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A PARABOLIC SYSTEM IN A WEIGHTED SOBOLEV SPACE

Abstrat. We examine the regularity of solutions of a ertain parabolisystem in the weighted Sobolev spae W 2,1
2,µ , where the weight is of theform rµ, r is the distane from a distinguished axis and µ ∈ (0, 1).1. Introdution. In this paper we onsider a ertain paraboli linearsystem of two equations in a weighted Sobolev spae. Here the weight is rµ,where r denotes the distane from a distinguished axis and µ ∈ (0, 1). Thesolutions of this system are onjugated by boundary onditions. Therefore we�rst analyze weak solutions of loalized problems and next we prove that theyare, together with their derivatives, square integrable with the above weight.Finally, we apply the idea of regularizer, i.e. we glue together the solutionsof the loalized problems and dedue some estimates whih guarantee theunique solvability of the main problem. We want to stress that we have tobe areful as regards onstants. That is why we enumerate all parameterswhih the onstants depend on.Our main problem (see (1) in Set. 3) an be obtained from the Stokesproblem with the slip boundary onditions (see [Za04℄), i.e.

vt − div T(v, p) = f,

div v = 0,

v · n|S = 0,

n · T(v, p) · τi|S = 0, i = 1, 2,

v|t=0 = v(0),where T(v, p) = {ν(vi
xj

+vj
xi)−pδi,j}3

i,j=1, n is the unit outward normal ve-tor to the boundary and τi for i = 1, 2 are tangent vetors on the boundary.Applying the rotation operator to the above problem we dedue problem (1).2000 Mathematis Subjet Classi�ation: 35B65, 35K50.Key words and phrases: weighted Sobolev spae, paraboli BVP.Researh partially supported by MNiSW grant no. 1 P03A 021 30.[169℄ © Instytut Matematyzny PAN, 2007



170 A. Kubia and W. M. Zaj¡zkowski2. Notation and assumptions. For x ∈ Rk we denote by r = r(x)the distane of x from the set {x ∈ Rk; x1 = x2 = 0}, i.e. r(x) =
√
x2

1 + x2
2.If ε > 0, then we de�ne χε(t) := χ(ε−1t), where χ ∈ C∞([0,∞)) satis�es

0 ≤ χ(t) ≤ 1, χ(t) = 1 for t < 1, χ(t) = 0 for t > 2 and |χ(k)(t)| ≤ 2k for
k = 1, 2. We reall the standard notation of funtion spaes. If U ⊆ Rn, then
‖u‖L2,µ(U) := ‖u · rµ‖L2(U). The spae Hm

µ (U) is de�ned as the losure ofthe set of smooth funtions with ompat support in U \ {x; r(x) = 0} withrespet to the norm
‖u‖Hm

µ (U) :=
{ ∑

|α|≤m

‖Dαu‖2
L2,µ+m−|α|(U)

}1/2
.

We denote by Wm
2,µ(U) the spae of funtions u ∈ L2,µ(U) suh that Dαu ∈

L2,µ(U) for |α| ≤ m. The norm is given by
‖u‖W m

2,µ(U) :=
{ ∑

|α|≤m

‖Dαu‖2
L2,µ(U)

}1/2
.

For T > 0, set UT := U × (0, T ); then for even m the spae Wm,m/2
µ (UT ) isde�ned similarly and it is equipped with the norm

‖u‖
W

m,m/2
2,µ (UT )

:=
{ ∑

|α|+2s≤m

‖Ds
tD

α
xu‖2

L2,µ(UT )

}1/2
.

We will also need the spae W 1,0
2,µ(UT ) := {u ∈ L2,µ(UT ); ∇xu ∈ L2,µ(UT )}with the norm ‖u‖

W 1,0
2,µ(UT )

:= {‖u‖2
L2,µ(UT )

+ ‖∇xu‖2
L2,µ(UT )

}1/2. If u ∈
W 1,0

2 (UT ) := W 1,0
2,0 (UT ), then we de�ne

u ∈ V2(U
T ) ⇔ |u|UT := ess sup

t∈[0,T ]
‖u(·, t)‖L2(U) + ‖∇xu‖L2(UT ) <∞.The spae V 1,0

2 (UT ) onsists of u ∈ V2(U
T ) suh that the funtion t 7→

‖u(·, t)‖L2(UT ) is ontinuous.If X is a Banah spae of funtions whih are de�ned on U (UT resp.),then X
◦ denotes the losure of the subset of X onsisting of the smoothfuntions with ompat support in U (U × [0, T ] resp.). If X is a Banahspae of funtions de�ned on UT , then X

◦
denotes the losure of the subsetof X onsisting of the smooth funtions vanishing for t = 0. If S ⊆ ∂U is apart of the boundary of U , then W 3/2,3/4

2,µ (ST ) (W 1/2,1/4
2,µ (ST ) resp.) denotesthe spae of traes on S of funtions u (∂u/∂n resp.) for u ∈W 2,1

2,µ(UT ). Thespaes W
◦

3/2,3/4
2,µ (ST ) and W

◦

1/2,1/4
2,µ (ST ) are de�ned similarly. The norm of ϕin W

3/2,3/4
2,µ (ST ) (W 1/2,1/4

2,µ (ST ) resp.) is the in�mum of ‖u‖
W 2,1

2,µ(UT )
takenover all u ∈ W 2,1

2,µ(UT ) suh that u|S = ϕ (∂u/∂n|S = ϕ resp.). The norms
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◦

3/2,3/4
2,µ (ST ) and W

◦

1/2,1/4
2,µ (ST ) are de�ned analogously. Finally, if m iseven, then for u ∈W

m,m/2
2,µ (UT ) we set

‖u‖Lm
2,µ(UT ) :=

{ ∑

|α|+2s=m

‖Ds
tD

α
xu‖2

L2,µ(UT )

}1/2
.

Our main problem will be onsidered in a domain Ω, whih is an open andbounded subset of R3. We denote by L the axis L := {x ∈ R3; r(x) = 0}.We assume that the boundary ∂Ω is smooth and Ω is axially symmetriwith respet to L and ∂Ω ∩ L = {p1, p2}. The boundary is desribed bythe equality ψ(r, x3)=0, where ψ is some smooth funtion. We assume thatthere exists a smooth vetor-valued funtion a = (a1, a2) de�ned in someneighborhood of ∂Ω suh that a1 = ψr/|∇ψ|, a2 = ψx3/|∇ψ| on ∂Ω and
a|∂Ω is the unit outward normal vetor to ∂Ω denoted by n. Finally, weintrodue the following notation: S := ∂Ω, a := (−a2, a1). Now we are ableto formulate our main problem.3. Main problem. We will onsider the following system of paraboliequations:
(1)





ut − ν∆u = F in ΩT ,
au|S = φ1 on ST ,
∂

∂n
(au)|S = φ2 on ST ,

u|t=0 = u0 in Ω,where u = (u1, u2) and F = (F 1, F 2). We shall prove the following theorem.Theorem 1. Assume that µ ∈ (0, 1) and T > 0. Then for eah F =

(F 1, F 2)∈L2,µ(ΩT )2, u0 ∈W 1
2,µ(Ω), φ1 ∈W 3/2,3/4

2,µ (ST ), φ2 ∈ W
1/2,1/4
2,µ (ST ),if the ompatibility onditions are ful�lled , i.e.

au0|S = φ1|t=0,then there exists a unique solution u = (u1, u2) ∈W 2,1
2,µ(ΩT )2 of problem (1),and for some onstant c = c(Ω, T, µ, ν),

‖u‖W 2,1
2,µ(ΩT )2

≤ c{‖F‖L2,µ(ΩT )2 + ‖φ1‖W
3/2,3/4
2,µ (ST )

+ ‖φ2‖W
1/2,1/4
2,µ (ST )

+ ‖u0‖W 1
2,µ(Ω)}.Remark 1. If we apply Lemma 2.11 in [KZ03℄, then it is enough toexamine the existene of a solution of problem (1) with homogeneous initialondition. Thus by the ompatibility onditions and the equalityW1/2,1/4

