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SYMMETRIC HYPERBOLIC SYSTEMS WITH
BOUNDARY CONDITIONS THAT DO NOT SATISFY

THE KREISS–SAKAMOTO CONDITION

Abstract. Symmetric hyperbolic systems with a class of non-homoge-
neous boundary conditions that do not satisfy the Kreiss–Sakamoto condi-
tion (or uniform Lopatinskĭı condition) are discussed. The boundary con-
ditions are of conservative type. An energy estimate which provides interior
and boundary regularity for weak solutions to the system is proved. The
results are valid for operators with rough coefficients. As an example the
anisotropic Maxwell system is considered.

1. Introduction and main result. Consider a system of partial dif-
ferential equations of the form

(1.1) Pu := E(t, x)∂tu(t, x) +Aj(t, x)∂ju(t, x) +B(t, x)u(t, x) = f(t, x),
(t, x) ∈ Q := (0, T )×Ω,

where Ω is a connected subset of Rn with a C2-boundary Γ = ∂Ω, E(t, x)
and A(t, x) are Hermitian N × N matrix functions, the matrix B(t, x) is
N ×N , and u and f are vector-valued functions of n+ 1 variables with N
components. Here and henceforth we use the summation convention: terms
with repeated indices are added from 1 to n. Furthermore, the matrix E is
assumed to be uniformly positive definite on Q and we write ∂t = ∂/∂t and
∂j = ∂/∂xj . The variable t ∈ R is the time variable and x ∈ Rn is the space
variable, and we fix a final time T > 0.

This kind of system is called symmetric hyperbolic [F54]. We add a
boundary condition

2000 Mathematics Subject Classification: Primary 35L50.
Key words and phrases: symmetric hyperbolic systems, boundary value problems,

uniform Lopatinskĭı condition.
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(1.2) M(t, x)u(t, x) = g(t, x), (t, x) ∈ Σ := (0, T )× Γ,

where M is a N ×N matrix, g = 0 on KerM , and an initial condition

(1.3) u(0, x) = u0(x),

and consider the initial-boundary value problem (1.1)–(1.3).
We start with a brief discussion of dissipative boundary conditions [LP60].

Let ν = (ν1, . . . , νn)T be the exterior unit normal of Ω on Γ . Applying a
unitary transformation to the dependent variable u we can assume that Ajνj
is in (block-)diagonal form:

(1.4) Ajνj =

 0 0 0
0 Λ2

1 0
0 0 −Λ2

2


at every point (t, x) ∈ Σ, where Λ1 and Λ2 are Hermitian, positive definite
matrices. In what follows we will assume that Λ1 = Λ1(t, x) and Λ2 =
Λ2(t, x) are both k×k matrices with L∞ entries and 2k ≤ N . Corresponding
to this decomposition of Ajνj we decompose u = (z, u1, u2).

Let O(t, x) ∈ L∞(Σ) be a k × k matrix such that |Oh| ≤ c|h| for all
h ∈ Ck almost everywhere on Σ. Here c < 1 is a positive constant and
| · | denotes the Euclidean norm in Ck. The boundary condition (1.2) is
dissipative if

M =

 0 0 0
0 0 0
0 OΛ1 Λ2

 , Mu = Λ2u2 +OΛ1u1.

We will assume that the boundary matrix M is k × 2k. From (1.4) one can
derive the inequality

1− c2

2
|Λ1u1|2 ≤ uH [Ajνj ]u+

1 + c2

1− c2
|Mu|2

almost everywhere on Σ, where uH denotes the Hermitian transpose of the
(column) vector u. Using integration by parts (see formula (2.1) below) one
shows that a sufficiently regular solution to the boundary value problem
(1.1)–(1.3) satisfies the estimate

(1.5) ‖e−γTu(T )‖2L2(Ω) + γ‖e−γtu‖2L2(Q) + |e−γtu|2L2(Σ)

≤̃ ‖u0‖2L2(Ω) +
1
γ
‖e−γtf‖2L2(Q) + |e−γtg|2L2(Σ)

for γ ≥ γ0 provided that detAjνj ≥ c > 0 almost everywhere on Σ. Here
a ≤̃ b means a ≤ Cb for some constant C.
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In 1970 Kreiss showed that for strictly hyperbolic systems the estimate
(1.5) is valid as long as the boundary condition satisfies the Kreiss–Sakamoto
condition [K70]. At the same time, Sakamoto proved an analogous result for
scalar hyperbolic equations [S70].

