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LARGE GAMES WITH ONLY SMALL PLAYERS
AND STRATEGY SETS IN EUCLIDEAN SPACES

Abstract. The games of type considered in the present paper (LSE-
games) extend the concept of LSF-games studied by Wieczorek in [2004],
both types of games being related to games with a continuum of players.
LSE-games can be seen as anonymous games with finitely many types of
players, their action sets included in Euclidean spaces and payoffs depend-
ing on a player’s own action and finitely many integral characteristics of
distributions of the players’ (of all types) actions. We prove the existence
of equilibria and present a minimization problem and a complementarity
problem (both nonlinear) whose solutions are exactly the same as equilib-
ria in the given game. Examples of applications include a model of social
adaptation and a model of economic efficiency enforced by taxation.

1. The basic concepts. The object of our study, large games with only
small players and strategy sets in Euclidean spaces (if necessary, we refer to
them as LSE-games; L for large, S for small and E for Euclidean) is more
general than that considered by Wieczorek in [2004] (referred to there as
LSF-games), but the present paper offers results of different kind. The LSE-
games deal with situations involving a large number of anonymous players
who independently choose their actions in a set included in a Euclidean
space and whose payoffs depend on finitely many integral characteristics of
distributions of the players’ actions. This concept generalizes that of LSE-
games in Wieczorek [2004], where the sets of actions were assumed finite. Not
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surprisingly, LSE-games can be found as a mathematical skeleton implicitly
appearing in the framework of some games with a continuum of players as
well as some anonymous games (Balder [1990, 1993], Khan [1985, 1989],
Khan and Rustichini [1991, 1993], Mas-Colell [1984], Fl̊am and Wieczorek
[1995]; cf. also Schmeidler [1973] and Rath [1992]).

In the subsequent sections we define and prove the existence of equi-
librated distributions in LSE-games, we suggest some ways to search for
such distributions and we discuss relations of such games to games with
a continuum of players. Finally, in Section 5, we sketch some areas of ap-
plications of LSE-games, all of them involving a large (infinite) number of
agents, which include models of market behavior, a social adaptation model
and a model of inefficient economic behavior moderated by an appropriate
taxation procedure driven by infinitely many “efficiency oriented” market
forces.

An LSE-game is determined by a specification of a positive integer n,
nonempty bounded sets W 1, . . . ,Wn such that W i is included in a ki-
dimensional Euclidean space and real functions Ψ 1, . . . , Ψn such that Ψ i is
defined on the product W i× coW 1× coW 2× · · ·× coWn; so an LSE-game
can be identified with a system

γ = (n;W 1, . . . ,Wn;Ψ1, . . . , Ψn).

The numbers 1, . . . , n represent the types (of players); for each type i,
elements of W i are actions available to the type i. Probability measures
on (Borel subsets of) W i are distributions of actions of type i; an n-tuple
(m1, . . . ,mn) of such measures is an overall distribution of actions. For any
such measure mi and j = 1, . . . , ki we denote its characteristics by

mi
j :=

�

W i

xj mi(dx) and mi = (mi
1, . . . ,m

i
ki).

A natural interpretation of what is going on in an LSE-game is that
the number Ψ i(xi;m1, . . . ,mn) is the payoff of any player of type i when
he decides to use his action xi ∈ W i while, for i = 1, . . . , n, the prevail-
ing distribution of actions m = (m1, . . . ,mn) undertaken by the (possibly
infinitely many) players has the characteristics m = (m1, . . . ,mn).

We say that an LSE-game is continuous whenever all functions Ψ 1, . . .
. . . , Ψn are continuous.

Comment. There are many situations where one is also interested in
other characteristics of the distributions than just marginal expectations.
Often they can still be studied in the present setup. For instance, in the case
of W i = [0, 1], for a distribution m on W i, the expectation m1 is formally
the only available characteristic; however, information about the variance of
m can be included by replacing W i by W̃ i := {(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1,
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x2 = x2
1}. The distributions on W i and W̃ i are naturally identified (by a

projection) and then the variance of m is simply expressed as
1�

0

x2
1 m(dx)−

[ 1�

0

x1 m(dx)
]2

= m2 − (m1)2.

2. Equilibria. A distribution of actions m =(m1, . . . ,mn) in an LSE-
game is called an equilibrium (or equilibrated distribution) whenever, for
some numbers C1, . . . , Cn and each i = 1, . . . , n,

Ψ i(xi;m1, . . . ,mn) ≤ Ci for all xi in W i

and
Ψ i(xi;m1, . . . ,mn) = Ci for mi-almost all xi in W i.