2,µ (Sτ)
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= W

◦

1/2,1/4
2,µ (Sτ ) we have to prove that for some τ > 0 the problem

(2) 



ut − ν∆u = F,

au|S = φ1,
∂

∂n
(au)|S = φ2,where F ∈ L2,µ(Ωτ )2, φ1 ∈ W

◦

3/2,3/4
2,µ (Sτ ), φ2 ∈ W

◦

1/2,1/4
2,µ (Sτ ), has a uniquesolution u ∈W

◦

2,1
2,µ(Ωτ )2. Then for some c = c(Ω,µ, ν),

‖u‖W 2,1
2,µ(Ωτ )2 ≤ c{‖F‖L2,µ(Ωτ )2 + ‖φ1‖W

◦

3/2,3/4
2,µ (Sτ )

+ ‖φ2‖W
◦

1/2,1/4
2,µ (Sτ )

}.Aording to the above remark we only have to prove the existene ofsolutions of problem (2). For that purpose we apply the regularizer tehnique(see [La68, Chap. IV, �7℄), whih �rst requires the examination of loalizedproblems.4. The model problem. In this setion we deal with a model problem,i.e. we onsider a paraboli equation on R3 or on a half spae R3
+ withhomogeneous Dirihlet or Neumann boundary ondition. Let us start withthe following remark.Remark 2. If µ ∈ (0, 1), U = R3

+ or U = R3 and f ∈ L2,µ(UT ), then
f ∈ W 1,0

2 (UT )∗, i.e. there exists a onstant c = c(µ) suh that for eah
η ∈W 1,0

2 (UT ),
∣∣∣
\

UT

fη dx dt
∣∣∣ ≤ c‖f‖L2,µ(UT )‖η‖W 1,0

2 (UT )
.Indeed, if we apply the Shwarz inequality twie, then we get (see Setion 2for the de�nition of χ1)∣∣∣

\
UT

fη dx dt
∣∣∣ ≤

∣∣∣
\

UT

χ1fη dx dt
∣∣∣ +

∣∣∣
\

UT

(1 − χ1)fη dx dt
∣∣∣

≤ (‖χ1r
−µη‖L2(UT ) + ‖(1 − χ1)r

−µη‖L2(UT ))‖f‖L2,µ(UT ).Clearly, we have ‖(1 − χ1)r
−µη‖L2(UT ) ≤ ‖η‖L2(UT ). Applying the Hardyinequality [Ha34, Th. 330℄ and the inlusion suppχ1 ⊆ B(0, 2) we get theinequality ‖χ1r

−µη‖L2(UT ) ≤ c(µ)‖η‖W 1,0
2 (UT ).In the next subsetion we shall onsider the existene and uniqueness ofweak solutions of model problems.4.1. Weak solutions. We will denote by B the boundary operator, whihis of Dirihlet type Bw = w|∂U or Neumann type Bw = ∂w

∂x3 |∂U
. We needthe following lemmas:



A paraboli system in a weighted Sobolev spae 173Lemma 1. Assume that µ ∈ (0, 1), U := R3
+ and T > 0. Then foreah f ∈ L2,µ(UT ) there exists a unique weak solution w ∈ V 1,0

2 (UT ) of theproblem
(3) 




wt − ν∆w = f in UT ,

Bw = 0 on ∂U,
w|t=0 = 0.Furthermore, there exists a onstant c = c(T, µ, ν) suh that for eah τ in

(0, T ),(4) |w|Uτ ≤ c‖f‖L2,µ(Uτ ).Lemma 2. Assume that µ ∈ (0, 1), U := R3 and T > 0. Then for eah
f ∈ L2,µ(UT ) there exists a unique weak solution w ∈ V 1,0

2 (UT ) of the prob-lem(5) {
wt − ν∆w = f in UT ,
w|t=0 = 0,Furthermore, there exists a onstant c = c(T, µ, ν) suh that for eah τ in

(0, T ),
|w|Uτ ≤ c‖f‖L2,µ(Uτ ).Proof of Lemma 1. We only onsider the ase of Bw = w|∂U , beausein the other ase we proeed similarly. Hene, suppose that f ∈ L2,µ(UT ),where U = R3

+. Then with the help of Remark 2 and the Riesz theorem weget a unique g ∈W
◦ 1,0

2 (UT ) suh that(6) \
UT

fη dx dt =
\

UT

gη dx dt+
\

UT

∇g∇η dx dt for all η ∈W
◦ 1,0

2 (UT ).If we write g0 := g, gi := ∂g/∂xi, i = 1, 2, 3, then applying Theorem 4.1 and[La68, Chap. III, Lemma 4.1 (1)℄ we get a unique weak solution w ∈ V
◦ 1,0

2 (UT )of the problem
wt − ν∆w = g0 −

3∑

i=1

∂gi

∂xi
in UT , w|R2 = 0, w|t=0 = 0,

i.e. for all η ∈W
◦ 1,1

2 (UT ) suh that η(·, T ) = 0 we have the identity
T\
0

\
U

w · ηt dx dt+ ν

T\
0

\
U

∇w · ∇η dx dt =

T\
0

\
U

(
g0 · η +

3∑

i=1

gi · ηxi

)
dx dtand for eah τ ∈ (0, T ) the estimate |w|Uτ ≤ c

∑3
i=0 ‖gi‖L2(Uτ ) is satis�ed,where c = c(T, ν). By the de�nition of a weak solution and the identity (6),

(1) Theorem 5.1 in the Neumann ase.



174 A. Kubia and W. M. Zaj¡zkowskithe above means that w is a weak solution of problem (3). In aordanewith Remark 2 and the determination of gi we have
3∑

i=0

‖gi‖2
L2(UT ) = ‖g‖2

W 1,0
2 (UT )

=
\

UT

fg dx dt ≤ c(µ)‖f‖L2,µ(UT )‖g‖W 1,0
2 (UT )

,

hene ∑3
i=0 ‖gi‖L2(UT ) ≤ 2c(µ)‖f‖L2,µ(UT ). Thus (4) holds and the proof is�nished.Clearly, Lemma 2 an be proved similarly and in this ase we apply [La68,Chap. III, Theorem 5.2℄.Now we shall obtain estimates in W 2,1

2,µ for the weak solutions given byLemmas 1 and 2.Remark 3. We notie that if w is a weak solution of (3) with Dirihlet(Neumann resp.) boundary ondition, then if we extend w on R3 × (0, T ) byodd (even resp.) re�etion with respet to {x; x3 = 0}, we get a solution of(5) with the r.h.s. obtained by the same extension. Thus it is enough to dealwith weak solutions of problem (5).In the next two subsetions we will dedue estimates in the weightedspae W 2,1
2,µ for the weak solutions of (5).4.2. Estimate of the lower order terms. We now show that weak solutionsare integrable with weight if the data are. More preisely, we prove thefollowing:Lemma 3. Assume that U := R3, f ∈ L2,µ(UT ) and w ∈ V 1,0

2 (UT ) isa weak solution of the problem wt − ν∆w = f in UT and w|t=0 = 0. Thenthere exists a onstant c = c(ν, µ, T ) suh that for eah τ ∈ (0, T ),(7) ‖w‖
W 1,0

2,µ(Uτ )
≤ c‖f‖L2,µ(Uτ ).Proof. From Lemma 2 we get the estimate(8) ‖w‖

W 1,0
2 (Uτ )

≤ c‖f‖L2,µ(Uτ ),where c = c(ν, µ, T ). Clearly,
‖w‖

W 1,0
2,µ(Uτ )

≤ ‖χ1w‖W 1,0
2,µ(Uτ )

+ ‖(1 − χ1)w‖W 1,0
2,µ(Uτ )and

‖χ1w‖W 1,0
2,µ(Uτ )

≤ c(µ)‖w‖
W 1,0

2 (Uτ )
.Thus we only have to estimate the expression ‖(1 − χ1)w‖W 1,0

2,µ(Uτ )
. Denoteby {ηn}n∈N a family of smooth funtions ηn = ηn(r) suh that supp ηn ⊂

