [26].
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The reader interested in a more complete bibliography about the evo-
lution of a cell, and the pertinent role of cellular phenomena in directing
the body towards recovery or towards illness, is referred to [16, 21]. A de-
tailed description of virus, antivirus and body dynamics can be found in
[6, 13, 27, 30].

The mathematical model under consideration was proposed in a recent
paper by M. Galach [20]; it is a simple model describing tumor-immune sys-
tem competition. The model consists of two ordinary differential equations
with one time delay. The idea is inspired from [25]. Galach also refers to
numerical results in [25] to compare them with those obtained in [20].

Our mathematical analysis is motivated by experimental and numerical
results [20, 24]. These results give evidence that the oscillating state of the
tumor is more desirable, from the medical point of view, than the monoton-
ically growing one, presumably because oscillations prolong the nonterminal
phase of disease. We can ask what conditions and feedback loops make os-
cillations possible and whether it is possible to preserve the tumor in such
oscillating state by therapeutic means for an indefinite time. This leads to
the study of a model in terms of a time delay ordinary differential equation
system. We believe that it makes most sense to ask qualitative questions
involving behavior of the system locally with respect to time. Examples of
such questions are existence and stability of fixed points and existence of
Hopf bifurcation. Being interested in periodic or quasi-periodic behavior of
the tumor, we investigate the model with respect to existence of a Hopf
point and stability of a limit cycle.

2. Mathematical model. When an unknown tissue appears in a body,
the immune system tries to identify it, and if it succeeds it attempts to elim-
inate it. The immune system response consists of two different interaction
responses: the cellular response and the humoral response. The cellular re-
sponse is carried by T lymphocytes. The humoral response is related to
another class of cells, called B lymphocytes. The dynamics of the antitumor
immune response in vivo is complicated and it is not well understood.

The immune response begins when tumor cells are identified. Then they
are caught by macrophages, which can be found in all tissues in the body
and circulate in the blood stream. Macrophages absorb tumor cells, eat them
and release a series of cytokines which activate T helper cells (a subpopula-
tion of T lymphocytes). These latter coordinate the counterattack. T helper
cells can also be directly stimulated to interact with antigens. These helper
cells cannot kill tumor cells, but they send urgent biochemical signals to a
special type of T lymphocytes called natural killers (NKs). T cells begin to
multiply and release other cytokines that further stimulate more T cells, B
cells and NK cells. As the number of B cells increases, T helper cells send
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a signal to start the process of production of antibodies. Antibodies circu-
late in the blood and are attached to tumor cells, which implies that they
are more quickly engulfed by macrophages or killed by natural killer cells.
Like all T cells, NK cells are trained to recognize one specific type of an
infected cell or a cancer cell. NK cells are lethal. They constitute a critical
line of defense. A detailed description of the immune system can be found
in [4, 16, 30].

The model proposed in [25] describes the response of effector cells (ECs)
(i.e. those that have been specifically activated by an antigen during the
immune response and can stimulate/focus the activity of immune response
leading to the elimination/destruction of the antigen) to the growth of tu-
mor cells (TCs). This model differs from others because it takes into account
the penetration of TCs by ECs, which simultaneously causes the inactiva-
tion of ECs. It is assumed that interactions between ECs and TCs in vitro
can be described by the kinetic scheme shown in Fig. 1, where E, T , C,
E∗ and T ∗ are the local concentrations of ECs, TCs, EC-TC complexes, in-
activated ECs, and “lethally hit” TCs, respectively, k1 and k−1 denote the
rates of bindings of ECs to TCs and the detachment of ECs from TCs with-
out damaging them, k2 is the rate at which EC-TC interactions program
TCs for lysis, and k3 is the rate at which EC-TC interactions inactivate
ECs.

E + T ∗

E + T
k1 // C
k−1

oo

k2
;;wwwwwwwww

k3 ##GGGGGGGGG

E∗ + T

Fig. 1. Kinetic scheme describing interactions between ECs and TCs

Kuznetsov and Taylor’s model is as follows:

(2.1)



dE

dt
= s+ F (C, T )− d1E − k1ET + (k−1 + k2)C,

dT

dt
= aT (1− bT )− k1ET + (k−1 + k3)C,

dC

dt
= k1ET − (k−1 + k2 + k3)C,

dE∗

dt
= k3C − d2E

∗,

dT ∗

dt
= k2C − d3T

∗,
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where s is the normal (i.e. not increased by the presence of the tumor)
rate of the flow of adult ECs into the tumor site, F (C, T ) describes the
accumulation of ECs in the tumor site, d1, d2 and d3 are the coefficients of
the processes of destruction and migration for E, E∗ and T ∗ respectively,
a is the coefficient of the maximal growth of tumor, and b is the environment
capacity.