This number Ci = Ci(m) is called the payoff level of type i at m.
So the problem of finding all equilibrated distributions for an LSE-game

reduces to the following problem (E):
Given (for i = 1, . . . , n) nonempty bounded sets W 1 ⊂ Rk1

, . . . ,Wn ⊂
Rkn and functions Ψ i : W i × coW 1 × coW 2 × · · · × coWn → R, find num-
bers C1, . . . , Cn and probability measures: m1 on Borel subsets of W 1, . . . ,
mn on Borel subsets of W n such that

Ψ i(xi;m1, . . . ,mn) ≤ Ci for all xi in W i

and
Ψ i(xi;m1, . . . ,mn) = Ci for mi-almost all xi in W i.

We shall denote by Di, for i = 1, . . . , n, the set of all probability measures
on W i, to be regarded as a topological space with the weak∗ topology. As
is well known (see e.g. K. Parthasarathy [1967]), Di is metrizable, it is
compact whenever W i is compact and it can be regarded as a convex subset
of a locally convex topological vector space.

2.1. Theorem. (a) If all sets W i are compact while all functions Ψ i, for
i = 1, . . . , n, are continuous then problem (E) has a solution, hence
every continuous LSE-game with compact sets of actions has an
equilibrium.

(b) If, moreover, for indices i in some set N0 ⊆ {1, . . . , n}, the sets W i

are convex, while, for each distribution m = (m1, . . . ,mn), the set

Bi(m) := Argmax
xi∈W i

Ψ i(xi;m1, . . . ,mn)

is acyclic (e.g. homeomorphic to a compact convex set) then the
game has an equilibrium such that for each i ∈ N0, mi is concentrated
at a point.
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Proof. (a) Define a correspondence H from D := D1×· · ·×Dn to subsets
of D letting, for i = 1, . . . , n,

H i(m1, . . . ,mn) := {ni ∈ Di | supp ni ⊆ Bi(m1, . . . ,mn)}
and

H(m1, . . . ,mn) := H1(m1, . . . ,mn)× · · · ×Hn(m1, . . . ,mn).

Since D is nonempty compact and convex while H is upper semiconti-
nuous (we check this below) and its values are nonempty, convex and com-
pact (Parthasarathy [1967, Theorem 6.7]), it follows from the Ky Fan–
Glicksberg Theorem that H has a fixed point m = (m1, . . . ,mn). This m
together with immediately calculated constants C i gives a solution to (E).

We now check that H is upper semicontinuous. If not, there would exist,
for some i, a sequence (n(r)) of probability measures on W i weak∗ converging
to a probability measure n(0) and another sequence (n(r)) of probability
measures on W i weak∗ converging to a probability measure n(0) such that
for all r = 1, 2, . . ., n(r) is concentrated at Y (r) = Argmaxx∈W i Ψ i(x;n(r))
but n(0) is not concentrated at Y (0) = Argmaxx∈W i Ψ i(x;n(0)), which means
that there exists a compact set K ⊂ W i disjoint from Y (0) and such that
n(0)(K) > 0. Let K ′ ⊂ W i be any compact set, also disjoint from Y (0) and
including K in its interior.

By a known theorem (Berge [1959], p. 122), the correspondence Ξ i :
coW i → 2W

i
defined by Ξ i(m) := Argmaxx∈W i Ψ i(x;m) is upper semicon-

tinuous. Since, in particular, it is u.s.c. at n(0), we find that for sufficiently
large r, all sets Y (r) are disjoint from K ′. Now, let g be a continuous function
on W i into R+ vanishing on the complement of K ′ and positive on K. We
then have �

W i

g(x) n(r)(dx) = 0 for r = 1, 2, . . . ,

but also �

W i

g(x) n(0)(dx) > 0,

which contradicts the hypothesis of the weak∗ convergence of the sequence
(n(r)) to n(0).

The minor details dropped in the reasoning above can be easily recon-
structed with the help of Parthasarathy [1967] or any other textbook in
metric measure theory.

To prove (b), it is sufficient to modify the correspondence H, as defined
in the proof of (a), by replacing, for i ∈ N0, Di by W i, H i by Bi as defined
in the formulation of (b), and applying, instead of the Ky Fan–Glicksberg
Theorem, the Eilenberg-Montgomery [1946] Theorem to the modified cor-
respondence to obtain its fixed point which gives a required distribution.
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Further extensions of Theorem 2.1(b) are possible by applying more
advanced fixed point results (see e.g. Górniewicz and Rozpłoch-Nowakowska
[1996] for a survey).

