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GLOBAL EXISTENCE OF WEAK SOLUTIONS TO THEFRIED�GURTIN MODEL OF PHASE TRANSITIONS
Abstrat. We prove the existene of global in time weak solutions toa three-dimensional system of equations arising in a simple version of theFried�Gurtin model for the isothermal phase transition in solids. In thismodel the phase is haraterized by an order parameter. The problem on-sidered here has the form of a oupled system of three-dimensional elastiityand paraboli equations. The system is studied with the help of the Faedo�Galerkin method using energy estimates.1. Introdution. In this paper we are onerned with the weak solv-ability of an initial-boundary value problem for a nonlinear oupled systemof three-dimensional elastiity and a relaxation law for a salar order pa-rameter. The system arises as a simple speial ase of general phase-�eld(di�used-interfae) theory of isothermal solid-solid phase transitions devel-oped by Fried and Gurtin [2℄ and Fried and Grah [1℄.This theory is based on the balane laws of linear momentum and amirofore with underlying free energy depending on a deformation gradi-ent, a multiomponent order parameter and its gradient. The onstitutivedependene on the order parameter and its gradient is in ontrast to otherwell-known phase-�eld theories of solid-solid transitions due to Falk and Fré-mond (for referenes see e.g. the review [8℄). In these theories the order pa-rameter is identi�ed with the strain tensor, and the free energy is postulatedto be a funtion of strain, strain gradient, and in nonisothermal situation,also temperature.In Fried�Gurtin's theory the order parameter represents a new quantitywhih an have di�erent physial status. In the ase of di�usive transitions2000 Mathematis Subjet Classi�ation: 35D05, 35K60, 35Q72, 74B20.Key words and phrases: Fried�Gurtin model, solid-solid transition, phase-�eld theory,existene and uniqueness of weak solution, Faedo�Galerkin method.[413℄ © Instytut Matematyzny PAN, 2007



414 Z. Kosowskiit desribes atomi arrangements within unit ells of a rystal lattie. Forpure martensiti transitions, in whih the rystal lattie undergoes a me-hanial strain but there are no rearrangements of atoms within ells, theorder parameter might be viewed as an arti�e that yields a regularizationof mehanial equations.From the mathematial point of view it is important that in this theorythe stress tensor is a linear funtion of strain, the nonlinear e�ets are onlyonneted with the order parameter.A speial 1-D ase of the model and its equilibrium solutions have beenanalyzed in [9℄. Existene of a large number of spatially periodi inhomo-geneous solutions has been demonstrated. The stability of these solutionshas been investigated. Another variant of the 1-D ase and properties of itsstationary solution have been studied in [3℄. The well-posedness of the 3-Dase of the Fried�Gurtin model on a �nite time interval has been examinedin [5℄. The system has been studied with the help of the Leray-Shauder�xed point theorem. The existene and uniqueness of solutions has been es-tablished. Using similar methods, the existene and uniqueness of solutionsin a simpler 1-D ase has been proved in [4℄.In this work we study the existene of a global in time weak solutionto the system resulting from the Fried�Gurtin model. In the seond setionwe present the model and the system of equations. In the third setion westate the assumptions and main results of the paper. In the fourth setion weonstrut a Faedo�Galerkin approximation of the problem and state the ex-istene of solutions to this approximation. Next, we dedue a priori estimatesusing an energy identity. In the last setion we prove the main theorems. The�rst theorem shows the existene of a weak solution on time interval [0, T ].In the seond theorem we prove that any suh solution an be prolongedto [0,∞).2. Model. We now formulate the Fried�Gurtin model in a speial aseof small strain approximation with the strain represented by the linearizedstrain tensor ε = ε(u) and an unonstrained salar order parameter ϕ dis-tinguishing between two phases, a and b, haraterized by ϕ = 0 and ϕ = 1.Let Ω ⊂ R
3 be a bounded domain with smooth boundary S, oupiedby a body in a �xed referene on�guration. The mehanial evolution ofthe body is desribed by a displaement �eld u : ΩT → R

3 and a salarorder-parameter �eld ϕ : ΩT → R.The free energy density f underlying the evolution of the body is assumedto be given as a funtion of the strain tensor ε(u), the order parameter ϕ,and its spatial gradient ∇ϕ:
f = f(ε(u), ϕ,∇ϕ)
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ε(u) =

1

2
(∇u + (∇u)T ).The relevant Landau�Ginzburg separable form of f , whih is quadrati in

