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LIMIT THEOREMS FOR BIVARIATE EXTREMES OF
NON-IDENTICALLY DISTRIBUTED RANDOM VARIABLES

Abstract. The limit behaviour of the extreme order statistics arising from
n two-dimensional independent and non-identically distributed random vec-
tors is investigated. Necessary and sufficient conditions for the weak conver-
gence of the distribution function (d.f.) of the vector of extremes, as well
as the form of the limit d.f.’s, are obtained. Moreover, conditions for the
components of the vector of extremes to be asymptotically independent are
studied.

1. Introduction. Only in the last few years are general results on order
statistics from non-identically but independently distributed random vari-
ables (r.v.’s) coming out. However, most of these results concern recurrence
relations for the d.f. (see, e.g., Cao and West, 1997) or for the single and
product moments of order statistics (see, e.g., Balakrishnan, 1994, and ref-
erences therein). The work on the asymptotic behaviour of order statistics
from non-identical r.v.’s is still limited. An earlier result and perhaps the
most important one for this problem is due to Mejzler (1949–1956). Under
a natural uniformity assumption (that the initial suitably normalized r.v.’s
should, in some sense, be individually negligible in the limit), Mejzler proved
that a nondegenerate d.f. Φ1(x) is the limiting distribution of a suitably nor-
malized maximum for some sequence of independent r.v.’s if, and only if,
either (i) logΦ1(x) is concave, or (ii) ω = sup{x : Φ1(x) < 1} < ∞ and
logΦ1(ω − e−x), x > 0, is concave, or finally (iii) α = inf{x : Φ1(x) > 0} is
finite and logΦ1(α + ex), x > 0, is concave. Mejzler and Weissman (1969)
extended this result to kth extremes. They proved that the d.f. of the kth
extremes (suitably normalized), under the uniformity assumption, converges
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weakly to a nondegenerate limit d.f. Φk(x) if, and only if, the d.f. of the max-
imum converges weakly to the d.f. Φ1(x). Balkema et al. (1993) (Theorem
A.1) proved Mejzler’s result on limit distributions for maxima of a sequence
of independent r.v.’s, replacing the uniformity assumption by less restrictive
conditions (imposed on the normalizing constants). Additional interesting
results on independent sequences were given in Weissman (1975a, b), Tiago
de Oliveira (1976), Mucci (1977) and de Hann and Verkade (1985). A survey
of recent developments can be found in Galambos (1987).

The main aim of this paper is to study the limit behaviour of the
order statistics of bivariate independent non-identically distributed r.v.’s.
Namely, consider n two-dimensional independent random vectors X j =
(X1j ,X2j), j = 1, . . . , n, with the respective d.f.’s Fj(x) = Fj(x1, x2) =
P (X1j ≤ x1, X2j ≤ x2), j = 1, . . . , n. The order statistics of the tth compo-
nents are

Xt,1:n ≤ Xt,2:n ≤ . . . ≤ Xt,n:n, t = 1, 2.

The main object of this paper is to investigate the limiting distribution of
the random vector Zk,k′:n = (X1,n−k+1:n,X2,n−k′+1:n), where k and k′ are
constants. Necessary and sufficient conditions under which the d.f. of Zk,k′:n
converges weakly to a nondegenerate limit d.f., as well as the form of this
limit, will be obtained in Theorem 2.1. Necessary and sufficient conditions
(in terms of the original sequence of d.f.’s {Fj(x)}) for the components
of Zk,k′:n to be asymptotically independent are derived in Theorem 2.2.
The problem can also be stated in terms of W k,k′:n = (X1,k:n,X2,k′:n) and
V k,k′:n = (X1,k:n,X2,n−k′+1:n) by turning respectively to (−X1j ,−X2j) and
(−X1j ,X2j), j = 1, . . . , n.

The results of this paper can be applied to many natural problems, e.g.,
project scheduling by PERT technique. In this practical problem we assume
a large number n of different activities, each of them has a random duration
and a random cost (which usually depends on the duration). In many cases,
the durations of different activities are non-identically distributed r.v.’s, and
so are the costs of different activities. On the other hand the duration and
the cost of each activity are in general dependent r.v.’s. Therefore, we get a
sequence of n two-dimensional non-identical r.v.’s {Xj} = {(X1j ,X2j)}, j =
1, . . . , n, where X1j and X2j denote respectively the duration and the cost
of the jth activity. It is well known that the vectors Z1,1:n, W 1,1:n andV 1,1:n

for this sequence play a major role in the investigation of the above stated
problem.