For computational reasons, the problem of finding all equilibria in an
LSE-game γ = (n;W 1, . . . ,Wn;Ψ1, . . . , Ψn) can be formulated in a comple-
mentarity-like form (CP):

Find measures m1, . . . ,mn and real numbers C1, . . . , Cn such that

Ψ i(xi;m1, . . . ,mn)− Ci ≤ 0 for all xi in W i and i = 1, . . . , n

and �

W i

[Ψ(xi;m1, . . . ,mn)− Ci] mi(dx) = 0 for i = 1, . . . , n.

A (variational) minimization problem (MP) yielding all equilibrated dis-
tributions is the following:

Find measures m1, . . . ,mn minimizing the value of the expression

Θγ(m) :=
n∑

i=1

[
sup
x∈W i

Ψ i(x;m1, . . . ,mn)

−
�

W i

Ψ i(xi;m1, . . . ,mn) mi(dx)
]
.

Still another problem equivalent to finding all equilibrated distributions
for γ is to solve the equation

Θγ(m) = 0 for the measures m = (m1, . . . ,mn).

The last three problems extend their counterparts formulated by Wie-
czorek in [2004] or [1996] in the case of LSF-games. All of them are difficult
to solve in the general case but special cases can often be solved by methods
specific to a particular problem.

3. Relations to LSF-games. LSF-games have been defined by Wie-
czorek in [2004] (reported earlier in [1996]) by a specification of positive
integers n, k1, . . . , kn, and real functions Φ1, . . . , Φn such that Φi is defined
on V i×∆k1×· · ·×∆kn (where V i = {1, . . . , ki} and ∆k denotes the standard
simplex in Rk, with vertices corresponding to integers 1, . . . , k, i.e. one of
dimension k − 1).

A distribution of actions in an LSF-game is called equilibrated whenever
there exist real numbers C1, . . . , Cn such that

Φi(j; p1, . . . ,pn) ≤ Ci for i = 1, . . . , n and all j in V i

and
Φi(j; p1, . . . ,pn) = Ci for all xi in supp pi.
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The simplest representation of an LSF-game γ = (n; k1, . . . , kn;
Φ1, . . . , Φn) as an LSE-game seems to be the following:

γ = (n;W 1, . . . ,Wn;Ψ1, . . . , Ψn),

where, for i = 1, . . . , n, W i denotes the set of all unit versors {e1, . . . , eki}
in Rki and the functions Ψ i are defined by Ψ i(ej; ·) := Φi(j; ·). Clearly, there
is a one-to-one correspondence between equilibria for γ and γ.

4. Relations to games with a continuum of players. Since LSE-
games are interpreted as involving an infinite population of players, one
might expect a formal link between LSE-games and some games with a
continuum of players falling into finitely many types with the set of avail-
able strategies included in a Euclidean space, namely those in which every
player’s payoff depends only on his own strategy and finitely many integrated
characteristics of distributions of the other players’ choice of strategies. This
will be done in this section.

Theorem 2.1 of this paper can also be derived, with some auxiliary con-
structions, from quite general results of Mas-Colell [1984] and Balder [1993];
however, the proof given in Section 2 does not involve any elements redun-
dant in the present context and it may also directly suggest computational
procedures to get an equilibrated distribution.

A game with a continuum of players or, more properly, a game with a
measure space of players is given by a specification of the players, usually
identified with elements of a normed measure space (T, T , µ), the players’
nonempty strategy sets St, t ∈ T , assumed to be all included in some set S
(usually—rather for technical reasons—equipped with a σ-field Σ) and the
players’ payoff functions. The payoff function of player t, ut(σt, s), depends
on the player’s own choice of strategy σt ∈ St and the entire strategy profile
s, s(t) ∈ St; we assume that all admissible strategy profiles are measurable
with respect to µ and that ut(σt, s) = ut(σt, s′) whenever s and s′ are mea-
sure equivalent. Hence, a game with a measure space of players is identified
with a system

Γ = ((T, T , µ), (St | t ∈ T ), (S,Σ), (ut | t ∈ T )).

Measurable sets of players carrying the measure zero are referred to as
negligible. A strategy profile s is said to form a Cournot–Nash equilibrium
if the set of all players t who have a strategy σt ∈ St such that ut(σt, s) >
ut(s(t), s), is negligible.