{r; 2n−1 < r < 2n+1}, 0 ≤ ηn ≤ 1 and |η(k)
n | ≤ 2−nk for k = 1, 2 and n ∈ Nand ∑∞

n=0 ηn ≡ 1 on supp (1 − χ1). Setting Un = {x ∈ R3; 2n−1 < r < 2n+1}
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‖(1 − χ1)w‖2

W 1,0
2,µ(Uτ )

≤ 6
∞∑

n=0

‖ηnw‖2
W 1,0

2,µ(Uτ )
+ 23+2µ‖w‖2

L2(Uτ ).The funtion ηnw belongs to V 1,0
2 (UT ) and is the unique weak solution ofthe equation

(ηnw)t − ν∆(ηnw) = ηnf − 2ν∇ηn · ∇w − ν∆ηn · w in UT ,where the r.h.s. is in L2(U
T ). Hene there exists a onstant c = c(ν, T ) suhthat

‖ηnw‖W 1,0
2 (Uτ

n)
≤ c{‖f‖L2(Uτ

n) + ‖∇ηn · ∇w‖L2(Uτ
n) + ‖∆ηn · w‖L2(Uτ

n)}.It is lear that ‖∇ηn · ∇w‖L2(Uτ
n) ≤ 2−n‖∇w‖L2(Uτ

n) and ‖∆ηn · w‖L2(Uτ
n) ≤

2−2n‖w‖L2(Uτ
n). Therefore

‖ηnw‖W 1,0
2,µ(Uτ

n) ≤ 2µn+µ‖ηnw‖W 1,0
2 (Uτ

n)

≤ 2µn+µc{‖f‖L2(Uτ
n) + 2−n‖∇w‖L2(Uτ

n) + 2−2n‖w‖L2(Uτ
n)}

≤ 22µc{‖f‖L2,µ(Uτ
n) + 2n(µ−1)−µ‖∇w‖L2(Uτ

n) + 2n(µ−2)−µ‖w‖L2(Uτ
n)}

≤ 22µ+1c{‖f‖L2,µ(Uτ
n) + ‖w‖

W 1,0
2 (Uτ

n)
},where we have used the assumption µ < 1. Thus we see that for some

c = c(ν, µ, T ) the sum ∑∞
n=0 ‖ηnw‖2

W 1,0
2,µ(Uτ

n)
is less than or equal to

c
{ ∞∑

n=0

‖f‖2
L2,µ(Uτ

n) + ‖w‖2
W 1,0

2 (Uτ
n)

}
≤ 2c{‖f‖2

L2,µ(Uτ ) + ‖w‖2
W 1,0

2 (Uτ )
}.Thanks to the estimate (8) the proof is �nished.4.3. Estimate of the seond derivatives. As we will see later, estimatingthe seond derivatives of a weak solution in R3 × (0, T ) an be reduedwith the help of the partial Fourier transform to an appropriate estimate ofsolutions of a ertain problem in R2 with parameter s := νξ22 + iξ1, where

ξ1, ξ2 ∈ R. That is why we need the following lemma.Lemma 4. Assume that µ ∈ (0, 1) and h ∈ H1(R2) is a weak solution of
−∆h + sh = p, where p ∈ L2,µ(R2). Then there exists a onstant c = c(µ)suh that

‖D2h‖L2,µ(R2) + |s|1/2‖Dh‖L2,µ(R2) + |s| ‖h‖L2,µ(R2) ≤ c‖p‖L2,µ(R2).The proof will be divided into three steps, whih we speify in Proposi-tions 1�3. In the �rst and seond steps we follow [SZ83℄.Proposition 1. Assume that µ ∈ (0, 1) and h ∈ H1(R2) is a weaksolution of −∆h+ sh = p, where p ∈ L2,µ(R2). Then there exists a onstant
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c = c(µ) suh that(9) |s|1−µ

\
R2

(|∇h|2 + |s| |h|2) dx ≤ c‖p‖2
L2,µ(R2).Proof. Reall the interpolation inequality(10) \

R2

|η|2|x|−2µ dx ≤ ε2−2µ
\

R2

|∇η|2 dx+ c(µ)ε−2µ
\

R2

|η|2 dx,whih holds for all ε > 0 and η ∈ H1(R2). If we apply the Shwarz inequalityand then the interpolation inequality with ε := |s|−1/2, we get
(11) |s|1−µ

∣∣∣
\

R2

pη dx
∣∣∣ ≤ |s|1−µ‖p‖L2,µ(R2)

( \
R2

|η|2|x|−2µ dx
)1/2

≤ |s|1−µ‖p‖L2,µ(R2)

(
|s|µ−1

\
R2

|∇η|2 dx+ c(µ)|s|µ
\

R2

|η|2 dx
)1/2

= |s|(1−µ)/2‖p‖L2,µ(R2)

( \
R2

|∇η|2 dx+ c(µ)|s|
\

R2

|η|2 dx
)1/2

.By the assumption h satis�es the identity(12) \
R2

∇h · ∇η dx+ s
\

R2

h · η dx =
\

R2

p · η dx for η ∈ H1(R2).If we put η := h(1 + i sign ξ1)|s|1−µ ∈ H1(R2) in (12) and ompare the realparts, then applying (11) we get
|s|1−µ

\
R2

(|∇h|2 + |s| |h|2) dx

≤
√

2 c(µ)|s|(1−µ)/2‖p‖L2,µ(R2)

(\
R2

(|∇h|2 + c(µ)|s| |h|2) dx
)1/2

.Therefore we obtain (9) with the onstant 2c(µ)3.Proposition 2. Assume that µ ∈ (0, 1) and h ∈ H1(R2) is a weaksolution of −∆h+ sh = p, where p ∈ L2,µ(R2). Then there exists a onstant
c = c(µ) suh that(13) |s|

\
R2

(|∇h|2 + |s| |h|2)|x|2µ dx ≤ c‖p‖2
L2,µ(R2).Proof. We �x s and for λ > 1 we de�ne

d1 := {x ∈ R
2 : 0 ≤ |x| < |s|−1/2},

d2 := {x ∈ R
2 : |s|−1/2 ≤ |x| < λ1/2µ|s|−1/2},

d3 := {x ∈ R
2 : λ1/2µ|s|−1/2 ≤ |x|},
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Vλ(x) :=





|s|1−µ for x ∈ d1,
|s| |x|2µ for x ∈ d2,
λ|s|1−µ for x ∈ d3.The funtion Vλ has the following properties:

|∇Vλ|2 =

{
(2µ)2|s|2|x|4µ−2 for x ∈ d2,
0 for x ∈ d1 ∪ d3,

(14)
|∇Vλ|2 · V −1

λ =

{
(2µ)2|s| |x|µ−2 for x ∈ d2,
0 for x ∈ d1 ∪ d3,

(15)
Vλ|x|−2µ ≤ |s| for x ∈ d2 ∪ d3.(16)It is lear that η := hVλ(1 + i sign ξ1) belongs to H1(R2). Hene using (12)for suh η and then applying the Shwarz inequality twie, we obtain

Jλ :=
\

R2

(|∇h|2 + |s||h|2)Vλ dx ≤
√

2
∣∣∣
\

R2

phVλ dx
∣∣∣ +

√
2
∣∣∣
\

R2

∇h∇Vλh dx
∣∣∣

≤
√

2‖p‖L2,µ(R2)

( \
R2

|h|2V 2
λ |x|−2µ dx

)1/2

+
√

2
( \

R2

|∇h|2Vλ dx
)1/2

·
( \

R2

|h|2|∇Vλ|2V −1
λ dx

)1/2
.Therefore, if we apply (14)�(16), then we get

Jλ ≤
√

2‖p‖L2,µ(R2)

(
|s|2−2µ

\
d1

|h|2|x|−2µ dx+ |s|
\

d2∪d3

|h|2Vλ dx
)1/2(17)

+ 2
√

2µ
( \

R2

|∇h|2Vλ dx
)1/2

·
(
|s|2−µ

\
R2

|h|2 dx
)1/2

.