In [25], it is claimed that experimental observations motivate the ap-
proximation dC/dt ≈ 0. Therefore, it is assumed that C ≈ KET , where
K = k1/(k2 + k3 + k−1), and the model can be reduced to two equations
which describe the behavior of ECs and TCs only. Moreover, in [20] it is sug-
gested that the function F could have the form F (C, T ) = F (E, T ) = θET.
Therefore, the model (2.1) takes the form

(2.2)


dE

dt
= s+ α1ET − dE,

dT

dt
= aT (1− bT )− nET,

where α1 = θ−m, and a, b, s have the same meaning as in (2.1); n = Kk2,
m = Kk3, d = d1. All coefficients except α1 are positive. The sign of α1

depends on the relation between θ and m. If the stimulation coefficient
of the immune system exceeds the neutralization coefficient of ECs in the
process of the formation of EC-TC complexes, then α1 > 0. We use the
dimensionless form of model (2.2),

(2.3)


dx

dt
= σ + ωxy − δx,

dy

dt
= αy(1− βy)− xy,

where x denotes the dimensionless density of ECs, y stands for the di-
mensionless density of the population of TCs, α = a/(nT0), β = bT0,
δ = d/(nT0), σ = s/(nE0T0), ω = α1/n is immune response to the appear-
ance of tumor cells, and E0 and T0 are the initial conditions. The existence,
uniqueness and nonnegativity of solutions are analyzed in [20] and the the
nonexistence of nonnegative periodic solution of system (2.3) is proved. The
existence and stability of periodic solutions of system (2.3) are studied in
[32].

For ω > 0 and αδ < σ, system (2.3) has one nonnegative steady state P0,
which is stable, and for ω > 0 and αδ > σ, (2.3) has two possible nonnegative
steady states P0 and P2, the first of which is unstable and the second stable
(see [20]).

The delay mathematical model corresponding to (2.3) is given by the
following system (see [20]):
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(2.4)


dx

dt
= σ + ωx(t− τ)y(t− τ)− δx,

dy

dt
= αy(1− βy)− xy,

where the parameter τ is the time delay which the immune system needs to
develop for a suitable response after the recognition of nonself-cells (see [20]).
Time delays in connection with tumor growth appear in many papers: see
for example [7–9, 18]. The existence and uniqueness of solutions of system
(2.4) for every t > 0 are established in [20], and in the same paper it is
shown that:

(1) If ω ≥ 0, these solutions are nonnegative for any nonnegative initial
conditions (biologically realistic case).

(2) If ω < 0, there exist nonnegative initial conditions such that the
solution becomes negative in a finite time interval.

Our goal in this paper is to consider the case (2) when the immune response
is negative (i.e. ω < 0) with the following conditions: αδ < σ, ω+βδ < 0 and
α2(βδ − ω)2 + 4αβσω > 0. We study the stability of the positive stationary
points P0 and P1 with respect to the delay τ . We establish that the Hopf
bifurcation may occur at P1 by using the delay as a parameter of bifurcation.
The case (1) when the immune response is positive (i.e. ω > 0) is treated
in [33], and the case ω < 0, αδ > σ and α2(βδ−ω)2 + 4αβσω > 0 is treated
in [34].

This paper is organized as follows. In Section 3, we establish some results
on the stability of the possible steady states (trivial and nontrivial) of the
delay system (2.4). The existence of a critical value of the delay at which the
nontrivial steady state P1 changes stability is investigated. The main result
of this paper is given in Section 4. Based on the Hopf bifurcation theorem,
we show the occurrence of Hopf bifurcation as the delay crosses some critical
value of the delay parameter (P1 is a Hopf point). In Section 5, we study
the direction of Hopf bifurcation. In Section 6, we illustrate our result by a
numerical example. Section 7 is devoted to a short discussion.

