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BAYES AND EMPIRICAL BAYES TESTS
FOR THE LIFE PARAMETER

Abstract. We study the one-sided testing problem for the exponential
distribution via the empirical Bayes (EB) approach. Under a weighted lin-
ear loss function, a Bayes test is established. Using the past samples, we
construct an EB test and exhibit its optimal rate of convergence. When the
past samples are not directly observable, we work out an EB test by using
the deconvolution kernel method and obtain its asymptotic optimality.

1. Introduction. Let us consider the problem of testing the hypothesis

H0 : θ ≤ θ0 ↔ H1 : θ > θ0(1.1)

under the exponential distribution

fθ(x) =
1
θ

exp
(
−x
θ

)
, x > 0,(1.2)

where fθ(x) denotes the conditional probability density function (pdf) of a
random variable (r.v.) X given θ.

In practice, the distribution (1.2) appears very often and is important,
and it can be used to describe many models of survival analysis, reliability
theory, engineering and environmental sciences. Usually, the data observed
from this distribution is the lifetime of an individual in survival analysis and
reliability problems. Since the expectation of X is equal to θ, we call θ the
life parameter.
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We adopt a weighted linear error loss function defined as follows:

L(θ, dm) = (1−m)
θ − θ0

θ
I[θ>θ0] +m

θ0 − θ
θ

I[θ0≥θ],(1.3)

where dm denotes an action in favor of Hm (m = 0, 1), and I[A] is the
indicator of the set A. Obviously, the loss function (1.3) is more reasonable
for the life parameter than the ordinary linear loss since it can remove the
influence of the measurement unit. Suppose the parameter θ is distributed
according to a prior G(θ) with support on Θ = (0,∞).

Let
δ(x) = P (accepting H0 |X = x).(1.4)

Then the Bayes risk of the test δ(x) is given by

(1.5) R(δ(x), G(θ))

=
∞�
0

�
Θ

[L(θ, d0)δ(x) + L(θ, d1)(1− δ(x))]fθ(x) dG(θ) dx

=̂
∞�
0

α(x)δ(x) dx+
�
Θ

θ−1(θ0 − θ)I[θ0≥θ] dG(θ)

with

α(x) =
�
Θ

θ−1(θ − θ0)fθ(x) dG(θ) = f(x) + θ0f
(1)(x),(1.6)

where f(x) = � Θ fθ(x) dG(θ) is the marginal pdf of X, and f (1)(x) denotes
the derivative of f(x).

Hence, the best Bayes test minimizingR(δ(x), G(θ)) would have the form

δG(x) =
{

1, α(x) ≤ 0,

0, α(x) > 0.
(1.7)

The minimum Bayes risk is

R(δG(x), G(θ)) =
∞�
0

α(x)δG(x) dx+
�
Θ

θ−1(θ0 − θ)I[θ0≥θ] dG(θ).(1.8)

Define β(x) = α(x)/f(x). Then by the Cauchy–Schwarz inequality, it is
easy to see that β(1)(x) ≥ 0. Assume that the prior G(θ) satisfies

lim
x→∞

β(x) > 0 > lim
x→0

β(x).(1.9)

Obviously, (1.9) implies that G(θ) is nondegenerate and β(x) is a strictly in-
creasing function. Therefore, by the continuity of β(x), there exists a unique
point aG such that β(aG) = 0. Then

δG(x) =
{

1, α(x) ≤ 0

0, α(x) > 0
=
{

1, β(x) ≤ 0

0, β(x) > 0
=
{

1, x ≤ aG
0, x > aG.

(1.10)
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Remark 1. As an application, suppose that the life parameter θ has a
prior pdf

g(θ) =
dG(θ)
dθ

=
1

Γ (b− 2)

(
1
θ

)b−1

exp
(
−1
θ

)
, b > 2, θ > 0.

For example, let b = 3. Then f(x) = (x+ 1)−2, x > 0. It is readily seen that
β(x) = 1− 2θ0(x+ 1)−1 and aG = 2θ0 − 1, so we get

δG(x) =
{

1, x ≤ 2θ0 − 1,

0, x > 2θ0 − 1.

But in many situations, since the prior G(θ) may be unknown to us, the
Bayes test δG(x) of (1.10) is unavailable. As an alternative we can use the
EB approach to estimate α(x) in (1.6) so as to obtain an EB test δn(x).