If we apply (10) with η := h and ε := |s|−1/2, and next use Proposition 1,then we get
|s|2−2µ

\
d1

|h|2|x|−2µ dx ≤ c(µ)|s|1−µ
\

R2

(|∇h|2 + |s| |h|2) dx(18)
≤ c̃(µ)‖p‖2

L2,µ(R2).Applying Proposition 1 again we obtain(19) |s|2−µ
\

R2

|h|2 dx ≤ |s|1−µ
\

R2

(|∇h|2 + |s| |h|2) dx ≤ c(µ)‖p‖2
L2,µ(R2).Hene from (17)�(19) we have Jλ ≤ c(µ)‖p‖L2,µ(R2)(‖p‖L2,µ(R2)+Jλ)1/2, thus(20) Jλ ≤ c‖p‖2

L2,µ(R2)



178 A. Kubia and W. M. Zaj¡zkowskifor some c = c(µ). Applying (20) and Proposition 1 we get
|s|

\
d1∪d2

(|∇h|2 + |s| |h|2)|x|2µ dx

= |s|
\
d1

(|∇h|2 + |s| |h|2)|x|2µ dx+
\
d2

(|∇h|2 + |s| |h|2)Vλ dx

≤ |s|1−µ
\
d1

(|∇h|2 + |s| |h|2) dx+
\

R2

(|∇h|2 + |s| |h|2)Vλ dx ≤ c‖p‖2
L2,µ(R2),where c = c(µ). The above estimate holds for λ > 1, thus if λ → ∞, thenwe get (13).Proposition 3. Assume that µ ∈ (0, 1) and h ∈ H1(R2) is a weaksolution of −∆h+ sh = p, where p ∈ L2,µ(R2). Then there exists a onstant

c = c(µ) suh that(21) ‖D2h‖L2,µ(R2) ≤ c‖p‖L2,µ(R2).Proof. We shall multiply h by a suitable ut-o� funtion and then weshall write the produt as a sum (see (27)) whose omponents an be easilyestimated.We �x s and R > 1. We set κ := |s|−1/2R and
hκ := h · ςκ, where ςκ(x) := χκ(|x|) (2).The funtion hκ is in H1(R2) and it is a weak solution of −∆hκ + shκ = G,where

G := p · ςκ − 2∇h · ∇ςκ − h ·∆ςκ.If we use the properties of funtions χ1, ςκ and next apply Proposition 2to h, then we get the estimate(22) ‖G‖L2,µ(R2) ≤ c‖p‖L2,µ(R2) and suppG ⊆ B2κ,where c = c(µ) and Bε denotes the ball with enter at the origin and radius ε.Thus we an apply Proposition 2 to hκ to obtain(23) |s|
\

R2

(|∇hκ|2 + |s| |hκ|2)|x|2µ dx ≤ c(µ)‖G‖2
L2,µ(R2) ≤ c̃(µ)‖p‖2

L2,µ(R2).In partiular, hκ is a weak solution of −∆hκ = qκ, where qκ := G− shκ andby (22) and (23) we have(24) ‖qκ‖L2,µ(R2) ≤ c(µ)‖p‖L2,µ(R2).On the other hand, there exists W ∈ H2
µ(R2) suh that (see Lemma 3.5 in

(2) See Setion 2 for the de�nition of χε.



A paraboli system in a weighted Sobolev spae 179[Za02℄)(25) −∆W = qκ and ‖W‖H2
µ(R2) ≤ c̃(µ)‖qκ‖L2,µ(R2).We set

V := W · ςκ.Then
−∆V = qκςκ − 2∇W · ∇ςκ −W ·∆ςκ.We de�ne U := hκ − V . Then U ∈ H1(R2), beause suppV is ompat.Furthermore,

−∆U = (1 − ςκ)qκ + 2∇W · ∇ςκ +W ·∆ςκ =: tκ.The support of tκ is ompat and does not ontain the origin, hene tκ is in
L2(R

2). Thus U ∈ H2(R2) and(26) ‖D2U‖L2(R2) = ‖tκ‖L2(R2).Clearly, by the de�nition we have(27) hκ = U + V.Now we estimate eah omponent in (27). Applying (26) we obtain
‖D2U‖2

L2,µ(R2) =
\

B2κ

|D2U |2|x|2µ dx ≤ (2κ)2µ
\

B2κ

|D2U |2 dx

= (2κ)2µ‖tκ‖2
L2(R2).We notie that tκ has support in B2κ \Bκ, thus

‖tκ‖2
L2(R2) ≤ 6

\
B2κ\Bκ

(|qκ|2 + |∇W · ∇ςκ|2 + |W ·∆ςκ|2) dx

≤ 6κ−2µ
\

B2κ\Bκ

(|qκ|2 + |∇W · ∇ςκ|2 + |W ·∆ςκ|2)|x|2µ dx

≤ 6κ−2µ
\

B2κ\Bκ

(|qκ|2 + 4κ−2|∇W |2 + 16κ−4|W |2)|x|2µ dx

≤ 211κ−2µ
\

B2κ\Bκ

(|qκ|2 + |x|−2|∇W |2 + |x|−4|W |2)|x|2µ dx

≤ 211κ−2µ(‖qκ‖2
L2,µ(R2) + ‖W‖2

H2
µ(R2)).Thus applying (24) and (25) we have(28) ‖D2U‖L2,µ(R2) ≤ 211(‖qκ‖L2,µ(R2) + ‖W‖H2

µ(R2)) ≤ c‖p‖L2,µ(R2),where c depends only on µ. We an similarly estimate the norm of D2V .Indeed, using the de�nition of V we �nd that ‖D2V ‖2
L2,µ(R2) is less than or
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3
\

R2

(|W ·D2ςκ|2 + 2|∇W · ∇ςκ|2 + |D2W · ςκ|2)|x|2µ dx

≤ 3
\

B2κ\Bκ

(16κ−4|W |2 + 4κ−2|∇W |2)|x|2µ dx+
\

R2

|D2W |2|x|2µ dx

≤ 210
\

B2κ\Bκ

(|x|−4|W |2 + |x|−2|∇W |2)|x|2µ dx+
\

R2

|D2W |2|x|2µ dx

≤ 210‖W‖2
H2

µ(R2).Applying again (24) and (25) we get the estimate(29) ‖D2V ‖L2,µ(R2) ≤ c‖p‖L2,µ(R2),where c = c(µ). Thus aording to (27), if we apply (28) and (29), then weobtain(30) ‖D2hκ‖L2,µ(R2) ≤ c‖p‖L2,µ(R2).By the de�nition of hκ we have
(31) ‖ςκ ·D2h‖L2,µ(R2)

≤ 4‖D2hκ‖L2,µ(R2) + 8‖ |Dh| · |Dςκ| ‖L2,µ(R2) + 4‖h ·D2ςκ‖L2,µ(R2).If we use the properties of ςκ and next the assumption that R > 1, and applythe estimate from Proposition 2 to h, then we get
‖ |Dh| · |Dςκ| ‖L2,µ(R2) + ‖h ·D2ςκ‖L2,µ(R2) ≤ c‖p‖L2,µ(R2),where c = c(µ). Hene the above estimate and estimates (30) and (31) give

‖ςκ ·D2h‖L2,µ(R2) ≤ c‖p‖L2,µ(R2),where c depends only on µ. Letting R→ ∞ yields (21).Lemma 4 is a onsequene of the estimates (13) and (21) from Proposi-tions 2 and 3. Now we are able to dedue the ruial estimate for the weaksolutions of problem (5).Lemma 5. Assume that µ ∈ (0, 1), U := R3 and T > 0. Then thereexists a onstant c = c(µ, ν, T ) with the following property. If w ∈ V 1,0
2 (UT )is a weak solution of (5) with f ∈ L2,µ(UT ), then for eah τ ∈ (0, T ),(32) ‖w‖W 2,1

2,µ(Uτ ) ≤ c‖f‖L2,µ(Uτ ).Proof. By Lemma 3 it is enough to estimate the norms ‖wt‖L2,µ(Uτ ) and
‖D2

xw‖L2,µ(Uτ ). To do it we shall apply partial Fourier transform with respetto x3 and t. However, w is de�ned only for t ∈ (0, T ), so we have to extend it.Moreover, we want to obtain estimates of the norm on U τ for eah τ ∈ (0, T )



