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ROBUST ESTIMATION BASED ON SPACINGSIN WEIGHTED EXPONENTIAL MODELS

Abstrat. Using Zieli«ski's (1977, 1983) formalization of robustness Bªa»ej(2007) obtained uniformly most bias-robust estimates (UMBREs) of thesale parameter for some statistial models (inluding the exponentialmodel), in a lass of linear funtions of order statistis, when violations ofthe models are generated by weight funtions. In this paper the UMBRE ofthe sale parameter, based on spaings, in two weighted exponential modelsis derived. Extensions of results of Bartoszewiz (1986, 1987) are given.
1. Preliminaries. Let X and Y be two random variables, F and G theirrespetive probability distribution funtions, and f and g their respetivedensity funtions, if they exist. Denote by F = 1 − F the tail (or survivalfuntion) of F , by F−1(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1), the quantile (orreversed) funtion, and by F−1(0) and F−1(1) the lower and upper boundsof the support of F respetively, and analogously for G. We identify thedistribution funtions F and G with the respetive probability distributionsand denote their supports by SF and SG. We use inreasing in plae ofnondereasing and dereasing in plae of noninreasing.1.1. Classes of life distributions and stohasti orders. A distribution Fis said to be IFR (DFR) [inreasing (dereasing) failure rate℄ if log F isonave (onvex) on SF whih is an interval.2000 Mathematis Subjet Classi�ation: 60E15, 62F10, 62F35, 62N02.Key words and phrases: partial orders, weighted distributions, spaings, robustness,bias.Researh of P. Bªa»ej supported by Ministry of Siene and Higher Eduation, Poland,Grant N20104631/3733.Researh of J. Bartoszewiz supported by Ministry of Siene and Higher Eduation,Poland, Grant 1 P03A 036 29. [405℄ © Instytut Matematyzny PAN, 2007



406 P. Bªa»ej and J. BartoszewizAn absolutely ontinuous distribution F is said to be ILR (DLR) [inreas-ing (dereasing) likelihood ratio℄ if log f is onave (onvex) on SF whih isan interval.It is well known thatILR ⊂ IFR and DLR ⊂ DFR.We deal with some stohasti orders. We reall their de�nitions and someproperties for ompleteness. We use dual equivalent notations: for randomvariables and for distributions, as is usual in the literature.We say that X is smaller than Y in the likelihood ratio order (X ≤lr Yor F ≤lr G) if g(x)/f(x) is inreasing.We say that X is smaller than Y in the hazard rate order (X ≤hr Y or
F ≤hr G) if G(x)/F (x) is inreasing.We say that X is stohastially smaller than Y (X ≤st Y or F ≤st G) if
F (x) ≥ G(x) for every x, or equivalently, if F (x) ≤ G(x) for every x. It isalso well known that

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y.We say that X is less dispersive than Y (X ≤disp Y or F ≤disp G) if
F−1(β) − F−1(α) ≤ G−1(β) − G−1(α) whenever 0 < α ≤ β < 1,or equivalently, if G−1F (x) − x is inreasing on SF .It is well known that if −∞ < F−1(0) = G−1(0), then

X ≤disp Y ⇒ X ≤st Y.Assume that a random variable X has a ontinuous distribution fun-tion F . Denote by X1:n, X2:n, . . . , Xn:n the order statistis of a sample ofsize n from distribution F . Put X0:n = F−1(0) if it is �nite. Then we de�nethe random variables Vi:n = Xi:n −Xi−1:n, i = 1, . . . , n, alled spaings fromthe distribution F . If F−1(0) is not �nite, we de�ne Vi:n only for i = 2, . . . , n.Similarly we de�ne the spaings Wi:n of a sample of size n from the distri-bution G.We will use the following lemmas onerning relations between lasses ofdistributions and stohasti orders.Lemma 1 (Bartoszewiz, 1985). If X ≤hr Y and F or G is DFR, then
X ≤disp Y .Lemma 2 (Oja, 1981). Let SF = [0, aF ] and SG = [0, aG], where aF ≤ ∞and aG ≤ ∞. If X ≤disp Y , then Vi:n ≤st Wi:n, i = 1, . . . , n.Lemma 3 (Barlow, Proshan, 1966). Let F (0) = 0. If F is IFR (DFR),then (n − i + 1)E(Vi:n) is dereasing (inreasing) in i = 1, . . . , n.