We say that two players have the same type whenever they have the
same strategy sets and payoff functions.

4.1. Theorem (equal treatment). At a Cournot–Nash equilibrium the
payoff of almost all players of the same type is equal (even though they may
use different strategies).
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Suppose that, possibly except for a negligible set of players, there are
only finitely many types of players and that players of each of these types
form a measurable set. Let us enumerate those players by 1, . . . , n and let
µ(T i) > 0 be the measure of the set of all players of type i. Denote the type
i players’ strategy set by Si; we assume that it is equipped with a σ-field Σi.
For i = 1, . . . , n and j = 1, . . . , ki, let f ij be a bounded real-valued function
defined on Si. We assume that, for any player of type i, his payoff function
has the form

ut(σt, s) := Ψ i(f i1(σt), . . . , f iki(σ
t);G1

1, . . . , G
1
k1 ; . . . ;Gn1 , . . . , G

n
kn),

where (just for typographical reasons) Gi
j abbreviates � T i f ij(s(t)µ(dt), for

i = 1, . . . , n, j = 1, . . . , ki.
If Γ has such a form, we shall say that it is simple. We also define, for

i = 1, . . . , n,
W i := {f i1(σ), . . . , f iki(σ) | σ ∈ St} ⊂ Rki .

We define the LSE-game γ associated with a simple game Γ with a
measure space of players, to be

γ = (n;W 1, . . . ,Wn;Ψ1, . . . , Ψn).

4.2. Theorem. Let γ = (n;W 1, . . . ,Wn;Ψ1, . . . , Ψn) be an LSE-game
associated with a simple game Γ with a measure space of players and let s
be a strategy profile for Γ . Let a distribution of actions m = (m1, . . . ,mn)
for γ be the image of s under the f ’s, i.e. for any i = 1, . . . , n and any
measurable set Bi ⊆W i,

mi(Bi) = µ({t ∈ T | f i1(s(t)), . . . , f iki(s(t)) ∈ Bi}).

Then s is a Cournot–Nash equilibrium for Γ if and only if m is an equilib-
rium for γ.

Proof. In view of Theorem 4.1, this is a routine verification.

5. Applications in economics and social sciences. Generally, LSE-
games are applicable to various situations involving a large number of anony-
mous actors in which every actor’s payoff depends only on his own action
and on (finitely many) average characteristics of the other actors’ actions.

A. Production-consumption models. A model of production and con-
sumption, presented by Wieczorek in [2004] and also studied by Ekes (Ro-
man) and Wieczorek [1999] and Ekes [2003], deals with infinitely many
agents who first face the choice among k activities (the choice of the jth
activity by an agent yields the production of a fixed amount of the jth
good only) and then consume the goods jointly produced. The existence of
a competitive equilibrium has been proven in Wieczorek [2004] by a reduc-
tion of the model to an LSF-game. The model itself can be easily extended
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to the more general case where the production process has more complex
character, i.e. production abilities of each type of agents are given in the
form of their general production sets. One could expect that in such a case
the model might be represented as an LSE-game. This is really so, but the
existence of competitive equilibria can be obtained in an analogous manner
only in the case where the demand functions of each type of agents are affine
(which is hardly an acceptable assumption), since the aggregated demand
should only depend on the current prices and the mean supply of each good
by respective types of agents.

B. Social adaptation. Let us consider a society composed of a large (mod-
elled as infinite) number of individuals, falling into n types. The character-
istic of an individual of type i is given by an element of a nonempty set
W i ⊂ Rk, for i = 1, . . . , n; note that k is the same for all types, so the
sets W i may coincide, be disjoint or just intersect. For each type there is
an “ideal” characteristic x̄i ∈W i. The individual payoff is a function of the
distance of one’s own characteristic from the ideal characteristic point and
its distance from the mean characteristics of all respective types. So, for
each type i, the corresponding payoff has the form

Ψ i(xi;m1, . . . ,mn) = ψi(‖xi − xi‖, ‖xi −m1‖, . . . , ‖xi −mn‖).
By Theorem 2.1, if all sets W i of individual characteristics are compact

and all payoff functions Ψ i are continuous, then there exists an equilibrium,
i.e. a distribution of characteristics that only agents forming a negligible set
may be willing to change in order to increase their satisfaction.