A paraboli system in a weighted Sobolev spae 181with a onstant independent of τ . Therefore suppose that τ ∈ (0, T ); we mayassume that f(x, t) is zero for negative t. Then we de�ne f∗(x, t) = f(x, t)for t < τ and f∗(x, t) = f(x, 2τ − t) for t > τ . Let ω = ω(t) be a smoothfuntion suh that ω(t) = 1 for t < τ , ω(t) = 0 for t > τ + 1 =: τ ′ and
|ω(k)(t)| ≤ 2k for k = 0, 1. Clearly, ‖f∗‖L2,µ(Uτ ′ ) ≤ 2‖f‖L2,µ(Uτ ), hene fromLemma 2 we get a unique weak solution w∗ ∈ V 1,0

2 (U τ ′
) of the problem

w∗
t − ν∆w∗ = f∗ in U τ ′ and w∗

|t=0 = 0. We extend w∗ onto R3 × (−∞, τ ′)by putting zero for negative t. We de�ne(33) v := ωw∗.Then vt − ν∆v = ωf∗ + ωtw
∗ =: g. It is lear that ‖ωf∗‖L2,µ(R3×R) ≤

2‖f‖L2,µ(Uτ ), and applying Lemma 3 we get
‖ωtw

∗‖L2,µ(R3×R) ≤ 2‖w∗‖L2,µ(Uτ ′ ) ≤ 2c‖f∗‖L2,µ(Uτ ′ ) ≤ 4c‖f‖L2,µ(Uτ ),where c omes from Lemma 3. Thus we showed that for some c = c(ν, µ, T ),(34) ‖g‖L2,µ(R3×R) ≤ c‖f‖L2,µ(Uτ ).Therefore v ∈ V2(R
3 × R) ∩ L2(R

3 × R) is a weak solution of vt − ν∆v = gwith g ∈ L2,µ(R3 × R), i.e. for eah η ∈W 1,1
2 (R3 × R),(35) −

\
R3×R

v · ηt dx dt+ ν
\

R3×R

∇v · ∇η dx dt =
\

R3×R

g · η dx dt.We shall show that there exists a onstant c = c(ν, µ) suh that(36) ‖vt‖L2,µ(R3×R) + ‖D2
xv‖L2,µ(R3×R) ≤ c‖g‖L2,µ(R3×R).For this purpose we denote by ṽ the partial Fourier transform of v withrespet to x3 and t, i.e.

ṽ(x′, ξ2, ξ1) :=

∞\
−∞

∞\
−∞

v(x′, x3, t) · e−i(x3ξ2+tξ1) dx3 dt,where x′ = (x1, x2). The identity (35) shows that for a.e. ξ1, ξ2 ∈ R,
ν
\

R2

∇′ṽ · ∇′η dx′ + s
\

R2

ṽ · η dx′ =
\

R2

g̃ · η dx′ for eah η ∈ H1(R2),where g̃ is the partial Fourier transform of g, s := νξ22 + iξ1 and the operator
∇′ ats on the x′ variable. Thus for a.e. ξ1, ξ2 ∈ R the funtion ṽ(·, ξ2, ξ1) ∈
H1(R2) is a weak solution of −ν∆′ṽ + sṽ = g̃, where g̃(·, ξ2, ξ1) ∈ L2,µ(R2).Lemma 4 yields the estimate\

R2

(|D2ṽ(x′, ξ2, ξ1)|2 + |ξ2Dṽ(x′, ξ2, ξ1)|2 + |ξ22 ṽ(x′, ξ2, ξ1)|2)|x′|2µ dx′

+
\

R2

|ξ1ṽ(x′, ξ2, ξ1)|2|x′|2µ dx′ ≤ c(ν, µ)
\

R2

g̃(x′, ξ2, ξ1)|x′|2µ dx′



182 A. Kubia and W. M. Zaj¡zkowskifor a.e. ξ1, ξ2 ∈ R. If we integrate it with respet to ξ1, ξ2 ∈ R and nextapply the Parseval identity, then we get (36). By the uniqueness of solutionsof (5) in V 1,0
2 (U τ ) and the de�nition (33) we have w = w∗ = v in U τ . Heneapplying Lemma 3 to v ∈ V 1,0

2 (UT ), next (36) and �nally (34) we deduethe estimate
‖w‖

W 2,1
2,µ(Uτ )

= ‖v‖
W 2,1

2,µ(Uτ )
≤ c‖g‖L2,µ(Uτ ) ≤ c̃‖f‖L2,µ(Uτ ),where c̃ depends only on ν, µ and T .Remark 4. Evidently, Lemma 4 is valid if we replae s = νξ22 + iξ1 by

s̃ := ξ2, where ξ ∈ R. Hene, if u ∈ H1(R3) is a weak solution of −∆u =
f ∈ L2,µ(R3), then ‖D2u‖L2,µ(R3) ≤ c(µ)‖f‖L2,µ(R3). The lower order termsan be estimated as in the proof of Lemma 3, provided we already have theestimate ‖u‖H1(R3) ≤ c‖∆u‖L2(R3).To apply the regularizer method for problem (2) we need the followinglemma.Lemma 6. Assume that µ ∈ (0, 1), U := R3

+, S := ∂U and T > 0.Then there exists a onstant c = c(ν, µ, T ) with the following property. If
d1, d2 ∈ R satisfy d2

1 + d2
2 = 1, then for eah f = (f1, f2) ∈ L2,µ(UT )2,and any ψ1 ∈ W

◦

3/2,3/4
2,µ (ST ), ψ2 ∈ W

◦

1/2,1/4
2,µ (ST ) there exists a unique weaksolution w = (w1, w2) ∈ V 1,0

2 (UT )2 of the problem
(37)





wt − ν∆w = f in UT ,
dw = ψ1 on ST ,
∂

∂x3
(dw) = ψ2 on ST ,

w|t=0 = 0 on U ,where d = (d1, d2), d = (−d2, d1). Furthermore, for eah τ ∈ (0, T ),(38) ‖w‖W 2,1
2,µ(Uτ )2 ≤ c{‖f‖L2,µ(Uτ )2 + ‖ψ1‖W

◦

3/2,3/4
2,µ (Sτ )

+ ‖ψ2‖W
◦

1/2,1/4
2,µ (Sτ )

}.Proof. We de�ne g := (df, df) and onsider the system
(39)





ut − ν∆u = g in UT ,
u1 = ψ1 on ST ,
∂

∂x3
u2 = ψ2 on ST ,

u|t=0 = 0 on U ,where u = (u1, u2). The existene of weak solutions of (39) with homo-geneous boundary onditions follows from Lemma 1. The estimate an bededued with the help of Remark 3 and Lemma 5. Finally, system (39) withnonhomogeneous boundary onditions an be redued to the homogeneous



A paraboli system in a weighted Sobolev spae 183one with the help of the trae theorem. Thus system (39) has a unique weaksolution u = (u1, u2) ∈ V 1,0
2 (UT )2, whih satis�es the estimate

‖u‖
W 2,1

2,µ(Uτ )2
≤ c{‖g‖L2,µ(Ωτ )2 + ‖ψ1‖W

◦

3/2,3/4
2,µ (Sτ )

+ ‖ψ2‖W
◦

1/2,1/4
2,µ (Sτ )

},where c = c(ν, µ, T ). We de�ne w1 := du, w2 := du. Then simple alula-tions show that w = (w1, w2) is a weak solution of (37) and ‖w1‖2 +‖w2‖2 =
‖u1‖2 + ‖u2‖2, where ‖ · ‖ := ‖ · ‖W 2,1