Throughout this paper the following conventions and notations will be
adopted. For numerical vectors x = (x1, x2), the components are signified by
a subscript. Basic arithmetical operations are always meant component-wise.
Thus x ≤ y means xt ≤ yt, t = 1, 2. Further, x ± y = (x1 ± y1, x2 ± y2),
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xy = (x1y1, x2y2) and x/y = (x1/y1, x2/y2). The special vectors 0 = (0, 0)
and ∞ = (∞,∞) will be used. Let Gj(x) = P (Xj > x) be the survival
function of Fj(x), j = 1, 2, . . . , and let Φ.,k′:n(x2), Φk,.:n(x1), F1j(x1),
F2j(x2), G1j(x1) = 1− F1j(x1) and G2j(x2) = 1− F2j(x2) be the marginal
d.f.’s and the marginal survival functions of Φk,k′:n(x) = P (Zk,k′:n ≤ x),
Fj(x) and Gj(x), j = 1, 2, . . . , respectively. Finally, for any sequence of
suitable normalizing constants an = (a1n, a2n) > 0 and bn = (b1n, b2n),
write Z?k,k′:n = (Zk,k′:n − bn)/an, Φ?k,k′:n(x) = Φk,k′:n(anx + bn), F ?j:n(x) =
Fj(anx+bn), G?j:n(x) = Gj(anx+bn), F ?tj:n(xt)=Ftj(atnxt+btn), G?tj:n(xt)=
Gtj(atnxt+btn), t = 1, 2, Φ?.,k′:n(x2) = Φ.,k′:n(a2nx2 + b2n) and Φ?k,.:n(x1) =
Φk,.:n(a1nx1 + b1n).

We conclude this section with a theorem which is a combination of the
results of Juncosa (1949), Sec. 3 (see also Galambos, 1987) and Mejzler and
Weissman (1969), Theorem 4.1. This theorem will be needed in what follows.

Theorem 1.1. Assume that , for suitable normalizing constants a1n>0,
b1n (resp. a2n > 0, b2n),

(1.1)
δ1:n = max

1≤j≤n
G?1j:n(x1)→ 0 as n→∞

(resp. δ2:n = max
1≤j≤n

G?2j:n(x2)→ 0 as n→∞).

Then Φ?k,.:n(x1) (resp. Φ?.,k′:n(x2)) converges weakly to a nondegenerate d.f.
Φk,.(x1) (resp. Φ.,k′(x2)) if , and only if , for all x1 (resp. x2) for which
Φk,.(x1) > 0 (resp. Φ.,k′(x2) > 0), the limit

lim
n→∞

n∑

i=1

G?1i:n(x1) = h1(x1)
(

resp. lim
n→∞

n∑

i=1

G?2i:n(x2) = h2(x2)
)

is finite, and the function

(1.2) Φk,.(x1) =
k−1∑

i=0

hi1(x1)
i!

e
−h1(x1)

(
resp. Φ.,k′(x2) =

k′−1∑

i=0

hi2(x2)
i!

e
−h2(x2)

)

is a nondegenerate d.f. The actual limit d.f. of

Z?k,.:n =
X1,n−k+1:n − b1n

a1n

(
resp. Z?.,k′:n =

X2,n−k′+1:n − b2n
a2n

)

is the one given in (1.2).

As a direct result of this theorem we see that the convergence of Φ?k,.:n(x1)
(resp. Φ?.,k′:n(x2)) for at least one fixed value of k (resp. k′) implies its
convergence for all fixed values of k (resp. k′). Moreover, the possible types
of the function h1(x1) (resp. h2(x2)) may be determined from the above
mentioned results of Mejzler (1949–1956) (since Φ1,.(x1) = e−h1(x1) and
Φ.,1(x2) = e−h2(x2)).
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2. Main results. It is easy to show that the d.f. of the vector Zk,k′:n
is given by Φk,k′:n(x) = P (at most k − 1 and k′ − 1 of events {X1i > x1}
and {X2j > x2}, i, j = 1, . . . , n, occur respectively). Consequently, by tak-
ing into account the fact that the vectors (X1j ,X2j), j = 1, . . . , n, are in-
dependent and by collecting terms according as {X1j > x1, X2j ≤ x2}, or
{X1j > x1, X2j > x2}, or {X1j ≤ x1, X2j > x2}, or {X1j ≤ x1, X2j ≤ x2},
j = 1, . . . , n, we get

Φk,k′:n(x) =
k−1∑

t=0

k′−1∑

s=0

t∧s∑

r=0∨(t+s−n)

∑

Pr,s,t

t−r∏

j=1

P (X1ij > x1, X2ij ≤ x2)(2.1)

×
t∏

j=t−r+1

P (X1ij > x1, X2ij > x2)

×
t+s−r∏

j=t+1

P (X1ij ≤ x1, X2ij > x2)

×
n∏

j=t+s−r+1

P (X1ij ≤ x1, X2ij ≤ x2)

=
k−1∑

t=0

k′−1∑

s=0

t∧s∑

r=0∨(t+s−n)