EB approach was first introduced to statistical problems by Robbins
[6, 7] and has been applied in a wide range of paradigms and to numerous
real-life problems. Some earlier papers, such as [2], discussed the EB test-
ing problem for the discrete case, whereas [8] and [9] concentrated on the
EB testing problems in the continuous one-parameter exponential family.
Recently the author of [5], who continues the research of [3], [9] and [4],
has considered the EB testing problem in a positive exponential family, and
obtained a better rate of convergence under the assumption that the critical
point aG is within some known compact interval.

In this paper, we discuss the EB testing problem for the life parameter
in the exponential distribution, firstly, under the condition that the past
samples are not contaminated, and secondly, that they are contaminated.

The rest of the paper is organized as follows. In Section 2 we propose an
EB test and exhibit the optimal convergence rate. In Section 3 we discuss
the case when the past samples are contaminated by a normal error variable.

2. Empirical Bayes test and rate of convergence. In the empirical
Bayes framework, we usually make the following assumptions: let (Xi, θi),
i = 1, 2, . . . , be independent identically distributed (i.i.d.) copies of (X, θ),
where Xi, i = 1, 2, . . . , are observable, but θi, i = 1, 2, . . . , are not. At time
n+ 1, we observe X =̂ Xn+1 and plan to test the hypothesis: H0 : θ ≤ θ0 ↔
H1 : θ > θ0, where θ =̂ θn+1. Usually, the (X1, . . . ,Xn) denote the past
samples and X is the present sample.

In order to construct an EB test, we use two kernel functions Kl(x) (l =
0, 1) which are Borel measurable bounded real functions vanishing off (0, 1)
such that

1�
0

xpKl(x) dx =
{

1, p = l,

0, p 6= l, p = 1, . . . , s− 1,

1�
0

xs|Kl(x)| dx <∞.
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where s ≥ 2 is an arbitrary but fixed integer. It is easy to show that there
exist some polynomials which satisfy the above conditions.

Define a kernel estimator of f(x) and f (1)(x), respectively, as

fn(x) =
1
nhn

n∑

i=1

K0

(
Xi − x
hn

)
,

f
(1)
n (x) =

1
nh2

n

n∑

i=1

K1

(
Xi − x
hn

)
,

(2.1)

where 0 < hn → 0 (n→∞) denotes the bandwidth. Then we have

αn(x) = fn(x) + θ0f
(1)
n (x).(2.2)

We consider those prior distributions G(θ) for which G(θ) ∈ F = {G(θ) :
0 < A1 ≤ aG ≤ A2 < ∞, A1, A2 are known constants}. Since G(θ) ∈ F ,
taking into account the Bayes test (1.10), we propose an EB test defined as
follows:

δn(x) =
{

1, x < A1 or (A1 ≤ x ≤ A2 and αn(x) ≤ 0),

0, x > A2 or (A1 ≤ x ≤ A2 and αn(x) > 0).
(2.3)

Hence, the Bayes risk of δn(x) is

R(δn(x), G(θ)) =
∞�
0

α(x)En[δn(x)] dx+
�
Θ

θ−1(θ0 − θ)I[θ0≥θ] dG(θ),(2.4)

where En denotes the expectation with respect to the joint distribution of
(X1, . . . ,Xn).

By definition, the EB test δn(x) is said to be asymptotically optimal
relative to the prior G(θ) if R(δn(x), G(θ)) − R(δG(x), G(θ)) = o(1). If for
some q > 0, R(δn(x), G(θ)) − R(δG(x), G(θ)) = O(n−q), then the EB test
δn(x) is said to have convergence rate O(n−q).

Remark 2. Usually, there are two different forms of EB test in the
literature. One form, used in [2, 3] and some other papers, suggests the
following test for the above problem:

δn(x) =
{

1, αn(x) ≤ 0,

0, αn(x) > 0.

It is not assumed that the critical point aG is in the compact interval [A1, A2],
accordingly, the monotonicity of β(x) is not considered. The other form, i.e.
(2.3), appeared in [9], [4], and [5], and is named the monotone EB test. In
the author’s opinion, the EB test δn(x) (2.3) is relatively reasonable since it
divides the interval (0,∞) into three parts, but one will have to make some
additional assumption about the critical point.
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Lemma 1. Let f (l)
n (x) (l = 0, 1) be as defined in (2.1). If E(θ−(s+1)) <∞

for some integer s ≥ 2, then

|Enf (l)
n (x)− f (l)(x)| = O(hs−ln ), l = 0, 1.