2,µ(Uτ ). Clearly, we have ‖g‖L2,µ(Ωτ )2 =

‖f‖L2,µ(Ωτ )2 , thus the above estimate gives (38). Finally, system (37) isuniquely solvable, beause if w ∈ V 1,0
2 (UT )2 is a weak solution of the homo-geneous problem, then u = (dw, dw) is a weak solution of the homogeneoussystem (39). By the uniqueness of solutions of the latter problem we have

u ≡ 0. Thus w ≡ 0, sine w = (du, du).5. Problem in a bounded domain. In this setion we prove Theo-rem 1. By Remark 1 we have to show that there exists τ > 0 suh that prob-lem (2) is solvable. We apply the regularizer tehnique (see [La68, Chap. IV,�7℄). Thus we have to de�ne a ontinuous linear operator R suh that if
A denotes the operator assoiated with problem (2), then for τ > 0 smallenough, ‖AR − Id‖ < 1 and ‖RA − Id‖ < 1. Clearly, this means that A isinvertible, hene problem (2) is uniquely solvable.5.1. The regularizer. By the assumption the boundary of Ω is smooth.Thus there exists λ0 ∈ (0, 1) suh that for eah λ ∈ (0, λ0) there are familiesof subsets of Ω denoted by {ω(k)}k=1,...,Kλ

and {Ω(k)}k=1,...,Kλ
whih havethe following properties:(P1) ω(k) ⊆ Ω(k) for eah k, ⋃Kλ

k=1 ω
(k) =

⋃Kλ
k=1Ω

(k) = Ω,(P2) there exists N0, independent of λ, suh that any intersetion of
N0 + 1 sets from the family {Ω(k)}k=1,...,Kλ

is empty,(P3) {1, . . . ,Kλ} is a disjoint union of subsets Dλ, Oλ,Nλ,Mλ and thereexists β ∈ (1, 3/2), independent of λ, suh that if k ∈ Oλ ∪ Mλ,then ω(k) and Ω(k) are ubes with sides of length λ and βλ re-spetively and enter q(k) ∈ Ω. If k ∈ Nλ ∪ Dλ, then ω(k) =
Ω ∩ K1 and Ω(k) = Ω ∩ K2, where K1 and K2 are ubes withsides of length λ and βλ respetively and enter q(k) ∈ ∂Ω ∩ ω(k).If k ∈ Oλ, then q(k) ∈ L and dist(Ω(k), ∂Ω) ≥ λβ/2. If k ∈
Nλ, then ω(k) ∩ ∂Ω 6= ∅ and Ω(k) ∩ L = ∅. If k ∈ Dλ, then
ω(k) ∩ ∂Ω 6= ∅ and q(k) = p1 or q(k) = p2, where {p1, p2} =
∂Ω ∩ L,(P4) there exists γ ∈ (

√
3/2, 1), independent of λ, suh that if d(k) :=

dist(q(k), L), then mink∈Mλ∪Nλ
d(k) ≥ γλ.



184 A. Kubia and W. M. Zaj¡zkowskiRemark 5. In order to apply the regularizer we have to onsider theloal problems in four ases: in the neighborhoods of the axis L disjoint(k ∈ Oλ) and not disjoint (k ∈ Dλ) from ∂Ω, and away from the axis L inthe neighborhoods disjoint (k ∈ Mλ) and not disjoint (k ∈ Nλ) from ∂Ω.The �rst two ases will be onsidered in a weighted spae. The remainingones will be onsidered in a Sobolev spae without weight. Then the desiredestimates in weighted spaes are guaranteed by the ondition (P4).The smooth boundary of Ω is loally the graph of a smooth funtion.Hene we introdue a loal oordinate system y = (y1, y2, y3) with enterat q(k) suh that if k ∈ Dλ ∪ Nλ, then S(k) := ∂Ω ∩ Ω(k) is desribedby y3 = f (k)(y1, y2), where f (k) is smooth and max(|y1|, |y2|) < λβ. We alsointrodue the oordinates Zk = (Zk,1, Zk,2, Zk,3), where Zk,i := yi for i = 1, 2and Zk,3 := y3 − f (k)(y1, y2). If k ∈ Oλ ∪Mλ, then Zk = (Zk,1, Zk,2, Zk,3) isthe artesian oordinate system with enter at q(k). The smoothness of ∂Ωguarantees that the funtions
η1(λ) := max

k∈Dλ∪Nλ

sup
x∈Ω(k)

∣∣∣
3∑

l,m=1

∇Zk,m · ∇Zk,l(x) −∇Zk,m · ∇Zk,l(q
(k))

∣∣∣,

η2(λ) := max
k∈Dλ∪Nλ

sup
x∈Ω(k)

|a− a(q(k))|have the following property:(40) η1(λ) → 0 and η2(λ) → 0 as λ→ 0.Let ca denote the norm of a in W 1,∞ and
cΩ = max{‖DlZk‖L∞(Ω(k)), ‖DlZ−1

k ‖L∞(Ω(k)); k ∈ Dλ ∪Nλ, l = 1, 2}.We set
Ω̂(k) := Zk(Ω

(k)), ω̂(k) := Zk(ω
(k)), Ŝ(k) := Zk(S

(k)).Let {ξ(k); k = 1, . . . ,Kλ} be a family of smooth funtions suh that 0 ≤
ξ(k)(x) ≤ 1, ξ(k)(x) = 1 for x ∈ ω(k), ξ(k)(x) = 0 for x ∈ Ω \ Ω(k) and
∂ξ(k)

∂n |∂U
= 0. It is lear that (P3) gives |Dm

x ξ
(k)(x)| ≤ cλ−|m| for |m| ≤ 2,where c=c(β). From (P1) and (P2) we dedue that 1≤∑Kλ

k=1 (ξ(k)(x))2≤N0.We de�ne(41) η(k)(x) :=
ξ(k)

∑Kλ
l=1(ξ

(l)(x))2
.Then η(k)(x) = 0 for x ∈ Ω \Ω(k), ∂η(k)

∂n |∂U
= 0 and

Kλ∑

k=1

η(k) · ξ(k) ≡ 1 on Ω,(42)
|Dm

x η
(k)(x)| ≤ cλ−|m| for |m| ≤ 2,(43)



A paraboli system in a weighted Sobolev spae 185where c = c(β,N0). We introdue the following notation:
Y τ (Ω(k)) := L2,µ(Ω(k),τ )2 ×W

◦

3/2,3/4
2,µ (S(k),τ ) ×W

◦

1/2,1/4
2,µ (S(k),τ ),

Xτ (Ω(k)) := W
◦

2,1
2,µ(Ω(k),τ )2.The spaes Y τ (Ω) and Xτ (Ω) are de�ned similarly, by dropping the super-sript (k). We denote by A the operator assoiated with problem (2), i.e.

A : Xτ (Ω) → Y τ (Ω), and for u = (u1, u2) ∈ Xτ (Ω) we de�ne
Au =

[(
∂

∂t
− ν∆

)
u, au|S ,

∂

∂n
(au)|S

]
.We shall show that for some τ ∈ (0, 1) small enough, the operator A isinvertible. In order to do it we shall de�ne a ontinuous linear operator

R : Y τ (Ω) → Xτ (Ω) suh that(44) ‖AR− Id‖Y τ (Ω) < 1 and ‖RA− Id‖Xτ (Ω) < 1for some positive τ . Clearly, (44) guarantees that A−1 exists. We shall de�ne
R to be the sum of η(k)R(k), where R(k) : Y τ (Ω) → Xτ (Ω(k)) will be linear,ontinuous and for eah k ∈ {1, . . . ,Kλ} and h ∈ Y τ (Ω),(45) ‖R(k)h‖Xτ (Ω(k)) ≤ c‖h‖Y τ (Ω(k)),where c = c(cΩ, µ, ν). In further onsiderations we shall assume that thenumbers λ and τ satisfy(46) τ/λ2 ≤ κ, where κ ≤ 1.Assume that h = (F 1, F 2, φ1, φ2) ∈ Y τ (Ω). We have to onsider eahase of k. We de�ne R(k)h as follows.Case of k ∈ Dλ. We set(47) fi(x, t) := ξ(k)F i(Z−1

k (x), t),

ψi(x, t) := ξ(k)φi(Z
−1
k (x), t) for i = 1, 2.Clearly, fi, ψi satisfy the assumptions of Lemma 6, thus we get a weaksolution w(k) = (w