3. Steady states and stability for positive delays. Consider system
(2.4), and suppose that ω < 0, αδ < σ, ω + βδ < 0 and α2(βδ − ω)2 +
4αβσω > 0. Then system (2.4) has three equilibrium points P0 = (σ/δ, 0),
P1 = (x1, y1) and P2 = (x2, y2) where

x1 =
−α(βδ − ω)−

√
∆

2ω
, y1 =

α(βδ + ω) +
√
∆

2αβω
,

x2 =
−α(βδ − ω) +

√
∆

2ω
, y2 =

α(βδ + ω)−
√
∆

2αβω
,
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with ∆ = α2(βδ−ω)2 + 4αβσω. The linearized system around P0 takes the
form

(3.1)


dx

dt
= ω

σ

δ
y(t− τ)− δx,

dy

dt
=
(
α− σ

δ

)
y,

which leads to the characteristic equation

(3.2) W (λ) =
(
λ+

σ

δ
− α

)
(λ+ δ).

Then we have the following result.

Proposition 3.1. Under the hypothesis αδ < σ, the equilibrium point
P0 is asymptotically stable for all τ > 0.

Proof. The characteristic equation (3.2) has two roots λ1 = −σ/δ + α
and λ2 = −δ, which are independent of τ . As αδ < σ, we have λi < 0,
i = 1, 2. From [22], the equilibrium point P0 is asymptotically stable for all
τ > 0.

Next, we shall study the stability of the nontrivial equilibrium point P1.
Let u = x − x1 and v = y − y1. By linearizing system (2.4) around P1, we
obtain the following linear system:

(3.3)


du

dt
= ωx1v(t− τ)− ωy1u(t− τ)− δu,

dv

dt
= −y1u+ (α− 2αβy1 − x1)v.

The characteristic equation of system (3.3) has the form

(3.4) W (λ, τ) = λ2 + pλ+ r + (sλ+ q)e−λτ = 0,

where
p = δ + αβy1 > 0, r = δαβy1 > 0,
s = −ωy1 > 0, q = αωy1(1− 2βy1) < 0.

The stability of P1 depends on the localization of the roots of the equation
W (λ, τ) = 0. We have the following theorem.

Theorem 3.1. Assume ω < 0, αδ < σ, ω + βδ < 0 and α2(βδ − ω)2 +
4αβσω > 0. Then P1 is unstable for 0 ≤ τ < τ0 and asymptotically stable
for τ > τ0, where

(3.5) τ0 =
1
ζ0

arccos
{
q(ζ2

0 − r)− psζ2
0

s2ζ2
0 + q2

}
,

and

(3.6) ζ2
0 =

1
2

(s2 − p2 + 2r) +
1
2

[(s2 − p2 + 2r)2 − 4(r2 − q2)]1/2.
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For the proof, we need the following lemma.

Lemma 3.1 ([11]). Consider the equation

(3.7) λ2 + pλ+ r + (sλ+ q)e−λτ = 0,

where p, r, q and s are real numbers. Assume that :

(H1) p+ s > 0.
(H2) q + r < 0.
(H3) r2 − q2 < 0 or (s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 = 4(r2 − q2)).

When τ ∈ [0, τ0) equation (3.7) has at least one root with positive real part ,
when τ = τ0 it has a pair of purely imaginary roots ±iζ0, and when τ > τ0
both roots have negative real parts. Here τ0 and ζ0 are defined in Theorem 3.1.

Proof of Theorem 3.1. From the expressions for p, q, s and r, we have
p+ s > 0 and

q + r = αy1(ω + δβ − 2βωy1).

From the expression for y1, we deduce that q + r < 0. Therefore, the hy-
potheses (H1) and (H2) of Lemma 3.1 are satisfied. Then there exists at
least one root of the characteristic equation (3.4) with positive real part for
τ = 0 and the steady state P2 is unstable for τ = 0. As

r2 − q2 = (r − q)(r + q) = (r + q)αy1(2αδβ +
√
∆),

we have r2− q2 < 0 (because r+ q < 0) and the hypothesis (H3) of Lemma
3.1 is satisfied.

To obtain the switch of stability, one has to find the purely imaginary
root of (3.4). If λ = iw is a root of (3.4), then by considering the real and
imaginary parts, w satisfes the equation

(3.8) w4 − (s2 − p2 + 2r)w2 + (r2 − q2) = 0.