In this note we discuss a special class of boundary conditions which does
not satisfy the Kreiss–Sakamoto condition (or uniform Lopatinskĭı condi-
tion). We say the boundary condition (1.2) is conservative if

(1.6) Mu = Λ2u2 + UΛ1u1

where U = U(t, x) is a unitary k× k matrix with L∞ entries. In the case of
the homogeneous boundary condition Mu = 0 one can derive the estimate
(1.5) without boundary integrals since

〈Ajνju, u〉Σ = 〈UΛ1u1, UΛ1u1〉Σ−〈Λ2u2, Λ2u2〉Σ = <〈Mu,UΛ1u1−Λ2u2〉Σ
where 〈·, ·〉Σ denotes the scalar product in L2(Σ).

Conservative boundary conditions are of interest in applied problems.
The Neumann boundary condition is a conservative boundary condition for
the scalar wave equation, and the perfect conductor boundary condition
ν × e = 0 is conservative for Maxwell’s equations. In both cases it is known
that the Kreiss–Sakamoto condition does not hold [M73, p. 439], [CP82,
Chapter 7, Example 3.11], [MO75, Section 2], which is to say that the inho-
mogeneous boundary value problem is not well-posed in L2 in the sense of
estimate (1.5). However, a weaker form of the Kreiss–Sakamoto condition,
the Lopatinskĭı condition is still satisfied and provides solutions without es-
timates to both problems in the case that Ω is the half-space Rn

+ = {xn ≥ 0}
and the operator has constant coefficients.

The only problem of this type which has received a lot of attention is the
Neumann problem for scalar second order hyperbolic equations. Miyatake
proved estimates for this problem and observed that higher regularity of the
boundary data is required to obtain a finite energy solution [M73]. Later
Lasiecka and Triggiani gave a very detailed treatment of this Neumann prob-
lem, in particular with L2(Σ) boundary conditions [LT90], [LT91], [LT94],
establishing sharp interior and boundary regularity in many cases. More
recently, Tataru refined their boundary regularity results [T98].

Our research was motivated by the search for a regularity result for
Maxwell’s system with a non-homogeneous perfect conductor boundary con-
dition. In a private communication with the author, Belishev has pointed
out that a sharp regularity result for this boundary value problem is not
available.

Our main results are the following two theorems. Here Hs stands for the
L2-based Sobolev space of order s.
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Theorem 1.1. Assume that u ∈ H1(Q) is a weak solution of the sym-
metric hyperbolic system (1.1) where the entries of E and A1, . . . , An are
of class C1 and the entries of B are in L∞(Q). Assume that the boundary
condition (1.2) is conservative in the sense that (1.6) is valid and that the
boundary is uniformly non-characteristic, i.e. |det(Ajνj)| ≥ c > 0 for all
(t, x) ∈ Σ. Then there exists a constant γ0 such that

(1.7) ‖e−γTu(T )‖2L2(Ω) + γ‖e−γtu‖2L2(Q) + |e−γtu|2
L2(0,T ;H−1/2(Γ ))

≤̃ ‖u(0)‖2L2(Ω) +
1
γ
‖e−γtPu‖2L2(Q) + |e−γtMu|2

L2(0,T ;H1/2(Γ ))

for γ ≥ γ0.

The second theorem considers the case of a characteristic boundary.