∑

Pr,s,t

t−r∏

j=1

(G1ij (x1)−Gij (x))

×
t∏

j=t−r+1

Gij (x)
t+s−r∏

j=t+1

(G2ij (x2)−Gij (x))

×
n∏

j=t+s−r+1

(1−G1ij (x1)−G2ij (x2) +Gij (x)),

where min(a, b) = a ∧ b, max(a, b) = a ∨ b, and for 0 ≤ s < k, 0 ≤ t < k′

and 0 ≤ r ≤ t ∧ s, Pr,s,t denotes the set of permutations (i1, . . . , in) of
(1, . . . , n) such that i1 < . . . < it−r, it−r+1 < . . . < it, it+1 < . . . < it+s−r
and it+s−r+1 < . . . < in.

Remark 2.1. In (2.1), and in what follows, we adopt the convention
that the product of the sort

∏b
i=a Ai, for any integers a, b and any sequence

{Ai}, is AaAa+1 . . . Ab if a ≤ b, and 1 if b < a. Therefore, if x1 → ∞ (say)
we get G1j(x1), Gj(x)→ 0, j = 1, . . . , n. We thus have t ≡ r ≡ 0, implying

Φ.,k′:n(x2) =
k′−1∑

s=0

∑

Ps

s∏

j=1

(G2ij (x2)−Gij (x))

×
n∏

j=s+1

(1−G1ij (x1)−G2ij (x2) +Gij (x)),
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where Ps is the set of permutations (i1, . . . , in) of (1, . . . , n) such that i1 <
. . . < is and is+1 < . . . < in. Moreover, when k = k′ = 1, we get

Φ1,1:n(x) =
n∏

j=1

(1−G1j(x1)−G2j(x2) +Gj(x)) =
n∏

j=1

Fj(x).

Relation (2.1) may be written in term of permanents as follows:

(2.2) Φk,k′:n(x) =
k−1∑

t=0

k′−1∑

s=0

t∧s∑

r=0∨(t+s−n)

1
(t− r)!r!(s− r)!(n− t− s+ r)!

× Per[Y 1. − Y 11 Y 11 Y .1 − Y11 1− Y 1. − Y .1 + Y 11],
t−r r s−r n−t−s+r

where Y 1. = (G11(x1) . . . G1n(x1))′, Y .1 = (G21(x2) . . . G2n(x2))′, Y 11 =
(G1(x) . . . Gn(x))′ and 1 is the n × 1 column vector of ones. Moreover, if
a1, a2, . . . are column vectors, then

[a1 a2 . . .]
i1 i2 ...

will denote the matrix obtained by taking i1 copies of a1, i2 copies of a2 and
so on. Finally, in (2.2), Per(A) denotes the permanent of a square matrix A,
which is defined similarly to the determinant except that all terms in the
expansion have a positive sign (see Minc’s book, 1978, and the survey papers
of Minc, 1983, 1987). It is worth mentioning that the permanent in (2.2) is
a stochastic one.

Remark 2.2. In view of Remark 2.1, we adopt the convention that

Per[a1
i1

a2
i2

. . .
...

aj
ij=0

. . .
...

]

is understood as
Per[a1

i1

a2
i2

. . .
...

aj−1
ij−1

aj+1
ij+1

. . .
...

].

Theorem 2.1. Assume that the uniformity assumption

(2.3) δt:n = max
1≤i≤n

G?ti:n(xt)→ 0, t = 1, 2, as n→∞,

is satisfied. Then the d.f. Φ?k,k′:n(x) converges weakly to a nondegenerate
d.f. Φk,k′(x) if , and only if , for all x for which Φk,.(x1) and Φ.,k′(x2) are
positive, the limits

(2.4) lim
n→∞

n∑

i=1

G?ti:n(xt) = ht(xt), t = 1, 2,

and

(2.5) lim
n→∞

n∑

i=1

G?i:n(x) = h(x)
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are finite, and the function

Φk,k′(x) =
k−1∑

t=0

k′−1∑

s=0

t∧s∑

r=0

1
(t− r)!r!(s− r)! (h1(x1)− h(x))t−rhr(x)(2.6)

× (h2(x2)− h(x))s−r exp(−h1(x1)− h2(x2) + h(x))

is a nondegenerate d.f. The actual limit d.f. of Z?k,k′:n is the one given
in (2.6).

Remark 2.3. The conditions of Theorem 2.1 show that the d.f. Φ?k,k′:n(x)
converges weakly to the nondegenerate d.f. Φk,k′(x) (which is defined by
(2.6)), for all fixed values k and k′, if there exist at least two fixed integers
k0 and k′0 for which the d.f. Φ?k0,k′0:n(x) converges weakly to the nondegener-
ate d.f. Φk0,k′0(x). Moreover, the different types of the functions h1(x1) and
h2(x2) can be determined from Theorem 1.1. For the function h(x), it is
easy to show that for all x for which Φk,.(x1) > 0 and Φ.,k′(x2) > 0, we have
either 0 ≤ h(x) < h1(x1) ∧ h2(x2) <∞ or h(x) ≡ h1(x1) ∧ h2(x2) ≡ 0.