From Lemma 3.1, the unique solution of (3.8) is

ζ2
0 =

1
2

(s2 − p2 + 2r) +
1
2

[(s2 − p2 + 2r)2 − 4(r2 − q2)]1/2

and there exists a unique critical value

τ0 =
1
ζ0

arccos
{
q(ζ2

0 − r)− psζ2
0

s2ζ2
0 + q2

}
such that the equilibrium point P1 is unstable for τ ∈ [0, τ0) and asymptot-
ically stable for τ > τ0. For τ = τ0 the characteristic equation (3.4) has a
pair of purely imaginary roots ±iζ0.

In the next section, we will study the occurrence of Hopf bifurcation
when the delay passes through the critical value τ = τ0.
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4. Hopf bifurcation. Let z(t) = (u(t), v(t)) = (x(t), y(t)) − (x1, y1).
Then the system (2.4) can be written as a functional differential equation
(FDE) in C := C([−τ, 0],R2):

(4.1)
dz(t)
dt

= L(τ)zt + f(zt, τ),

where the linear operator L(τ) : C → R2 and f : C × R→ R2 are given by

L(τ)ϕ =

(
ωy1ϕ1(−τ) + ωx1ϕ2(−τ)− δϕ1(0)
−y1ϕ1(0) + (α− 2αβy1 − x1)ϕ2(0)

)
and

f(ϕ, τ) =

(
σ + ωϕ1(−τ)ϕ2(−τ) + ωx1y1 − δx1

−αβϕ2
2(0) + αy1 − αβy2

1 − ϕ1(0)ϕ2(0)− x1y1

)
for ϕ = (ϕ1, ϕ2) ∈ C.

We now come to the main result of this paper.

Theorem 4.1. Assume ω < 0, αδ < σ, ω + βδ < 0, α2(βδ − ω)2 +
4αβσω > 0 and δ close to 0. There exists ε1 > 0 such that , for 0 ≤ ε < ε1,
equation (4.1) has a family of periodic solutions p(ε) with period T = T (ε),
for the parameter values τ = τ(ε) such that p(0) = P1, T (0) = 2π/ζ0 and
τ(0) = τ0, where τ0 and ζ0 are given respectively by (3.5) and (3.6).

Proof. We apply the Hopf bifurcation theorem presented in [22]. From
the expression for f in (4.1), we have

f(0, τ) = 0 and
∂f(0, τ)
∂ϕ

= 0 for all τ > 0,

where ∂/∂ϕ represents the Fréchet derivative.
From Theorem 3.1, the characteristic equation (3.4) has a pair of simple

imaginary roots λ0 = iζ0 and λ0 = −iζ0 at τ = τ0. From equation (3.4),

W (λ0, τ0) = 0 and
∂

∂λ
W (λ0, τ0) = 2iζ0 + p+ (s− τ(isζ0 + q))e−iζ0τ0 6= 0.

According to the implicit function theorem, there exists a complex func-
tion λ = λ(τ) defined in a neighborhood of τ0 such that λ(τ0) = λ0 and
W (λ(τ), τ) = 0 and

(4.2) λ′(τ) = −∂W (λ, τ)/∂τ
∂W (λ, τ)/∂λ

for τ in a neighborhood of τ0,

that is,

(4.3) λ′(τ) =
λ(sλ+ q)e−λτ

2λ+ p+ (s− τsλ− τq)e−λτ
.
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From (3.4), (4.2) and (4.3), we obtain the following expression for λ′(τ) for
τ in a neighborhood of τ0:

(4.4) λ′(τ)

= −λ sλ3 + (s2p+ q)λ2 + (sr + pq)λ+ qr

τsλ3 + (s+ τ(sp+ q))λ2 + (2q + τ(sr + pq))λ+ pq − sr + qr
.

Let λ(τ) = κ(τ) + iζ(τ) (where κ and ζ are the real and imaginary parts of
λ respectively). From equation (4.4) we have

κ′(τ)|τ=τ0 = ζ2
0

s2ζ4
0 + (sqr(τ − 1) + 2q2)ζ2

0 + sr2(q − sr)
A2 +B2

(4.5)

+ ζ2
0

pq2(p+ r)− qr(2q + τ(sr + pq))
A2 +B2

(4.6)

where
A = −(s+ τ(sp+ q))ζ2

0 + pq − sr + qr,

B = −τsζ2
0 + (2q + τ(sr + pq))ζ0.