Robust estimation based on spaings 407For other properties of lasses of life distributions and stohasti or-ders we refer to Barlow and Proshan (1975) and Shaked and Shanthikumar(2006).1.2. Weighted distributions. Let F be a distribution funtion, and let
w : R → R

+ be suh that 0 < E[w(X)] < ∞. Then
Fw(x) =

1

E[w(X)]

x\
0

w(z) dF (z)is the weighted distribution assoiated with F with weight funtion w. Theweighted distribution Fw has density
fw(x) =

w(x)f(x)

E[w(X)]
.The idea of weighted distributions is due to Fisher (1934). Rao (1985)de�ned weighted distributions with a general weight funtion w. Patil andRao (1977, 1978) provided some statistial models leading to weighted dis-tributions and applied their results to the analysis of data relating to humanpopulation and eology. Patil and Ord (1976) de�ned lasses of distributionswhih are invariant under weighting with weight funtions of type xα, α > 0.Many authors, e.g. Jain et al. (1989), Bartoszewiz and Skolimowska(2006), studied preservation of lasses of life distributions and stohastiorders under weighting. The following lemmas will be used. The �rst two ofthem are obvious.Lemma 4. If the weight funtion w is inreasing , then F ≤lr Fw.Lemma 5. If F is ILR (DLR) and w is logonave (logonvex ), then Fwis also ILR (DLR).Lemma 6 (Jain et al., 1989). If F is IFR, w is inreasing and onave,then Fw is IFR.1.3. Robustness. Zieli«ski (1977, 1983) proposed the following formaliza-tion of robustness (see Box and Andersen, 1955). Let the original statistialmodel be M0 = (X ,A,P0), where (X ,A) is a given measurable spae and P0is a given subset of the lass P of all probability measures. Let π : P0 → 2Pbe a funtion alled a violation of M0 whih has the property that P ∈ π(P ),where P ∈ P0. De�ne P1 =

⋃

P∈P0
π(P ). Thus M1 = (X ,A,P1) is an ex-tension of the model M0. Let T be a suitable statisti with distribution

P T (·) = P (T−1(·)) and ̺ be a real-valued funtion on P1. We have thefollowing de�nitions.Definition 1 (Zieli«ski, 1977). A funtion rT : P0 → R
+ de�ned as

rT (P ) = sup{̺(QT ) : Q ∈ π(P )} − inf{̺(QT ) : Q ∈ π(P )}is alled the ̺-robustness of the statisti T in M1.



408 P. Bªa»ej and J. BartoszewizDefinition 2 (Zieli«ski, 1977). A statisti T 0 is uniformly most ̺-robustin a given lass T of statistis if
rT 0(P ) ≤ rT (P ) for every P ∈ P0 and T ∈ T .In the reent paper Bªa»ej (2007) derived the uniformly most bias-robustestimates (UMBREs) of the sale parameter for some statistial models (in-luding the exponential model), in a lass of nonnegative linear ombinationsof order statistis, when violations of the models are generated by weightfuntions. In this paper we onsider the exponential model and two viola-tions indued by monotone weight funtions. Using properties of stohastiorders and weighted distributions we obtain the UMBREs of the sale param-eter in the lass of nonnegative linear ombinations of spaings, larger thanthe previous one. The results are related to and extend those obtained byBartoszewiz (1986, 1987) for a gamma violation of the exponential model.2. Results. Let the original model be M0 = (R+,B+, {F (·; θ) : θ > 0})where F (·; θ) is an exponential distribution with sale parameter θ. Let Wbe the lass of funtions w whih are inreasing and logonave, i.e. log w isonave. De�ne(1) πW(θ) = {Fw(·; θ) : w ∈ W}.Notie that for every θ > 0, πW(θ) ful�ls the following onditions:(a) F (·; θ) ∈ πW(θ);(b) πW(θ′) ∩ {F (·; θ) : θ > 0} = {F (·; θ′)};() πW(θ′) ∩ πW(θ) = ∅ for any θ′ 6= θ.Condition (a) is obvious, onditions (b) and () follow from the fat thatweight funtions of the form w(x) exp(cx), c 6= 0, w ∈ W , are not in W .Therefore

M1 = (R+,B+, {πW(θ) : θ > 0})is an extension of M0 under weighting. Our aim is to �nd a statisti T 0 ∈ T +whih is the uniformly most bias-robust estimator (UMBRE) of the saleparameter θ with respet to the violation πW(θ), θ > 0, of M0, where
T + =

{

T =

n
∑

j=1

ajVj:n : aj ≥ 0, j = 1, . . . , n; Eθ(T ) = θ, θ > 0
}

,i.e. T + is the lass of those nonnegative linear ombinations of spaings thatare unbiased estimators of θ in M0.The following theorem holds.Theorem 1. Under the violation πW(θ), θ > 0, given by (1) of themodel M0, the UMBRE of the sale parameter θ in the lass T + is thestatisti
T 0+ = Vn:n.