Proof of Theorem 2.1. Since the proof is somewhat lengthy, we split it
up into several steps, some of which are of independent interest.

Step 1. For any 0 ≤ yi < 1/2, i = 1, 2, . . . ,

(2.7) exp
(
−(1 + max

1≤j≤n
yj)

n∑

i=1

yi

)
≤

n∏

i=1

(1− yi) ≤ exp
(
−

n∑

i=1

yi

)
.

The right-hand inequality remains to hold for all 0 ≤ yi ≤ 1.

Proof. The right-hand inequality follows immediately from the trivial
inequality 1− y ≤ e−y, for all y. The left-hand inequality can be proved by
using the inequality ln(1 − y) ≥ −y − y2 whenever 0 ≤ y < 1/2 (which is
a consequence of the Taylor expansion). Therefore, for all 0 ≤ yi < 1/2, we
have

ln
n∏

i=1

(1− yi) =
n∑

i=1

ln(1− yi) ≥ −
n∑

i=1

yi −
n∑

i=1

y2
i

≥ −
n∑

i=1

yi −
n∑

i=1

yi max
1≤j≤n

yj ≥ −(1 + max
1≤j≤n

yj)
n∑

i=1

yi.

Step 2. For each fixed s (independent of n) and for any subset S =
{i1, . . . , is : 1 < i1 < . . . < is < n} ⊆ N = {1, . . . , n}, (2.4) and (2.5), in
view of the uniformity assumptions in (2.3), yield

∑

j∈N−S
G?tj:n(xt)→ ht(xt), t = 1, 2, as n→∞.



Limit theorems for bivariate extremes 377

Moreover, since

δn = max
1≤j≤n

G?j:n(x) ≤ δ1:n ∧ δ2:n → 0 as n→∞,

we get ∑

j∈N−S
G?j:n(x)→ h(x) as n→∞,

for every fixed s and any subset S ⊆ N .
Step 3. Let {atj:n}j=nj=1 , t = 1, 2, 3, be sequences such that

(2.8) εt:n = max
1≤j≤n

atj:n → 0 as n→∞

and
n∑

i=1

ati:n → at, t = 1, 2, 3, as n→∞.

Then, for any fixed s1, s2 and s3, we get

∑

Q

s1∏

t=1

a1it:n

s1+s2∏

t=s1+1

a2it:n

s1+s2+s3∏

t=s1+s2+1

a3it:n →
as11

s1!
as22

s2!
as33

s3!
as n→∞,

where at:n = (at1:n . . . atn:n)′, t = 1, 2, 3, and Q is the set of permutations
(i1, . . . , is1+s2+s3) of (1, . . . , s1 + s2 + s3) such that i1 < . . . < is1 , is1+1 <
. . . < is1+s2 and is1+s2+1 < . . . < is1+s2+s3 .

Proof. In view of (2.8),

( n∑

j=1

a1j:n

)s1( n∑

j=1

a2j:n

)s2( n∑

j=1

a3j:n

)s3
→ as11 a

s2
2 a

s3
3 ,

which is equivalent to
∑

1≤i1,i2,...,is1 ,is1+1,...,
is1+s2 ,...,is1+s2+s3≤n

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n → as11 a

s2
2 a

s3
3 as n→∞,

where C1 = {1, . . . , s1}, C2 = {s1 + 1, . . . , s1 + s2} and C3 = {s1 + s2 + 1,
. . . , s1 + s2 + s3}, or is equivalent to
(∑

C
+
∑

C′

) ∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n → as11 a

s2
2 a

s3
3 as n→∞,

where
∑
C signifies summation over those subscripts (i1, . . . , is1+s2+s3) for

which all the subscripts related to each Cj , j = 1, 2, 3, are different, i.e.,
C = {1 ≤ i1 6= . . . 6= is1 ≤ n; 1 ≤ is1+1 6= . . . 6= is1+s2 ≤ n; 1 ≤ is1+s2+1 6=
. . . 6= is1+s2+s3 ≤ n} and C′ is the complement of C. Clearly,
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∑

C′

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n

≤
(∑

C′1

+
∑

C′2

+
∑

C′3

) ∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n,

where
∑
C′j signifies summation over those subscripts (i1, . . . , is1+s2+s3) for

which at least two of the subscripts related to Cj are equal, j = 1, 2, 3 (e.g.,
if j = 2 (say) then

∑
C′2 signifies summation over those (i1, . . . , is1+s2+s3)

for which at least two of 1 ≤ is1+1, . . . , is1+s2 ≤ n are equal). On the other
hand, for each j = 1, 2, 3, we can write