From the expression (3.4) for r, and as δ is close to 0, r is very small. From
(4.5), we conclude that

κ′(τ)|τ=τ0 > 0.

Thus, the transversality condition is satisfied, which completes the proof of
Theorem 4.1.

5. Direction of Hopf bifurcation. To determine the direction of Hopf
bifurcation, there exist many formulas, e.g.: Hassard et al. [23] (formulas
using the theory of normal forms), Faria and Magalhães [15], Diekmann [14].
In this section we follow the method presented in [14], where the direction
and stability of the bifurcating branch are obtained by the Taylor expansion
of the delay function τ that describes the parameter of bifurcation near the
critical value τ0 (see Sections 3 and 4). Namely, this direction and stability
are determined by the sign of the first nonzero term of Taylor expansion,
i.e.

(5.1) τ(ε) = τ0 + τ2ε
2 + o(ε2)

and the sign of τ2 determines whether the bifurcation is supercritical (if
τ2 > 0) and periodic orbits exist for τ > τ0, or subcritical (if τ2 < 0) and
periodic orbits exist for τ < τ0. The term τ2 may be calculated (see [14])
using the formula

(5.2) τ2 =
Re(c)

Re(qD2M(iζ0, τ0)p)
,
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where M is the characteristic matrix of (4.1) given by

M(λ, τ) =

(
λ+ ωy1e

−λτ + δ −ωx1e
−λτ

y1 λ− α+ 2αβy1 + x1

)
,

D2M(iζ0, τ0) denotes the derivative of M with respect to τ at the critical
point (iζ0, τ0), and the constant c is defined by

c =
1
2
qD3

1f(0, τ0)(P 2(θ), P (θ))

+ qD2
1f(0, τ0)(e0.M−1(0, τ0)D2

1f(0, τ0)(P (θ), P (θ)), P (θ))

+
1
2
qD2

1f(0, τ0)(e2iζ0.M−1(2iζ0, τ0)D2
1f(0, τ0)(P (θ), P (θ)), P (θ)),

where f is the nonlinear part of (4.1), Di
1f , i = 2, 3, denotes the ith deriva-

tive of f with respect to ϕ, P (θ) denotes the eigenvector of A, P (θ) denotes
the conjugate eigenvector, and p and q will be defined later.

Now, we describe all the above operators and vectors precisely. Let

L := L(τ0) : C([−τ0, 0],R2)→ R2

denote the linear part of (4.1). Using the Riesz representation theorem one
obtains (see [22])

(5.3) Lϕ =
0�

−τ0

dη(θ)ϕ(θ),

where

(5.4) dη(θ) =

(
−ωy1δ(θ + τ0)− δδ(θ) ωx1δ(θ + τ0)

−y1δ(θ) (α− 2αβy1 − x1)δ(θ)

)
and δ(·) denotes the Dirac function.

Let A denote the generator of the semigroup generated by the linear part
of (4.1). Then

(5.5) Aϕ(θ) =


dϕ

dθ
(θ) for θ ∈ [−τ0, 0),

Lϕ for θ = 0,

where ϕ ∈ C([−τ0, 0],R2).
To study the direction of Hopf bifurcation, one needs to calculate the

second and third derivatives of the nonlinear part of (4.1):

(5.6) D2
1f(0, τ0)ψχ =

(
ωψ1(−τ0)χ2(−τ0) + ωψ2(−τ0)χ1(−τ0)

−ψ1(0)χ2(0)− ψ2(0)χ1(0)− 2αβψ2(0)χ2(0)

)
and
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(5.7) D3
1f(0, τ0) = 0

for ψ = (ψ1, ψ2), χ = (χ1, χ2) ∈ C([−τ0, 0],R2).
As (iζ0, τ0) is a solution of (3.4), iζ0 is an eigenvalue of A and there is an

eigenvector of the form P (θ) = peiζ0θ and pi, i = 1, 2, are complex numbers
which satisfy the following system of equations:

M(iζ0, τ0)p = 0.

Then one may assume

p2 = 1,

and calculate

p1 =
α− 2αβy1 − x1 − iζ0

y1
.