Theorem 1.2. Assume that u ∈ H1(Q) is a weak solution of the sym-
metric hyperbolic system (1.1) where the entries of E and A1, . . . , An are
of class C1 and the entries of B are in L∞(Q). Assume that the boundary
condition (1.2) is conservative and that the boundary is uniformly charac-
teristic, i.e. rank(Ajνj) = N ′ < N for all (t, x) ∈ Σ. Then there exists a
constant γ0 such that

(1.8) ‖e−γTu(T )‖2L2(Ω) + γ‖e−γtu‖2L2(Q) + |e−γtΠu|2
L2(0,T ;H−1/2(Γ ))

≤̃ ‖u(0)‖2L2(Ω) +
1
γ
‖e−γtPu‖2L2(Q) + |e−γtMu|2

L2(0,T ;H1/2(Γ ))

for γ≥γ0. HereΠ denotes the orthogonal projection from Cn onto [KerAjνj ]⊥.

The estimates (1.7) and (1.8) can be used to establish existence, unique-
ness, and regularity for the initial value problem (1.1)–(1.3). This can be
proved by first proving uniqueness for the (backward) adjoint problem with
homogeneous boundary data and then solving the original problem by means
of duality.

Theorem 1.3. Given f ∈ L2(Q), g ∈ L2(0, T ;H1/2(Γ )) and u0 ∈ L2(Ω)
there exists a unique solution u ∈ C([0, T ], L2(Ω)) to the initial-boundary
value problem (1.1)–(1.3), and the mapping

(f, g, u0) 7→ (u,Πu|Σ)

is continuous from L2(Q)×L2(0, T ;H1/2(Γ ))×L2(Ω) into C([0, T ], L2(Ω))×
L2(0, T ;H−1/2(Γ )).

Example 1. The dynamic Maxwell equations for the electric field in-
tensity e and the magnetic field intensity h are

ε∂te−∇× h+ σe = f1,

µ∂th+∇× e = f2,
(1.9)
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where the electric permittivity ε and the magnetic permeability µ are pos-
itive definite, Hermitian 3 × 3 matrices and the conductivity σ is a 3 × 3
matrix. If ε, µ and σ are multiples of the identity matrix, then we say that
the system is isotropic. Otherwise we refer to it as anisotropic. We add the
initial condition

(1.10) e(0) = e0, h(0) = h0

and the boundary condition

(1.11) ν × e = g on Σ

where ν · g = 0 on Σ. Note that this boundary is characteristic since

Ajνj(e, h) = (−ν × h, ν × e)

and rank(Ajνj) = 4. The projection Π defined in Theorem 1.2 is the projec-
tion of (e, h) onto its tangential components. The boundary condition (1.11)
is conservative since

〈Ajνj(e, h), (e, h)〉Σ = 2<〈ν × e, hτ 〉Σ = 2<〈g, hτ 〉Σ .

Here hτ = (ν × h) × ν denotes the tangential component of h on Σ. From
Theorems 1.2 and 1.3 we obtain the following statement for the initial-
boundary value problem (1.9)–(1.11).

Corollary 1.4. If ε and µ have C1-entries, σ has entries in L∞, f ∈
L2(Q), e0, h0 ∈ L2(Ω), and g ∈ L2(0, T ;H1/2(Γ )), then there exists a unique
solution (e, h) ∈ C([0, T ], L2(Ω)) to (1.9)–(1.11) and the following estimate
holds:

(1.12) ‖(e, h)‖2C([0,T ],L2(Ω)) + |hτ |2L2(0,T ;H−1/2(Γ ))

≤̃ ‖(e0, h0)‖2L2(Ω) + ‖f‖2L2(Q) + |g|2
L2(0,T ;H1/2(Γ ))

.

This estimate improves results given earlier for the isotropic Maxwell
system by Majda and Osher [MO75, Proposition 2.3], and more recently
by Glasman [G01, Theorem 1]. For an existence and uniqueness result in a
larger space than L2 we refer to [EM02, Proposition 2.2].