∑

C′j

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n =

sj∑

l=2

∑

C′jl

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n,

where
∑
C′jl , l = 2, . . . , sj , signifies summation over those subscripts

(i1, . . . , is1+s2+s3) for which l subscripts related to Cj are equal, l = 2, . . . , sj ,
j = 1, 2, 3, (e.g., if j = 2 (say) then

∑
C′2l signifies summation over those

(i1, . . . , is1+s2+s3) for which l of 1 ≤ is1+1, . . . , is1+s2 ≤ n are equal). How-
ever, in view of (2.8), for each l = 2, . . . , sj and j = 1, 2, 3, it is easy to verify
that, as n→∞,
∑

C′1l

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n

≤ εl−1
1:n

∑

1≤i1,...,is1+s2+s3−l+1≤n

∏

t∈C11

a1it:n

∏

t∈C21

a2it:n

∏

t∈C31

a3it:n → 0,

∑

C′2l

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n

≤ εl−1
2:n

∑

1≤i1,...,is1+s2+s3−l+1≤n

∏

t∈C1
a1it:n

∏

t∈C22

a2it:n

∏

t∈C32

a3it:n → 0,

and
∑

C′3l

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n

≤ εl−1
3:n

∑

1≤i1,...,is1+s2+s3−l+1≤n

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C33

a3it:n → 0,

where C11 = {1, . . . , s1 − l + 1}, C21 = {s1 − l + 2, . . . , s1 + s2 − l + 1},
C31 = {s1+s2−l+2, . . . , s1+s2+s3−l+1}, C22 = {s1+1, . . . , s1+s2−l+1},
C32 = {s1 + s2 − l + 2, . . . , s1 + s2 + s3 − l + 1} and C33 = {s1 + s2 + 1, . . .
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. . . , s1 + s2 + s3 − l + 1}, from which we deduce that
∑

C′

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n → 0 as n→∞.

On the other hand, we have
∑

C

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n

= s1!s2!s3!
∑

Q

∏

t∈C1
a1it:n

∏

t∈C2
a2it:n

∏

t∈C3
a3it:n.

Hence the result.

Step 4. Let n be sufficiently large such that G?ti:n(xt) < 1/2, t = 1, 2
(consequently , G?i:n(x) < 1/2). Then

(2.9)
k−1∑

t=0

k′−1∑

s=0

t∧s∑

r=0∨(t+s−n)

∑

Pr,s,t

t−r∏

j=1

(G?1ij :n(x1)−G?ij :n(x))

×
t∏

j=t−r+1

G?ij :n(x)
t+s−r∏

j=t+1

(G?2ij :n(x2)−G?ij :n(x))

× e−(1+δ1:n+δ2:n)
∑n
j=t+s−r+1(G?1ij :n(x1)+G?2ij :n(x2)−G?ij :n(x))

≤ Φ?k,k′:n(x)

≤
k−1∑

t=0

k′−1∑

s=0

t∧s∑

r=0∨(t+s−n)

∑

Pr,s,t

t−r∏

j=1

(G?1ij :n(x1)−G?ij :n(x))
t∏

j=t−r+1

G?ij :n(x)

×
t+s−r∏

j=t+1

(G?2ij :n(x2)−G?ij :n(x))e−
∑n
j=t+s−r+1(G?1ij :n(x1)+G?2ij :n(x2)−G?ij :n(x))

.

Proof. Upon replacing the functions Φk,k′:n(x), G1j(x1), G2j(x2) and
Gj(x), j = 1, . . . , n, in (2.1) respectively by Φ?k,k′:n(x), G?1j:n(x1), G?2j:n(x2)
and G?j:n(x), j = 1, . . . , n, the proof follows immediately by applying in-
equality (2.7) to (2.1) (note that maxt+s−r+1≤j≤n(G?1ij :n(x1)+G?2ij :n(x2)−
G?ij :n(x)) ≤ δ1:n + δ2:n).

We now conclude the first part of Theorem 2.1 by taking the limit
of (2.9), as n → ∞, as follows. Apply Step 3 with a1:n = (G?11:n(x1) −
G?1:n(x), G?12:n(x1)−G?2:n(x), . . . , G?1n:n(x1)−G?n:n(x))′, a2:n = (G?1:n(x), . . .
. . . , G?n:n(x))′, a3:n=(G?21:n(x2)−G?1:n(x), G?22:n(x2)−G?2:n(x), . . . , G?2n:n(x2)
− G?n:n(x))′, s1 = t − r, s2 = r and s3 = s − r. On the other hand, by ap-
plying Step 2 with S = {i1, . . . , is1+s2+s3}, the sum in the exponent of e in
(2.9) tends to h1(x1) + h2(x2)− h(x). This completes the proof.
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We now turn to the proof of the converse of the theorem. The idea of the
proof is based heavily on the proof of Theorem 5.3.1 of Galambos (1987)
(the converse part of Theorem 5.3.1). Namely, we assume that the uni-
formity assumptions in (2.3) are satisfied. Furthermore, assume the d.f. of
Z?k,k′:n converges weakly to a limit d.f. Φk,k′(x), given by (2.6). Let x be such
that Φk,.(x1) > 0 and Φ.,k′(x2) > 0. We shall prove the validity of (2.4), for
t = 1, 2, and (2.5). The proof will be accomplished in the following two steps.