Now, consider A∗, i.e. the operator conjugate to A, A∗ : C([0, 1],R2)→ R2,
defined by

(5.8) A∗ψ(s) =


−dψ
ds

(s) for s ∈ (0, 1],

−
0�

−τ0

ψ(−s) dη(s) for s = 0,

for ψ = (ψ1, ψ2) ∈ C([0, τ0],R2).
Let Q(s) = qeiζ0s be the eigenvector for A∗ associated to the eigenvalue

iζ0, q = (q1, q2)T . One needs to choose q such that the inner product (see
[22])

〈Q,P 〉 = Q(0)P (0)−
0�

−1

θ�

0

Q(ξ − θ) dη(θ)P (ξ) dξ

be equal to 1. Therefore

q2 = 0

leads to

q1 =
e−ζ0τ0

X − iY
,

where

X =
α− 2αβy1 − x1

y1
cos(ζ0τ0) +

ζ0
y1

sin(ζ0τ0) + τ0ω(−α+ 2αβy1 + 2x1),

Y = −α− 2αβy1 − x1

y1
sin(ζ0τ0)− ζ0

y1
cos(ζ0τ0) + ζ0τ0ω.
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From (5.6) we have

D2
1f(0, τ0)(P (θ), P (θ)) =

(
2ωRe(p1)

−2 Re(p1)− 2αβ

)
,(5.9)

D2
1f(0, τ0)(P (θ), P (θ)) =

(
2ωp1e

−2iζ0τ0

−2p1 − 2αβ

)
,(5.10)

1
2
qD3

1f(0, τ0)(P 2(θ), P (θ)) = 0.(5.11)

From the expression for M , we have

(5.12) M−1(0, τ0) = W−1(0, τ0)

(
−α+ 2αβy1 + x1 ωx1

−y1 ωy1 + δ

)
and

(5.13) M−1(2iζ0, τ0)

= W−1(2iζ0, τ0)

(
2iζ0 − α+ 2αβy1 + x1 ωx1e

−2iζ0τ0

−y1 2iζ0 + ωy1e
−2iζ0τ0 + δ

)
.

From (5.9), (5.10), (5.12) and (5.13), we have

(5.14) qD2
1f(0, τ0)(e0.M−1(0, τ0)D2

1f(0, τ0)(P (θ), P (θ)), P (θ))

= W (0, τ0)−1 ω

X2 + Y 2
[X + iY ][B + iC],

where
B = 2ω(−α+ 2αβy1) Re(p1)− 2ωαβx1

− (ωy1 + δ)(2 Re(p1) + 2αβ) Re(p1)− 2ωy1 Re(p1)2,
C = − (ωy1 + δ)(2 Re(p1) + 2αβ) Im(p1)− 2ωy1 Re(p1) Im(p1).

Then

(5.15) Re(qD2
1f(0, τ0)(e0.M−1(0, τ0)D2

1f(0, τ0)(P (θ), P (θ)), P (θ)))

= W (0, τ0)−1 ω

X2 + Y 2
[XB − Y C],

(5.16)
1
2
qD2

1f(0, τ0)(e2iζ0.M−1(2iζ0, τ0)D2
1f(0, τ0)(P (θ), P (θ)), P (θ))

=
ω

2
(HE −KF ) + i(HF +KE)

(X2 + Y 2)|W (2iζ0, τ0)|2
.

Then

(5.17) Re
(

1
2
qD2

1f(0, τ0)(e2iζ0.M−1(2iζ0, τ0)D2
1f(0, τ0)(P (θ), P (θ)), P (θ))

)
=
ω

2
HE −KF

(X2 + Y 2)|W (2iζ0, τ0)|2
,
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where
H = X(−4ζ2

0 + r + q cos(2ζ0τ0) + 2sζ0 sin(2ζ0τ0))
− Y (2pζ0 + 2sζ0 cos(2ζ0τ0)− q sin(2ζ0τ0)),

K = Y (−4ζ2
0 + r + q cos(2ζ0τ0) + 2sζ0 sin(2ζ0τ0))

+X(2pζ0 + 2sζ0 cos(2ζ0τ0)− q sin(2ζ0τ0)),

E =
2ω
y1

((α− 2αβy1 − x1)(−α+ 2αβy1) + 2ζ2
0 )

−
(

2|p1|2 +
2αβ
y1

(α− 2αβy1 − x1)
)

(ωy1 cos(2ζ0τ0) + δ)

− ζ0
y1

(2ζ0 − ωy1 sin(2ζ0τ0))− 2ωy1|p1|2 cos(2ζ0τ0)− 2αβωx1,

F =
2ωζ0
y1

(3α− 6αβy1 − 2x1)

−
(

2|p1|2 +
2αβ
y1

(α− 2αβy1 − x1)
)

(2ζ0 − ωy1 sin(2ζ0τ0))

+
ζ0
y1

(ωy1 cos(2ζ0τ0) + δ) + 2ωy1|p1|2 sin(2ζ0τ0).