Note that (1.12) does not establish a regularity result for the normal
components of e and h on Σ. If we have the additional information ∇ · (εe),
∇ · (µh) ∈ C([0, T ], L2(Ω)), then ν · (εe), ν · (µh) ∈ C([0, T ], H−1/2(Γ )) by
trace theory [C96, Chapter 2].

Example 2 (The wave equation with variable coefficients and Neumann
boundary conditions). Consider the equation

(1.13) ∂2
t φ−∇ · (α(t, x)∇φ) = ∂2

t φ− ∂j(αjk(t, x)∂kφ) = f

where α is a positive definite, Hermitian n×n matrix. The initial condition
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is

(1.14) φ(0) = φ0, ∂tφ(0) = ψ0

and the boundary condition is

(1.15) ν · (α∇φ) = g on Σ.

The equation (1.13) is transformed into a symmetric hyperbolic system by
setting

u = (∂tφ, α∇φ)T , Aj∂j =

(
0 −∇T

−∇ 0

)
, E =

(
1 0
0 α−1

)
.

A problem with this transformation is that it makes the boundary Σ char-
acteristic. One computes rank(Ajνj) = 2 and

〈Ajνju, u〉Σ = −2<〈ν · α∇φ, ∂tφ〉Σ .
Theorems 1.2 and 1.3 applied to this system provide the following.

Corollary 1.5. If α is a symmetric, positive definite matrix with C1

entries, f ∈ L2(Q),(φ0, ψ0) ∈ H1(Ω) × L2(Ω), and g ∈ L2(0, T ;H1/2(Γ )),
then there exists a unique solution u ∈ C([0, T ], H1(Ω))∩C1([0, T ], L2(Ω)),
and the following estimate holds:

(1.16) ‖(φ, φt)‖2C([0,T ],H1(Ω)×L2(Ω)) + |∂tφ|2L2(0,T ;H−1/2(Γ ))

≤ ‖(φ0, ψ0)‖2H1(Ω)×L2(Ω) + ‖f‖2L2(Q) + |g|2
L2(0,T ;H1/2(Γ ))

.

This result is similar to the one given by Miyatake [M73, Theorem 1].
Note that we only obtain an estimate of the boundary trace of the velocity
∂tφ and no estimate for the spatial tangential derivatives. However, the
regularity of the trace of φ on Σ can be established using the trace theorem
for the Sobolev space H1. The estimate (1.16) is valid for operators with C1

coefficients, whereas Miyatake requires C∞ coefficients.
Before we present the proofs, we make a few comments. Most regularity

results for hyperbolic equations and systems have been proved for the case
that Ω is the half-space. After establishing the estimates in the half-space
one can use local charts and a partition of unity and transfer the estimates
to an arbitrary set Ω with a sufficiently smooth boundary. Kreiss proved
the estimate (1.5) for strictly hyperbolic systems by first transforming the
operator micro-locally into a special block-diagonal structure and then con-
structing a symmetrizer [K70], [CP82]. Métivier observed that the strict
hyperbolicity assumption can be relaxed and he proved the Kreiss block
structure condition for symmetrizable hyperbolic systems of constant multi-
plicity [M00]. More recently, Métivier and Zumbrun investigated symmetric
hyperbolic systems with variable multiplicities [MZ05]. They noted that the
Kreiss block structure condition is not satisfied for the anisotropic Maxwell
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system. Moreover, it is not clear how to adjust the construction of the sym-
metrizer when the boundary condition does not satisfy the Kreiss–Sakamoto
condition.

Since our research was motivated by Maxwell’s system we had to follow
a different approach. Instead of moving the problem into the half-space
and block-diagonalizing the symbol of the operator micro-locally we work
with the symmetric system directly. This has the advantage that we do not
need to construct a symmetrizer. Instead we construct a special pseudo-
differential multiplier which leaves important symmetries of the system in
place.