(k)
1 , w

(k)
2 ) of problem (37), where we set d := a(q(k)). Wede�ne(48) R(k)h(x, t) := w(k)(Zk(x), t).Hene using the estimate (38) we get

(49) ‖R(k)h‖Xτ (Ω(k)) ≤ cΩ‖w(k)‖
W 2,1

2,µ(Ω̂(k),τ )2

≤ c{‖f‖
L2,µ(Ω̂(k),τ )2

+ ‖ψ1‖
W
◦

3/2,3/4
2,µ (Ŝ(k),τ )

+ ‖ψ2‖
W
◦

1/2,1/4
2,µ (Ŝ(k),τ )

},where c = c(ν, µ, cΩ). Clearly, ‖fi‖
L2,µ(Ω̂(k),τ )

≤ cΩ‖F i‖L2,µ(Ω(k),τ ). Before weestimate the remaining terms in (49) we notie the following



186 A. Kubia and W. M. Zaj¡zkowskiRemark 6. There exists a onstant c = c(µ, cΩ) suh that for eah w ∈
W
◦

2,1
2,µ(Ω(k),τ ) and for |m| ≤ 1, ‖Dm

x w‖L2,µ(Ω(k)) ≤ cτ1−|m|/2‖w‖L2
2,µ(Ω(k),τ ).Indeed, this is a onsequene of vanishing of w for t = 0 and for |m| = 1 itmay be dedued with the help of an interpolation inequality.Remark 7. The trae operator v 7→ v|S(k) (v 7→ ∂v

∂n |S(k) resp.) is linearand ontinuous from W
◦

2,1
2,µ(Ω(k),τ ) onto W

◦

3/2,3/4
2,µ (S(k),τ ) (W

◦

1/2,1/4
2,µ (S(k),τ )resp.), therefore it has a right inverse, whih is also linear and ontinuous (3).We hose the norm in the spae of traes so as to get independene of thenorm of the trae operator and of its right inverse from λ and τ .Utilizing the right inverse of the trae operator we get a ontinuation

Φ1 ∈W
◦

2,1
2,µ(Ω(k),τ ) of φ1 ∈W

◦

3/2,3/4
2,µ (S(k),τ ). Then

‖ψ1‖
W
◦

3/2,3/4
2,µ (Ŝ(k),τ )

≤ ‖ξ(k)Φ1(Z
−1
k (·))‖

W
◦

2,1
2,µ(Ω̂(k),τ )

≤ cΩ‖ξ(k)Φ1‖W
◦

2,1
2,µ(Ω(k),τ ) ≤ c(cΩ)(1 + λ−1 + λ−2)‖Φ1‖L2,µ(Ω(k),τ )

+ c(cΩ)[(1 + λ−1)‖∇Φ1‖L2,µ(Ω(k),τ ) + ‖Φ1‖L2
2,µ(Ω(k),τ )]

≤ c(cΩ, µ){τ1/2(κ1/2 + τ1/2 + 1) + κ1/2 + κ+ 1}‖Φ1‖L2
2,µ(Ω(k),τ )

≤ c(cΩ, µ)‖φ1‖W
◦

3/2,3/4
2,µ (S(k),τ )

,where we applied property (P3), ondition (46) and Remark 6.Similarly we prove the estimate
‖ψ2‖

W
◦

1/2,1/4
2,µ (Ŝ(k),τ )

≤ c(cΩ, µ)‖φ2‖W
◦

1/2,1/4
2,µ (S(k),τ )

.Thus from (49) we dedue (45) for k ∈ Dλ, where c = c(cΩ, µ, ν), provided(46) holds.Case of k ∈ Oλ. We de�ne fi as in (47). With the help of Lemma 2we get w(k) = (w
(k)
1 , w

(k)
2 ) suh that w(k)

i is a weak solution of (5) with r.h.s.equal to fi, i = 1, 2. We de�ne R(k)h by (48). Then the estimate (32) gives(45) with c = c(µ, ν).Remark 8. In the remaining ases the sets Ω(k) are disjoint from theaxis L. Therefore we may onsider the loal solutions in the spae withoutweight. However, we have to proeed arefully, beause we need estimatesin weighted spaes.Case of k ∈ Mλ. Let fi be as in (47). Then
‖fi‖

L2(Ω̂(k),τ )
≤ sup

Ω(k)

r−µ · ‖F i‖L2,µ(Ω(k),τ ).

(3) Some details may be found in §6 of [Ku05℄.



A paraboli system in a weighted Sobolev spae 187By (P3) and (P4) we have supΩ(k) r−µ ≤ λµ(γ − β/2)µ < ∞, thus fi aresquare integrable. Let w(k)
i be a weak solution of (5) with r.h.s. fi, and set

w(k) = (w
(k)
1 , w

(k)
2 ). We de�ne R(k)h by (48) and apply the Hölder inequalityto get

‖R(k)h‖
W 2,1

2,µ(Ω(k),τ )2
≤ sup

Ω(k)

rµ · ‖R(k)h‖
W 2,1

2 (Ω(k),τ )2
≤ c sup

Ω(k)

rµ · ‖f‖
L2(Ω̂(k),τ )2

≤ c sup
Ω(k)

rµ · ‖F‖L2(Ω(k),τ )2 ≤ c sup
Ω(k)

rµ · sup
Ω(k)

r−µ · ‖F‖L2,µ(Ω(k),τ )2 ,where c = c(µ, ν). The sets Ω(k) satisfy (P3) and (P4), whih guarantee theestimate
sup
Ω(k)

rµ · sup
Ω(k)

r−µ ≤
(
γ + β/2

γ − β/2

)µ

independently of λ. Thus we get (45) with c = c(µ, ν).Case of k ∈ Nλ. We de�ne fi, ψi as in (47) and let w(k) = (w
(k)
1 , w

(k)
2 )be a weak solution of (37). We de�ne R(k)h by (48). We use properties (P3)and (P4) as in the previous ase and the estimates used in the �rst ase.Thus we get (45) with c = c(cΩ, µ, ν).In this way we have shown the estimate (45) for eah k ∈ {1, . . . ,Kλ},where c = c(cΩ, µ, ν), provided (46) holds. Clearly, if h ∈ Y τ (Ω), then

η(k)R(k)h ∈ Xτ (Ω). We de�ne the operator R : Y τ (Ω) → Xτ (Ω) by
(50) Rh :=

Kλ∑

k=1

η(k)R(k)h for h ∈ Y τ (Ω).

It is lear that R is linear. From the estimate (45) we get
‖Rh‖2

Xτ (Ω) ≤ c(µ, cΩ)‖Rh‖2
L2

2,µ(Ωτ )2

≤ c(µ, cΩ, N0)

Kλ∑

k=1

‖η(k)R(k)h‖2
L2

2,µ(Ω(k),τ )2

≤ c(µ, cΩ, κ,N0)

Kλ∑

k=1

‖R(k)h‖2
L2

2,µ(Ω(k),τ )2
≤ c

Kλ∑

k=1

‖h‖2
Y τ (Ω(k))

,

where c = c(µ, ν, cΩ, N0), provided (46) holds. Hene R is ontinuous, be-ause ∑Kλ
k=1 ‖h‖2

Y τ (Ω(k))
≤ N0‖h‖2

Y τ (Ω).5.2. Estimate of the regularizer. Now we prove the estimates (44). Letus start with the �rst one. If h = (F 1, F 2, φ1, φ2) ∈ Y τ (Ω), then by (42) wemay write
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(51) ARh− h = A

Kλ∑

k=1

η(k)R(k)h−
Kλ∑

k=1

η(k) · ξ(k)h.Remark 9. In this subsetion all onstants depend only on µ, ν, cΩ and
N0 and may vary from line to line. The estimates below hold for all λ and τthat satisfy (46).If i = 1, 2, then we denote by R(k),i the ith oordinate of R(k)h, henethe �rst two oordinates in (51) are equal to
(52)

Kλ∑

k=1

η(k)

[(
∂

∂t
− ν∆

)
R(k),ih− ξ(k)F i

]