From the expressions for M , P and Q, we have

qD2M(iζ0, τ0)p =
iωζ0

X2 + Y 2
(X(−α+ 2αβy1 + 2x1)(5.18)

− ζ0Y + i(Y (−α+ 2αβy1 + 2x1) + ζ0X)).

Hence

(5.19) Re(qD2M(iζ0, τ0)p) = −ωζ0
Y (−α+ 2αβy1 + 2x1) + ζ0X

X2 + Y 2
.

From (5.11), (5.15), (5.17) and (5.19), the expression for τ2 is

(5.20) τ2 = −
1
2

HE−KF
|W (2iζ0,τ0)|2 +W (0, τ0)−1[XB − Y C]

ζ0[Y (−α+ 2αβy1 + 2x1)− ζ0X]
,

and we deduce the following result:

Theorem 5.1. Let τ2 be given in (5.20). Then

(a) the Hopf bifurcation occurs as τ crosses τ0 from left to right (super-
critical Hopf bifurcation) if τ2 > 0 and from right to left (subcritical
Hopf bifurcation) if τ2 < 0;

(b) the bifurcating periodic solution is stable if τ2 > 0 and unstable if
τ2 < 0.

Note that Theorem 5.1 provides an explicit algorithm for detecting the
direction and stability of Hopf bifurcation.
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6. Example. Let α = 1.636, β = 0.002, σ = 0.1181, δ = 0.06 and ω =
0.0085 (these parameter values come from medical experiments: Kuznetsov
and Taylor [25] and Galach [20]). Then αδ = 0.0982 < σ, ω + βδ =
−0.0084 < 0, ∆ = 1.8574 · 10−4 > 0 and system (2.4) becomes

(6.1)


dx

dt
= 0.1181− 0.0085x(t− τ)y(t− τ)− 0.06x,

dy

dt
= 1.636y(1− 0.002y)− xy.

The nontrivial steady state P1 = (x1, y1) is given by

x1 = 1.6312, y1 = 1.4588,

and the characteristic equation (3.4) becomes

(6.2) W (λ, τ) = λ2 + pλ+ r + (sλ+ q)e−λτ = 0,

where p = 0.0648, r = 2.8638 · 10−4, s = 0.0124 and q = −0.0202.
It is easy to verify that the conditions of Theorem 4.1 are fulfilled, so

a limit cycle bifurcation occurs when the time delay parameter τ passes
through τ = τ0 = 20.3962 where the relative eigenvalue is λ0 = i0.136.
Moreover, we can determine the approximate period of the closed orbit to
be

T =
2π
|λ0|

= 46.1885.

From the expressions for X, Y , H, K, B, C, E and F , we have

X = −0.5299, B = 5.31 · 10−7,

Y = −0.0248, C = 7.5667 · 10−6,

H = 0.0419, E = −0.0258,
K = −0.0016, F = −0.0023.

Hence we deduce the value of τ2:

τ2 = 1.9985.

As τ2 is positive, from Theorem 5.1, we deduce that Hopf bifurcation oc-
curs when τ crosses τ0 from left to right, and we have a supercritical Hopf
bifurcation and the bifurcating branch of periodic solutions is stable.

7. Discussion. In [20], a numerical analysis shows that the character-
istic equation (3.4) of the linearization of system (2.4) around the nontrivial
steady state P1 has a purely imaginary root for some τ = τ0, and switching
of stability may occur.

In this paper, we give an analytical study of stability (with respect to
the time delay τ) of the possible steady states P0 and P1 for the negative
values of the parameter ω and we study each case separately.
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In Section 4, we prove that system (2.4) has a family of periodic solu-
tions bifurcating from the nontrivial steady state P1. The stability and Hopf
bifurcation of the nontrivial steady state P2 are studied in [34].

The results of this paper should hopefully improve the understanding of
the qualitative properties of the description delivered by model (2.4). So far
we have a description of stability properties and Hopf bifurcation analysis
with a detailed analysis of the influence of delay terms.
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