2. Proofs. For brevity we will indicate the scalar product and norm in
L2(Q) and L2(Ω) by the subscript Q and Ω, respectively. We will also re-
strict ourselves to real quantities in an effort to keep the proofs transparent.

2.1. Proof of Theorem 1.1

First step: The multiplier e−γtu. We multiply the system (1.1) by e−γt

and take then the L2 scalar product with v = e−γtu over Q:

(E∂tv, v)Q + γ(Ev, v)Q + (Aj∂jv, v)Q + (Bv, v)Q = (e−γtf, v)Q.

By the symmetry of E and Aj for j = 1, . . . , n and integration by parts we
have

(2.1) (Ev(T ), v(T ))Ω + 2γ(Ev, v)Q
= (Ev(0), v(0))Ω + 2(e−γtf, v)Q − 〈Ajνjv, v〉Σ − ((2B − ∂tE − ∂jAj)v, v)Q.

Using now the fact that E is positive definite and the Cauchy–Schwarz
inequality, and noting that the boundary condition (1.2) satisfies relation
(1.6) we arrive at

(2.2) ‖v(T )‖2Ω + γ‖v‖2Q

≤̃ ‖v(0)‖2Ω +
1
γ
‖e−γtf‖2Q − 〈Mv,UΛ1v1 − Λ2v2〉Σ for γ ≥ γ0,

where vj = e−γtuj for j = 1, 2. Since the boundary integral can be estimated
by some constant times

(2.3) |Mv|2
L2(0,T ;H1/2(Γ ))

+ |v|2
L2(0,T ;H−1/2(Γ ))

,

we need to find a suitable estimate for the norm |v|2
L2(0,T ;H−1/2(Γ ))

. For this
we construct a special multiplier.

Second step: The collar operator q. Since Γ ∈ C2, there exists a tubu-
lar neighborhood V of Γ in R3. This means that for x ∈ Γ and s ∈ (−a, a)
where a is some real number, the map F (x, s) = x − sν(x) is a C1 diffeo-
morphism between Γ × (−a, a) and V . The set Ω ∩ U is the collar of ∂Ω



330 M. Eller

in Ω. The collar is also the union of a family of closed surfaces Γs where

Γs = {y ∈ Ω : y = F (x, s) for some x ∈ Γ}

for 0 < s < a. Let ∆S denote the Laplace–Beltrami operator on the C2

surface S. The operator γ2 −∆Γ is self-adjoint and positive on L2(Γ ). Set
q = (γ2 −∆Γ )−1/4. Note that q is a tangential pseudo-differential operator
of order −1/2 with C1 coefficients.

For z ∈ H−1/2(Γ ) the expression√	
Γ |qz|

2 dΓ = |qz|Γ

is a norm on H−1/2(Γ ) depending on the parameter γ which we denote by
|z|

H
−1/2
γ (Γ )

. We have

(2.4)
1
γ
|z|2

H−1/2(Γ )
≤̃ |z|2

H
−1/2
γ (Γ )

for γ ≥ 1

where | · |H−1/2(Γ ) denotes a norm in H−1/2(Γ ) which does not depend on γ.
The operator q can be extended to all of Ω by defining

q(x, ∂) = χ(x)(γ2 −∆Γs)
−1/4

with χ(x) a smooth function which is equal to 1 for x ∈ Γ and zero for
x ∈ Ω \V where V is a tubular neighborhood of Γ . Note that q is a bounded
operator on L2(Q):

‖qy‖2Q ≤̃
1
γ
‖y‖2Q, y ∈ L2(Q).

Similarly, the normal vector field ν on Γ can be extended as a C1 vector
field to all of Ω in such a way that ν is normal to each surface Γs. We split
the operator Aj∂j into its normal and tangential part:

Aj(t, x)∂j = A(t, x)∂ν +Aτ (t, x, ∂) where A(t, x) = Aj(t, x)νj(x).

We can assume that A is invertible in the collar of the boundary since the
boundary is non-characteristic, and that A−1 is symmetric.