Step 5. For any fixed h1, h2 and all values of h for which 0 < h <
h1 ∧ h2 <∞, the function

Φ̃k,k′(h1, h2, h)

=
k−1∑

t=0

k′−1∑

s=0

t∧s∑

r=0

1
(t− r)!r!(s− r)! (h1− h)t−rhr(h2− h)s−r exp(−h1− h2 + h)

is uniquely determined by h.

Proof. The proof immediately follows if we observe that

exp(h1 + h2 − h)
∂Φ̃k,k′(h1, h2, h)

∂h

= −
k′−1∑

j=0

k−1∑

i=1

(i−1)∧j∑

r=0

(h1 − h)i−r−1hr(h2 − h)j−r

(i− r − 1)!r!(j − r)!

−
k′−1∑

j=1

k−1∑

i=0

i∧(j−1)∑

r=0

(h1 − h)i−rhr(h2 − h)j−r−1

(i− r)!r!(j − r − 1)!

+
k′−1∑

j=1

k−1∑

i=1

i∧j∑

r=1

(h1 − h)i−rhr−1(h2 − h)j−r

(i− r)!(r − 1)!(j − r)!

+
k′−1∑

j=0

k−1∑

i=0

i∧j∑

r=0

(h1 − h)i−rhr(h2 − h)j−r

(i− r)!r!(j − r)! ,

which after routine calculations yields

∂Φ̃k,k′(h1, h2, h)
∂h

=
(k−1)∧(k′−1)∑

r=0

(h1 − h)k−r−1hr(h2 − h)k
′−r−1

(k − r − 1)!r!(k′ − r − 1)!
exp(−h1 − h2 + h) > 0,

when h1 and h2 are fixed and 0 < h < h1 ∧ h2 < ∞, i.e., the function
Φ̃k,k′(h1, h2, h) is strictly increasing in h when h1 and h2 are fixed (see
Lemma 2.2 of Barakat, 1999, and Barakat, 1997). Hence the result.
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Step 6. Since (2.6) implies (2.4) for t = 1, 2 (by letting respectively
x1 →∞, x2 → ∞ and by applying Theorem 1.1), the elementary inequali-
tiesG?j:n(x) ≤ G?1j:n(x1)∧G?2j:n(x2), j = 1, . . . , n, yield that {∑n

j=1 G
?
j:n(x)}

is bounded. Therefore, we can select a subsequence {n′} of {n} for which
(2.5) holds. Let us repeat the first part of the proof (Steps 1–4) for this sub-
sequence. We find that the limit Φk,k′(x) of Φ?k,k′:n′(x) satisfies (2.6) where
the limit in (2.5) may depend on the actual subsequence {n′}. However, in
view of the result of Step 5, we conclude from the representation (2.6) that
(2.5) cannot depend on n′. This completes the proof.

Corollary 2.1. Let (2.3)–(2.5) be satisfied with a1n = a2n and b1n =
b2n. Then ω1 ≡ ω2 ≤ ∞, where ω1 = sup{x1 : Φk,.(x1) < 1} and ω2 =
sup{x2 : Φ.,k′(x2) < 1}.

Proof. We first note that Theorem A.3 of Balkema et al. (1993) is closely
related to the special case k = k′ = 1 of Theorem 2.1. Therefore, together
with Remark 2.3 it implies the conclusion of the present corollary.

The following result is an immediate consequence of Theorem 2.1.

Corollary 2.2. Assume that Z?k,k′:n has a nondegenerate asymptotic
distribution Φk,k′(x). Then the components of Z?k,k′:n are asymptotically in-
dependent if , and only if , the limit in (2.5) is identically zero i.e., h(x) = 0.

We are now in a position to obtain a general condition under which the
components of the vector Z?k,k′:n will be asymptotically independent. The
following remark will be needed.

Remark 2.4. Let F t:n(xt) = n−1∑n
j=1 Ftj:n(xt), t = 1, 2, and Fn(x) =

n−1∑n
j=1 Fj(x). Then, keeping the notations of Section 1, (2.4) and (2.5)

may be written respectively as nG?t:n(xt) = n(1 − F ?t:n(xt)) → ht(xt), t =
1, 2, as n→∞ and nG?n(x)→ h(x) as n→∞, where G?t:n(xt), t = 1, 2, and
G?n(x) denote respectively the survival functions of F ?t:n(xt), t = 1, 2, and
F ?n(x).