Proof. Expanding f(x+uhn) at x and using the properties of Kl(x), we
obtain

(2.5) Enf
(l)
n (x) =

1

hl+1
n

∞�
0

Kl

(
y − x
hn

)
f(y) dy =

1
hln

1�
0

Kl(u)f(x+ uhn) du

=
1
hln

1�
0

[
f(x) + · · ·+ f (s−1)(x)

(s− 1)!
(uhn)s−1 +

f (s)(x+ ξuhn)
s!

(uhn)s
]

×Kl(u) du

= f (l)(x) +
hs−ln

s!

1�
0

Kl(u)f (s)(x+ ξuhn)us du, 0 < ξ < 1.

As E(θ−(s+1)) <∞, we have supx |f (s)(x)| <∞. So Lemma 1 is proved.

We now represent α(x) by

α(x) =
1
nhn

n∑

i=1

K0

(
Xi − x
hn

)
+ θ0

1
nh2

n

n∑

i=1

K1

(
Xi − x
hn

)
(2.6)

=̂
1
n

n∑

i=1

R(x,Xi, hn)

with

R(x,Xi, hn) =
1
hn
K0

(
Xi − x
hn

)
+
θ0

h2
n

K1

(
Xi − x
hn

)
.(2.7)

Note that R(x,Xi, hn) (i = 1, . . . , n) are i.i.d. r.v. such that

|R(x,Xi, hn)− EnR(x,Xi, hn)| ≤ 2
(
M0

hn
+
θ0

h2
n

M1

)
(2.8)

and

(2.9) Var(R(x,Xi, hn))

≤ 2
h2
n

Var
(
K0

(
Xi − x
hn

))
+

2θ2
0

h4
n

Var
(
K1

(
Xi − x
hn

))

≤ 2
h2
n

E

(
K0

(
Xi − x
hn

))2

+
2θ2

0

h4
n

E

(
K1

(
Xi − x
hn

))2
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=
2
hn

1�
0

K2
0(u)f(x+ uhn) du+

2θ2
0

h3
n

1�
0

K2
1(u)f(x+ uhn) du

≤ 2c(h−1
n + h−3

n ),

where Ml > 0 (l = 0, 1) denotes the bound of the kernel function Kl(x) (l =
0, 1), and c is a positive constant that does not depend on n.

Define AG = minA1≤x≤A2 f(x), and let a1n < aG < a2n be the point
such that −β(a1n) = 2chs−1

n /AG = β(a2n). Since β(x) is continuous, we
know that limn→∞ a1n = limn→∞ a2n = aG.

It follows from (1.8) and (2.4) that

0 ≤ R(δn(x), G(θ))−R(δG(x), G(θ))(2.10)

=
∞�
0

[Enδn(x)− δG(x)]α(x) dx

=
aG�
A1

[P (αn(x) ≤ 0)− 1]α(x) dx+
A2�
aG

P (αn(x) ≤ 0)α(x) dx

= −
a1n�
A1

P (αn(x) > 0)α(x) dx−
aG�
a1n

P (αn(x) > 0)α(x) dx

+
a2n�
aG

P (αn(x) ≤ 0)α(x) dx+
A2�
a2n

P (αn(x) ≤ 0)α(x) dx

=̂
4∑

i

Ii.

It is easy to see that

I2 ≤ −
aG�
a1n

α(x) dx ≤ −β(a1n)
aG�
a1n

f(x) dx = O(hs−1
n ).(2.11)

Similarly, we get

I3 = O(hs−1
n ).(2.12)

Note that

α(x) ≤ β(a1n)f(x) ≤ β(a1n)AG = −2chs−1
n , A1 ≤ x ≤ a1n.(2.13)

Furthermore, by Lemma 1, Enαn(x) ≤ α(x) + chs−1
n ≤ α(x)/2. Hence, for

A1 ≤ x ≤ a1n, we have

P (αn(x) > 0) ≤ P
(
αn(x)− Enαn(x) ≥ −1

2
α(x)

)
.(2.14)
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Combining (2.8), (2.9) and (2.14), by Bernstein’s inequality, we obtain

(2.15) P (αn(x) > 0)

≤ 2 exp
{ −n2(−α(x)/2)2

2Var(
∑n

i=1R(x,Xi, hn))+4(M0/hn + θ0M1/h2
n)(−nα(x)/2)/3

}

= 2 exp
{ −n(α(x))2/8

Var(R(x,Xi, hn)) + (M0/hn + θ0M1/h2
n)|α(x)|/3

}

≤ 2 exp
{
−nh

3
n

8
× A2

G(β(x))2

2ch2
n + 2c+ (M0h2

n + θ0M1hn)E(θ−1)|β(A1)|/3

}

=̂ 2 exp{−nh3
nJ(hn)(β(x))2}, A1 ≤ x ≤ a1n,

where

J(hn) = A2
G/[8(2ch2

n + 2c+ (M0h
2
n + θ0M1hn)E(θ−1)|β(A1)|/3)].