− 2ν

Kλ∑

k=1

∇η(k) · ∇R(k),ih− ν

Kλ∑

k=1

∆η(k) ·R(k),ih.The funtion R(k),i was de�ned by a smooth hange of variables from wiwhih satis�es the equation (∂/∂t− ν∇)wi(x, t) = ξ(k)F i(Z−1
k (x), t). Hene,with the help of (45), after straightforward alulations, the �rst sum in (52)is estimated by c(η1(λ)+τ1/2)‖h‖Y τ (Ω). The norm of the seond sum in (52)an be estimated by cκ1/2(

∑Kλ
k=1 ‖R(k),ih‖2

L2
2,µ(Ω(k),τ )

)1/2. Thus by (45) it isat most cκ1/2‖h‖Y τ (Ω). Similarly the norm of the last sum in (52) an beestimated by cκ‖h‖Y τ (Ω). Summarizing, the norm in L2,µ(Ωτ ) of the �rsttwo oordinates of (51) is estimated by(53) c(η1(λ) + τ1/2 + κ1/2 + κ)‖h‖Y τ (Ω).The third oordinate of (51) equals
(aRh)|S − φ1 =

∑

k∈Dλ∪Nλ

η(k)[aR(k)h|S − ξ(k)φ1]

=
∑

k∈Dλ∪Nλ

η(k)[(a− a(q(k)))R(k)h|S ],beause R(k)h satis�es the appropriate boundary ondition. Hene, if weapply the trae theorem and the estimate (45), then the norm of this funtionin W
◦

3/2,3/4
2,µ (Sτ ) is at most(54) cη2(λ)‖h‖Y τ (Ω).Finally, the last oordinate of (51) is equal to
[
∂

∂n
(aRh)

]

|S

− φ2 =

[
∂

∂n

(
a

Kλ∑

k=1

η(k)R(k)h
)]

|S

− φ2

=

[
∂a

∂n

Kλ∑

k=1

η(k)R(k)h

]

|S

+

[
a

Kλ∑

k=1

∂η(k)

∂n
R(k)h

]

|S
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+

[ Kλ∑

k=1

η(k)(a− a(q(k)))
∂R(k)h

∂n

]

|S

+

[ Kλ∑

k=1

η(k)a(q(k))
∂R(k)h

∂n

]

|S

− φ2.Clearly, the last two terms vanish, beause R(k)h satis�es the appropriateboundary ondition. We reall that the normal derivative of η(k) vanishes onthe boundary, therefore the above expression is equal to
{
∂

∂n

[ Kλ∑

k=1

η(k)(a− a(q(k)))R(k)h
]}

|S

.Hene, the trae theorem, Remark 6 and the estimate (45) show that thenorm in W
◦

1/2,1/4
2,µ (Sτ ) is less than or equal to(55) cη2(λ)‖h‖Y τ (Ω).To sum up, from (53)�(55) we get(56) ‖ARh− h‖Y τ (Ω) ≤ c1(η1(λ) + η2(λ) + τ1/2 + κ1/2 + κ)‖h‖Y τ (Ω).Now we turn our attention to the seond estimate in (44). Suppose that

u ∈ Xτ (Ω). Then we get
‖RAu− u‖2

Xτ (Ω) ≤ c

Kλ∑

k=1

‖η(k)(R(k)Au− ξ(k)u)‖2
Xτ (Ω(k))

(57)
≤ c

Kλ∑

k=1

‖η(k)R(k)(A−A(k))u‖2
Xτ (Ω(k))

+ c

Kλ∑

k=1

‖η(k)
(
R(k)A(k)u− ξ(k)u

)
‖2

Xτ (Ω(k))
,

where A(k) denotes the operator A with oe�ients �frozen� at q(k), i.e.
A(k)u :=

[(
∂

∂t
− ν∆

)
u, a(q(k))u|S ,

∂

∂n
(a(q(k))u)|S

]
.For the �rst sum in (57), aording to Remark 6, the estimate (45) and thetrae theorem we obtain

‖η(k)R(k)(A−A(k))u‖Xτ (Ω(k)) ≤ c‖R(k)(A−A(k))u‖Xτ (Ω(k))(58)
≤ c‖(A−A(k))u‖Y τ (Ω(k))

≤ cη2(λ)‖u‖Xτ (Ω(k)).The seond sum in (57) may be estimated in the following manner. Let
y := Zk(x) be a loal oordinate with origin at q(k). Then R(k)A(k)u(x, t) =
w(k)(y, t), where w(k) is a solution of the appropriate problem. Hene, theestimates (32) and (38) yield
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‖η(k)(R(k)A(k)u− ξ(k)u)‖

W
◦

2,1
2,µ(Ω(k),τ )2

≤ c‖η̂(k)w(k) − ̂η(k)ξ(k)u‖
W
◦

2,1
2,µ(Ω̂(k),τ )2

≤ c

{∥∥∥∥
(
∂

∂t
− ν∆y

)
[η̂(k)w(k) − ̂η(k)ξ(k)u]

∥∥∥∥
L2,µ(Ω̂(k),τ )2

+ δk‖a(q(k))[η̂(k)w(k) − ̂η(k)ξ(k)u]
|Ŝ(k)

‖
W
◦

3/2,3/4
2,µ (Ŝ(k),τ )

+ δk

∥∥∥∥
∂

∂y3
[a(q(k))(η̂(k)w(k) − ̂η(k)ξ(k)u)]

|Ŝ(k)

∥∥∥∥
W
◦

1/2,1/4
2,µ (Ŝ(k),τ )

}
,

where the hat ̂ over a funtion denotes this funtion in the y oordinates,and δk = 0 for k ∈ Mλ ∪Oλ and δk = 1 for k ∈ Dλ ∪Nλ. A straightforwardalulation gives
(
∂

∂t
− ν∆y

)
[w(k)(y, t) − ξ(k)u(Z−1

k (y), t)] = ν∆yξ
(k) · u(Z−1

k (y), t)

+ 2ν∇yξ
(k) · ∇y[u(Z

−1
k (y), t)] + νξ(k)

3∑

m=1

∂u

∂xm
(Z−1

k (y), t) ·∆yZ
−1
k,m

+ νξ(k)
3∑

n,m=1

∂2u

∂xn∂xm
(Z−1

k (y), t)

· [∇yZ
−1
k,m · ∇yZ

−1
k,n(y) −∇yZ

−1
k,m · ∇yZ

−1
k,n(0)].Thus, as before, the above norm in L2,µ(Ω̂(k),τ )2 an be estimated by

c(κ1/2 + κ+ τ1/2 + η1(λ))‖u‖L2
2,µ(Ω(k),τ )2 .If k ∈ Dλ∪Nλ, then aording to the boundary onditions for w(k) on Ŝ(k),τwe have

a(q(k))[η̂(k)w(k) − ̂η(k)ξ(k)u] = 0,

∂

∂y3
[a(q(k))(η̂(k)w(k) − ̂η(k)ξ(k)u)] = 0.Hene

‖η(k)(R(k)A(k)u−ξ(k)u)‖Xτ (Ω(k)) ≤ c(κ1/2 +κ+τ1/2 +η1(λ))‖u‖L2
2,µ(Ω(k),τ )2 .Thus the above inequality, (57) and (58) give(59) ‖RAu− u‖Xτ (Ω) ≤ c2(κ

1/2 + κ+ τ1/2 + η1(λ) + η2(λ))‖u‖Xτ (Ω).



A paraboli system in a weighted Sobolev spae 191Now we �x λ ∈ (0, λ0) and τ ∈ (0, 1) suh that
ci(κ

1/2 + κ+ τ1/2 + η1(λ) + η2(λ)) < 1 for i = 1, 2,where ci for i = 1, 2 are the onstants from (56) and (59) respetively.Hene, for suh λ and τ the estimates (44) hold and so the operator A :
Xτ (Ω) → Y τ (Ω) is invertible. Thus we have shown that problem (2) isuniquely solvable for some τ > 0, and aording to Remark 1 the proof ofTheorem 1 is omplete.
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