Theorem 2.2. Let x̂t:n = sup{xt : F t:n(xt) < 1}, t = 1, 2. Let further
limn→∞ x̂t:n = x̂t ≤ ∞, t = 1, 2. Then, the components of the vector Z?k,k′:n
are asymptotically independent if , and only if

(2.10) lim
n→∞
x→x̂

Gn(x)
1− Fn(x)

= 0,

where x̂ = (x̂1, x̂2).

Proof. We first observe that, in view of Corollary 2.2, the components of
the vector Z?k,k′:n are asymptotically independent if, and only if, h(x) = 0.
Thus, in order to prove the theorem, we have to prove h(x) = 0 if, and only
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if, (2.10) holds. On the other hand, in view of the elementary relation

(2.11) Gn(x) = G1:n(x1) +G2:n(x2)− (1− Fn(x)),

(2.10) is equivalent to

(2.12) lim
n→∞
x→x̂

G1:n(x1) +G2:n(x2)

G1:n(x1) +G2:n(x2)−Gn(x)
= 1.

Suppose now that (2.12) holds. Appealing to (2.4), (2.5) and Remark
2.4, we can easily get

h1(x1) + h2(x2)
h1(x1) + h2(x2)− h(x)

= 1

for all x such that h1(x1), h2(x2) < ∞, i.e., for all x such that Φk,.(x1),
Φ.,k′(x2) > 0 (note that, in view of Remark 2.4, anx + bn → x̂ when
Φk,.(x1), Φk,k′(x2) > 0), which yields h1(x1) + h2(x2) − h(x) = h1(x1) +
h2(x2), i.e., h(x) = 0. Conversely, suppose that h(x) = 0 and (2.10) does
not hold. Then there exist ε > 0 and sequences {vm} = {(v1m, v2m)}, {nm}
such that vm → x̂ and nm →∞ as m→∞, and

(2.13) G1:nm(v1m) +G2:nm(v2m) ≥ Gnm(vm) ≥ ε(1− Fnm(vm)).

Now choose a subsequence {n?l } = {nml} of {nm} so that

h1(x1) + h2(x2)
n?l + 1

≤ G1:n?l (v?1l) +G2:n?l (v?2l)− 2Gn?l (v?l )(2.14)

≤ G1:n?l (v?1l) +G2:n?l (v?2l) ≤
h1(x1) + h2(x2)

n?l
.

(Note that nG?n(x) → 0. Therefore, n?lG
?
n?l

(v?l ) → 0, where vml = v?l =
(v?1l, v

?
2l) and {vml} is a subsequence of {vm}.) Clearly, we have either

(i) F ?n?l (x) ≥ F ?n?l (v?l ) for infinitely many l, or

(ii) F ?n?l (x) < F ?n?l (v?l ) for infinitely many l.

If (i) holds, then for such l,

(2.15) n?l (1− F ?n?l (x)) ≤ n?l (1− F ?n?l (v?l )).

Clearly, we have

n?l (1− F ?n?l (v?l )) = h1(x1) + h2(x2)

+ n?l

(
−h1(x1) + h2(x2)

n?l
+G1:n?l (v?1l) +G2:n?l (v?2l)−Gn?l (v?l )

)

≤ h1(x1) + h2(x2)

+ n?l

(
−h1(x1) + h2(x2)

n?l
+
h1(x1) + h2(x2)

n?l
− ε(1− F ?n?l (v?l ))

)
,
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which yields

(1 + ε)n?l (1− F ?n?l (v?l )) ≤ h1(x1) + h2(x2).

It follows that

lim inf
l→∞

n?l (1− F ?n?l (v?l )) < h1(x1) + h2(x2),

and hence by (2.15),

lim inf
l→∞

n?l (1− F ?n?l (x)) < h1(x1) + h2(x2),

which contradicts the fact that n(1 − F ?n(x)) = nG?1:n(x1) + nG?2:n(x2) −
nG?n(x)→ h1(x1) + h2(x2) as n→∞ (note that nG?n(x)→ 0).

If (ii) holds, then for such `,

(2.16) n?` (1− F ?n?` (x)) > n?` (1− F ?n?` (v?` )).