Third step: The multiplier A−1Eqv. We multiply equation (1.1) by
e−γt and apply the operator q. We obtain

E∂tw + γEw +A∂νw +Aτ (∂)w + [q, E]∂tv(2.5)
+ γ[q, E]v + [q, A∂ν ]v + [q,Aτ (∂)]v + qBv = qe−γtf

where w = qv and [a, b] = ab− ba denotes the commutator of the operators
a and b. We set

Lv = [q, E]∂tv + γ[q, E]v + [q,A]∂νv + [q, Aτ (∂)]v,
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and using commutator estimates for operators with C1 symbols [T91, Pro-
position 4.1.C], we observe that

‖Lv‖Q ≤̃
√
γ‖v‖Q.

We take the inner product on L2(Q) of equation (2.5) with A−1Ew:

(E∂tw,A−1Ew)Q + γ(Ew,A−1Ew)Q + (∂νw,Ew)Q(2.6)
+ (Aτ (∂)w,A−1Ew)Q + (qBv,A−1Ew)Q
+ (Lv,A−1Ew)Q = (qe−γtf,A−1Ew)Q.

The most interesting term is the third one. Integration by parts gives

(∂νw,Ew)Q =
1
2
〈w,Ew〉Σ −

1
2

(w, [∂νE]w)Q

and we note that

〈w,Ew〉Σ ≥̃
�

Σ

|w|2 = |v|2
L2(0,T ;H

−1/2
γ (Γ ))

since E is positive definite. Hence we can use formula (2.6) to estimate the
norm |v|2

L2(0,T ;H
1/2
γ (Γ ))

. We have

|(Aτ (∂)w,A−1Ew)Q| ≤̃ ‖v‖2Q
where we use the fact that Aτ (∂) is a tangential operator in the collar and

γ|(Ew,A−1Ew)Q| ≤̃ ‖v‖2Q.
The first term in (2.6) is

(E∂tw,A−1Ew)Q =
1
2

T�

0

∂t(Ew,A−1Ew)Ω dt− ([∂tE]w,A−1Ew)Q

− 1
2

(Ew, [∂tA−1]Ew)Q

and allows the estimate

|(E∂tw,A−1Ew)Q| ≤̃
1
γ

(‖v(T )‖2Ω + ‖v(0)‖2Ω) +
1
γ
‖v‖2Q.

The lower order terms in (2.6) do not cause any trouble:

|(Lv,A−1Ew)Q| ≤̃ ‖v‖2Q, |(qBv,A−1Ew)Q| ≤
1
γ
‖v‖2Q,

and neither does the right-hand side:

|(qe−γtf,A−1Ew)Q| ≤̃
1
γ
‖e−γtf‖Q‖v‖Q ≤̃

1
γ2
‖e−γtf‖2Q + ‖v‖2Q.

Putting everything together we arrive at the estimate

(2.7) |v|2
L2(0,T ;H

−1/2
γ (Γ ))

≤̃ ‖v‖2Q +
1
γ2
‖e−γtf‖2Q +

1
γ

(‖v(T )‖2Ω + ‖v(0)‖2Ω),
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which proves Theorem 1.1 when combined with the basic estimate (2.2) in
view of (2.3) and (2.4).

2.2. Proof of Theorem 1.2. For the characteristic case we can assume
that A is in (block-)diagonal form, i.e.

A =

(
0 0
0 Ã

)
where Ã is a non-singular symmetricN ′×N ′ matrix. Instead of the multiplier
A−1Ew we will now use (

0 0
0 Ã−1

)
Ew

The proof is now the same as for the previous theorem except for(
0 0
0 Ã−1

)(
0 0
0 Ã

)
= Π

where Π is the projection onto (KerA)⊥.

Remark. The proof shows that the regularity assumptions on the coef-
ficients can be weakened. C1 regularity of E and Aj is necessary only near
the boundary Σ, whereas in the interior, E, ∂tE,Aj , ∂jAj ∈ L∞ will suffice.
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