Suppose, for instance, that there is just one type of individuals whose
characteristics fall into the unit ball B = {x ∈ Rk | ‖x‖ ≤ 1} in a k-
dimensional Euclidean space, the ideal point is 0 and the payoff function
has the form

ψ(x,m) := −α‖x‖+ β‖x−m‖ − γ‖x−m‖2

for some positive constants α, β and γ; so the payoff of an individual is
influenced by the proximity of the ideal 0 (the term α‖x‖) and by the
satisfaction of keeping a reasonable distance from the others (the term
β‖x−m‖), moderated by the discomfort of being unduly isolated (the term
γ‖x−m‖2).

It is easy to check the following: if β ≤ α then the distribution concen-
trated at the origin 0 is the only equilibrium. Otherwise, every distribution
concentrated on the sphere of radius r = min

{1
2γ
−1(β − α), 1

}
around 0

and having all marginal expectations equal to 0 is an equilibrium and there
are no other equilibria. Obviously, the uniform distribution on the sphere
satisfies those conditions but there are also distributions with finite supports
with this property, e.g. in the case k = 2 such is the distribution concen-
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trated at the points r[cos(2πj/h) + i sin(2πj/h)], j = 1, . . . , h (i.e. the hth
roots of unity multiplied by r) with mass h−1 assigned to each of them,
h ≥ 2.

The questions breifly reported above have been considered in more detail
in Wieczorek and Wiszniewska [1999].

C. Efficiency via taxation. Let us consider a uniform (i.e. with one type
of agents) infinite society whose members have the choice of intensity x of
their productive activities: this intensity is a number in I = [0, 1]. Individual
choice generates a distribution of intensities, which is a Borel measure m on
I and the average intensity then becomes m = � 1

0 xm(dx). Suppose that the
income of an individual depends on his own action x and the total average
m, i.e. it is equal to some number f(x,m). We know, by Theorem 2.1, that,
whenever f is continuous, there exists an equilibrium and the case is rather
trivial so far. However, in most specific cases of some economic meaning,
f(x,m) is increasing in x and quite often it is, at least on a part of the
domain, decreasing in m. In such a case, an equilibrium may occur at m
concentrated at 1 and it may be socially inefficient in the sense that it does
not maximize the value of the total income T (m) := � 1

0 f(x,m) m(dx) (for
instance, this is a very natural case if the social activity is interpreted as
extraction of a common resource).

Taxation is often a means to enforce efficiency (cf. e.g. Mirrlees [1986]
and the literature quoted therein). Suppose that a (linear) tax t has been
imposed per unit activity (extraction) and then the revenue is uniformly
distributed among all individuals. The net income of an individual active at
x and facing the overall distribution of activities m becomes now

F t(x,m) := f(x,m)− t(x−m).

We assume that f(x,m) is concave in x and the function g(m) :=
f(m,m) is quasi-concave and continuously differentiable on I (these as-
sumptions could be made weaker at the cost of some extra technical effort).

Under these circumstances there exists a taxation level 0 ≤ t ≤ 1 and a
distribution m which is an equilibrium for the modified payoff function F t

and which is efficient with respect to the original payoff function f .
To prove the above statement we construct an auxiliary LSE-game with

two types of players: type 1 are the individuals previously considered, with
the action space W 1 = I; type 2 are infinitely many small economic forces
in charge of taxation, which have the choice among lobbying for low tax-
ation (z = −1) and high taxation (z = 1), hence W 2 = {−1, 1}. Given a
distribution m2 on W 2, the actual rate of taxation t is the percentage of
high taxation lobbyists, i.e.

1
2 [(−1) ·m2({−1}) + 1 ·m2({1})] + 1

2 ;
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in our previous notation we have t(m2) = 1
2m

2+ 1
2 (we skip here the subscript

1 as m has just one coordinate; the same applies to subsequent notation).
The payoff functions for the auxiliary game are defined by

Ψ1(x;m1,m2) : = f(x,m1)− t(m2)(x−m1),

Ψ2(z;m1,m2) : = −z · dg
dm

(m1),

for any x ∈W 1, z ∈W 2 and any m1 ∈ coW 1 = W 1, m2 ∈ coW 2 = [−1, 1].
By Theorem 2.1, the auxiliary game has an equilibrium (m1,m2). It is

not difficult to check that the assumptions imposed on f imply that the dis-
tribution m1 and the taxation level t(m2) are as required in our statement.

Acknowledgements. I wish to thank Agnieszka Wiszniewska-Matysz-
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