Clearly, we have (in view of (2.13) and (2.14))

n?l (1− F ?n?l (v?l )) = h1(x1) + h2(x2)

+ n?l

(
−h1(x1)+h2(x2)

n?l
+(G1:n?l (v?1l)+G2:n?l (v?2l)−2Gn?l (v?l ))+Gn?l (v?l )

)

≥ h1(x1) + h2(x2)

+ n?l

(
−h1(x1) + h2(x2)

n?l
+
h1(x1) + h2(x2)

n?l + 1
+ ε(1− F ?n?l (v?l ))

)

= h1(x1) + h2(x2) + εn?l (1− F ?n?l (v?l ))−
h1(x1) + h2(x2)

n?l + 1
,

which yields

(1− ε)n?l (1− F ?n?l (v?l )) ≥ h1(x1) + h2(x2)− h1(x1) + h2(x2)
n?l + 1

.

Since clearly n?l → ∞, it follows that (since 0 < h1(x1) + h2(x2) < ∞ by
assumption)

lim sup
l→∞

n?l (1− F ?n?l (v?l )) > h1(x1) + h2(x2),

and hence by (2.16),

lim sup
l→∞

n?l (1− F ?n?l (x)) > h1(x1) + h2(x2),

which contradicts again the fact that n(1−F ?n(x)) = nG?1:n(x1)+nG?2:n(x2)−
nG?n(x)→ h1(x1) + h2(x2), as n→∞. Hence the result.

Remark 2.5. Theorem 2.2 can be considered as a substantial general-
ization of Theorem 2.3 of Barakat (1999). On the other hand, Theorem 2.3
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proves the necessity of the Geffroy condition (see Sarhan and Greenberg,
1962) in the case of independent and identically distributed r.v.’s.

We now briefly go over parallel results for V k,k′:n. Keeping the notation
of Remark 2.1 and using the elementary relation min(X11,X12, . . . ,X1n) =
−max(−X11,−X12, . . . ,−X1n), it is easy to write explicitly the d.f. ofV k,k′:n:

Ψk,k′:n(x) = Φ.,k′:n(x2)−Mk,k′:n(x),

where

Mk,k′:n(x) = P (X1,k:n ≥ x1, X2,n−k′+1:n < x2)

=
k−1∑

t=0

k′−1∑

s=0

t∧s∑

r=0∨(t+s−n)

∑

Pr,s,t

t−r∏

j=1

Fij (x)

×
t∏

j=t−r+1

(F1ij (x1)− Fij (x))
t+s−r∏

j=t+1

Gij (x)

×
n∏

j=t+s−r+1

(1−G2ij (x2) + Fij (x)).

Moreover, for any sequence of suitable normalizing constants a′n = (α1n, a2n)
> 0 and b′n=(β1n, b2n), in view of the identity

∑n
i=1G

?
i:n(x)=

∑n
i=1 G

?
2i:n(x2)

−∑n
i=1 F

?
1i:n(x1) +

∑n
i=1 F

?
i:n(x) we have the following theorem.

Theorem 2.3. Assume that the uniformity assumptions

δ′1:n = max
1≤i≤n

F ?1i:n(x1)→ 0 and δ2:n = max
1≤i≤n

G?2i:n(x2)→ 0

as n→∞ are satisfied. Then the d.f. Ψ?k,k′:n(x) = Ψ?k,k′:n(a′nx+b′n) converges
weakly to a nondegenerate d.f. Ψk,k′(x) if , and only if , for all x for which
the two marginals Ψk,.(x1) and Ψ.,k′(x2) of Ψk,k′(x) are positive, the limits

lim
n→∞

n∑

i=1

F ?1i:n(x1) = `1(x1), lim
n→∞

n∑

i=1

G?2i:n(x2) = h2(x2)

are finite, and moreover at least one of the limits

lim
n→∞

n∑

i=1

G?i:n(x) = h′(x), lim
n→∞

n∑

i=1

F ?i:n(x) = `′(x)

is finite. The function Ψk,k′(x) = Φ.,k′(x2)−Mk,k′(x), where

Mk,k′(x) =
k−1∑

t=0

k′−1∑

s=0

t∧s∑

r=0

1
(t− r)!r!(s− r)!(2.17)

× `′t−r(x)(`1(x1)− `′(x))rh′s−r(x)e−h2(x2)−`′(x),
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is a nondegenerate d.f. The actual limit d.f. of V ?k,k′:n = (V ?k,k′:n − b′n)/a′n
is the one given in (2.17). The components of V ?k,k′:n are asymptotically
independent if and only if either h′(x) = h2(x2) or `′(x) = `1(x1).

Finally, we have the following theorem.

Theorem 2.3. Let x̌1:n=inf{x1 : F 1:n(x1)>0}. Let further limn→∞ x̌1:n

= x̌1 ≥ −∞. Then the components of the vector V ?k,k′:n are asymptotically
independent if , and only if ,

lim
n→∞

x→(x̌1,x̂2)

G2:n(x2)−Gn(x)

G2:n(x2) + Fn(x)
= 0

(
or lim

n→∞
x→(x̌1,x̂2)

F 1:n(x1)− Fn(x)

G2:n(x2) + Fn(x)
= 0
)
.
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