Robust estimation based on spaings 409Proof. Sine w ∈ W is inreasing, for every θ > 0 we have F (·; θ) ≤lr

Fw(·; θ), whih implies F (·; θ) ≤hr Fw(·; θ). The exponential distributionis obviously DFR and so by Lemma 1, F (·; θ) ≤disp Fw(·; θ). Hene fromLemma 2 and well known properties of the usual stohasti order it followsthat for every T ∈ T +,
inf

w∈W
Ew;θ(T ) = Eθ(T ), θ > 0.Sine Eθ(T ) = θE1(T ) for every T ∈ T + and every θ > 0, we obtain, forevery w ∈ W ,

Ew,θ(T )−Eθ(T ) =
n

∑

j=1

aj [Ew,θ(Vj:n) − Eθ(Vj:n)]

≥ min
1≤j≤n

Ew,θ(Vj:n)−Eθ(Vj:n)

1/(n − j + 1)
= min

1≤j≤n

Ew,θ(Vj:n)

1/(n− j +1)
− θ.Sine F (·; θ) is ILR, Lemma 5 shows that for every w ∈ W the distribu-tion Fw(·; θ) is ILR and hene IFR. Then from Lemma 3 we obtain

Ew,θ(T ) − Eθ(T ) ≥
Ew,θ(Vn:n)

E1(Vn:n)
− θ = Ew,θ(Vn:n) − θ,and for every T ∈ T + and every θ > 0 we have

sup
w∈W

[Ew,θ(T ) − Eθ(T )] ≥ sup
w∈W

[Ew,θ(Vn:n) − θ],whih ompletes the proof.Now let us onsider the following lass of weight funtions. Let w1 be a�xed positive dereasing and logonvex funtion (i.e. log w1 is onvex), forexample, w1(x) = xα, x > 0, −1 < α < 0. Let
W1 = {w : w dereasing and w/w1 inreasing}.De�ne the violation(2) πW1

(θ) = {Fw(·; θ) : w ∈ W1}.Notie that for every θ > 0, πW1
(θ) satis�es the following onditions:(a) F (·; θ) ∈ πW1

(θ);(b) πW1
(θ′) ∩ {F (·; θ) : θ > 0} = {F (·; θ′)};() πW1
(θ′) ∩ πW1

(θ) = ∅ for any θ′ 6= θ.The following lemma holds.Lemma 7. For every w ∈ W1 and every θ > 0,(3) Fw1
(·; θ) ≤disp Fw(·; θ) ≤disp F (·; θ).



410 P. Bªa»ej and J. BartoszewizProof. Sine w/w1 is inreasing, we have Fw1
(·; θ) ≤lr Fw(·; θ) and so

Fw1
(·; θ) ≤hr Fw(·; θ). By Lemma 5 the distribution Fw1

(·; θ) is DLR andhene DFR, and the �rst inequality in (3) follows from Lemma 1.The other inequality may be proved similarly by notiing that Fw(·; θ) ≤lr

F (·; θ) and the exponential distribution is obviously DFR.Now we an state the following result.Theorem 2. Under the violation πW1
(θ), θ > 0, given by (2) of themodel M0, the UMBRE of the sale parameter θ in the lass T + is thestatisti

T 0+ = Vn:n.Proof. The proof is similar to that of Theorem 1. From Lemmas 7 and 2and properties of the usual stohasti order it follows that
sup

w∈W1

Ew,θ(T ) = Eθ(T ) = θ, θ > 0.Sine Fw1
(·; θ) is DFR, diretly from Lemma 3 we obtain, for every θ > 0,

sup
w∈W1

[θ − Ew1,θ(T )] ≥ sup
w∈W1

[Eθ(Vn:n) − Ew1,θ(Vn:n)] ,whih ompletes the proof.
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