From (2.10) and (2.15), we have

(2.16) I1 ≤ −2
a1n�
A1

exp{−nh3
nJ(hn)(β(x))2}β(x)f(x) dx

≤ −2 sup
A1≤x≤A2

[
f(x)
β(1)(x)

] a1n�
A1

exp{−nh3
nJ(hn)(β(x))2}β(x)β(1)(x) dx

= O

(
1
nh3

n

)
.

Similarly, we get

I4 = O

(
1
nh3

n

)
.(2.17)

Combining (2.10)–(2.12) with (2.16) and (2.17) and taking hn=n−1/(s+2),
we conclude that

0 ≤ R(δn(x), G(θ))−R(δG(x), G(θ)) = O(n−(s−1)/(s+2)).(2.18)

Hence, we can state the following theorem.

Theorem 1. Let the Bayes test δG(x) and EB test δn(x) be as defined
in (1.10) and (2.3), respectively. If G(θ) ∈ F (defined before) and E(θ−(s+1))
<∞ for some integer s ≥ 2, then choosing hn = n−1/(s+2), we have

R(δn(x), G(θ))−R(δG(x), G(θ)) = O(n−(s−1)/(s+2)).

Remark 3. If we use the linear loss function

L(θ, dm) = (1−m)(θ − θ0)I[θ>θ0] +m(θ0 − θ)I[θ0≥θ], m = 0, 1,
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then it is not difficult to see that

α(x) =
�
Θ

(θ − θ0)fθ(x) dG(θ) =
�
Θ

exp(−x/θ) dG(θ)− θ0f(x)

=
∞�
x

f(y) dy − θ0f(x).

Thus, we only need to estimate f(x). Following a proof analogous to the pre-
ceding discussion, we can improve the rate of convergence O(n−(s−1)/(s+2))
to the best rate O(n−s/(s+1)) for testing hypothesis (1.1).

To the best of our knowledge, the convergence rate o(n−1) cannot be
attained with any EB test for any nondiscrete density. Therefore, it is very
hard to improve the rate of convergence O(n−(s−1)/(s+2)) under the weighted
linear loss function (1.3) since it tends to be O(n−1) as s gets larger.

3. The case when the data are contaminated. Suppose that the
past samples (X1, . . . ,Xn) are contaminated due to measurement or the
nature of environment, and one can only observe

Yj = Xj + ε, j = 1, . . . , n,(3.1)

where the error variable ε has a known distribution Fε. Furthermore, assume
that ε and Xj are independent. Problems with contaminating errors exist
in many different fields (e.g., biostatistics, electrophoresis) and have been
widely studied. The authors of [10] and [11] discussed the EB estimation for
the continuous one-parameter exponential family with errors in variables
under the squared loss function, and obtained asymptotic optimality and
uniform rate of convergence for the proposed EB estimator over a class of
prior distributions.

In this section, we discuss the asymptotic behavior of EB tests under the
assumption that ε ∼ N(0, σ2) with σ2 known.

Similarly to [1], using the deconvolution kernel method, we make the
following assumptions on the kernel:

(1) k(x) is bounded, continuous, and � ∞−∞ |x|s|k(x)| dx <∞.
(2) The Fourier transform φk(t) of k(x) is a symmetric function satisfying

φk(t) = 1 +O(|t|s) as t→ 0.
(3) φk(t) = 0 for |t| ≥ 1.

Here s ≥ 2 is an arbitrary but fixed integer and

φk(t) =
∞�
−∞

exp(itx)k(x) dx.

By assumptions (1)–(3), we can easily get�
k(x) dx = 1,

�
xpk(x) dx = 0, p = 1, . . . , s− 1,

�
|x|s|k(x)| dx <∞.
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Noting that f(x) = (2π)−1 � ∞−∞ exp(−itx)φY (t) exp(σ2t2/2) dt, we define
an estimator of f (l)(x) (l = 0, 1) by

f̂ (l)
n (x) =

1
2π

∞�
−∞

exp(−itx)(−it)lφk(tbn)φ̂n(t) exp(σ2t2/2) dt,(3.2)

where 0 < bn → 0 as n→∞, and φ̂n(t) = n−1∑n
j=1 exp(itYj) is an estima-

tor of the characteristic function (c.f.) φY (t) of the r.v. Y , which is called
the empirical c.f. of Y .

Rewrite (3.2) as a kernel type estimator

f̂ (l)
n (x) =

1

nbl+1
n

n∑

j=1

knl

(
x− Yj
bn

)
, l = 0, 1,(3.3)

where

knl(x) =
1

2π

∞�
−∞

exp(−itx)(−it)lφk(t) exp(σ2t2/(2b2n)) dt.(3.4)

Hence, under the assumption that G(θ) ∈ F , we propose the following
EB test:

δ̂n(x) =
{

1, x < A1 or (A1 ≤ x ≤ A2 and α̂n(x) ≤ 0),

0, x > A2 or (A1 ≤ x ≤ A2 and α̂n(x) > 0),
(3.5)

where

α̂n(x) = f̂n(x) + θ0f̂
(1)
n (x) =̂

1
n

n∑

j=1

V (x, Yj, bn)(3.6)

with i.i.d. r.v.

V (x, Yj, bn) =
1
bn
kn0

(
x− Yj
bn

)
+
θ0

b2n
kn1

(
x− Yj
bn

)
.(3.7)

Lemma 2. Let f̂ (l)
n (x) (l=0, 1) be as in (3.2). If G(θ) ∈F and E(θ−(s+1))

<∞ for some integer s ≥ 2, where F is as before, then

(a) |Enf̂ (l)
n (x)− f(x)| = O(bs−ln ), l = 0, 1;

(b) |Enα̂n(x)− α(x)| = O(bs−1
n );

(c) |V (x, Yj, bn)− EnV (x, Yj, bn)| ≤ 2(b−1
n + θ0b

−2
n )O(exp(σ2b−2

n /2));
(d) Var(V (x, Yj, bn)) = 2(b−2

n + θ2
0b
−4
n )O(exp(σ2b−2

n )).

Here En denotes the expectation with respect to the joint distribution of
(Y1, . . . , Yn).
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Proof. (a) By assumptions (1)–(3) on k(x), we have

(3.8) Enf̂
(l)
n (x)− f (l)(x) =

�
f (l)(x− bny)k(y) dy − f (l)(x)

=
� [
f (l)(x) + · · ·+ f (s−1)(x)(−bny)s−l−1

(s− l − 1)!
+
f (s)(x− ξ1bny)(−bny)s−l

(s− l)!

]

× k(y) dy − f (l)(x)

=
� f (s)(x− ξ1bny)(−bny)s−l

(s− l)! k(y) dy, 0 < ξ1 < 1.

Hence, (a) holds under the condition that E(θ−(s+1)) <∞.
(b) is obvious.
(c) For l = 0, 1, by Theorem 1 of [1], we know that

|knl(x)|2 ≤ 1
(2π)2

( �
|φk(t)tl| exp(σ2t2/(2b2n)) dt

)2

(3.9)

= O(exp(σ2b−2
n ))

by letting β = 2 and β0 = 0 in [1]. Thus,

|V (x, Yj, bn)| = b−1
n O(exp(σ2b−2

n /2)) + θ0b
−2
n O(exp(σ2b−2

n /2)),

and (c) is proved.
(d) Noting that

Var
(
knl

(
x− Yj
bn

))
= nb2l+2

n Var(f̂n(x)) = O(exp(σ2b−2
n )),(3.10)

we find that (d) is true.

Using Lemma 2, by mimicking the steps in Section 2, we have

0 ≤ R(δ̂n(x), G(θ))−R(δG(x), G(θ))(3.11)

=
1
nb4n

O(exp(σ2b−2
n )) +O(bs−1

n ).

Taking bn =
√

2σ2 (logn)−1/2, we obtain (nb4
n)−1O(exp(σ2b−2

n )) = o(n−τ ),
where τ > 0 can be arbitrarily close to 1/2. Therefore, the EB test δ̂n(x)
of (3.5) is asymptotically optimal under the conditions that G(θ) ∈ F and
E(θ−(s+1)) <∞.

Remark 4. As described in [1], it is extremely difficult to solve decon-
volution problems when the error distributions are normal or Cauchy (called
supersmooth distributions). Actually, if the error has gamma distribution,
which belongs to ordinary smooth ones, then we can obtain a higher rate
of convergence employing the idea of [1] used in [10, 11]. However, normal
errors deserve more attention due to their importance.
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