ε(u) and ∇ϕ, and a nonlinear double-well funtion in ϕ, is spei�ed below.The model has the form of a nonlinear oupled system of partial dif-ferential equations representing the linear momentum balane for the dis-plaement (at onstant mass density) and the relaxation law for the orderparameter, with some presribed initial and boundary onditions:
(1) utt −∇ · f,ε(ε(u), ϕ,∇ϕ) = b in ΩT ,

u|t=0 = u0, ut|t=0 = u1 in Ω,

u = 0 on ST ,

(2) βϕt + f,ϕ(ε(u), ϕ,∇ϕ) −∇ · f,∇ϕ(ε(u), ϕ,∇ϕ) = 0 in ΩT ,

ϕ|t=0 = ϕ0 in Ω,

n · f,∇ϕ(ε(u), ϕ,∇ϕ) = 0 on ST ,Here b : ΩT → R
3 is an external body fore, β is a positive onstant alleddumping modulus (in general, β an depend on ε, ϕ,∇ϕ, ϕt), and n denotesthe unit outward normal to S. The funtions u0,u1, ϕ0 represent initial on-ditions for the displaement, veloity and order parameter.We onsider the homogeneous Dirihlet boundary ondition for the dis-plaement, assuming that the body is �xed at the boundary S, and thehomogeneous Neumann boundary ondition for the order parameter, whihis a typial ondition in phase �eld models.The free energy. The typial Landau�Ginzburg form of the free energydensity is given by(3) f(ε(u), ϕ,∇ϕ) = W (ε(u), ϕ) + Ψ(ϕ) +

γ

2
|∇ϕ|2,with the three terms representing respetively the elasti energy, exhangeenergy and gradient energy with a onstant oe�ient γ > 0.The exhange energy Ψ(ϕ) is a double-well potential with equal minimaat ϕ = 0 and ϕ = 1, assumed in the standard form(4) Ψ(ϕ) =

1

2
ϕ2(1 − ϕ)2.The sum of the last two terms in (3) represents the energy of di�used phaseinterfaes.The relevant expressions for the elasti energy W (ε, ϕ) are given by thefollowing two examples (see [2℄, [1℄):



416 Z. KosowskiExample 1.(5) W (ε, ϕ) = (1 − z(ϕ))Wa(ε) + z(ϕ)Wb(ε),where
Wi(ε) =

1

2
(ε − εi) · Ai(ε − εi), i = a, b,is the strain energy of phase i, and εi is the natural strain of phase i, alledthe eigenstrain; it is assumed to be onstant.Furthermore, z : R → [0, 1] is a smooth salar interpolation funtionsatisfying:

(6) z(ϕ) = 0 for ϕ ≤ 0,

0 ≤ z(ϕ) ≤ 1 for ϕ ∈ (0, 1),

z(ϕ) = 1 for ϕ ≥ 1.The inequality onstraint in (6) is imposed to ensure the physial sense of (5).The tensors Ai = ((Ai)pqrs)p,q,r,s=1,2,3 are the fourth order elastiitytensors of isotropi elastiity given by
Aiε(u) = λi tr ε(u)I + 2µiε(u), i = a, b,where I = (δpq)p,q=1,2,3 and λi, µi are Lamé onstants within the elastiityrange, i.e., satisfying µi > 0, 3λi + 2µi > 0.The seond example is harateristi for di�usive phase transitions inelasti solids (see [2℄).Example 2.(7) W (ε, ϕ) =

1

2
(ε − ε(ϕ)) · A(ϕ)(ε − ε(ϕ)),where

ε(ϕ) = (1 − z(ϕ))εa + z(ϕ)εbis the natural stress-free strain depending on the order parameter, εa, εbare onstant eigenstrains, z(·) is as in Example 1, and A(ϕ) is the elastiitytensor, in general depending on the order parameter ϕ.For the sake of mathematial analysis in the present paper we shall on-�ne ourselves to the ase of homogeneous elastiity, that is, in Example 1:
Aa = Ab = A, and in Example 2: A(ϕ) = A with A given by(8) Aε(u) = λ tr ε(u)I + 2µε(u)where µ > 0, 3λ + 2µ > 0.For further use we reord that in the ase of homogeneous elastiity, theexpressions for the elasti energy and its derivatives with respet to ε and ϕare:
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• in Example 1:

(9)

W (ε, ϕ) =
1

2
ε ·Aε − ε · [(1 − z(ϕ))Aεa + z(ϕ)Aεb]

+
1

2
[(1 − z(ϕ))εa · Aεa + z(ϕ)εb · Aεb],

W,ε(ε, ϕ) = Aε − [(1 − z(ϕ))Aεa + z(ϕ)Aεb],

W,ϕ(ε, ϕ) = z′(ϕ)

[
−ε · A(εb − εa) +

1

2
εb · Aεb −

1

2
εa · Aεa

]
;

• in Example 2:
(10)

W (ε, ϕ) =
1

2
ε · Aε − ε · Aε +

1

2
ε · Aε,

W,ε(ε, ϕ) = Aε − Aε = Aε − Aεa − z(ϕ)A(εb − εa),

W,ϕ(ε, ϕ) = −ε · Aε,ϕ + ε · Aε,ϕ

= z′(ϕ)(−ε · A(εb − εa) + ε · A(εb − εa)).We an rewrite (9)2,3 and (10)2,3 in the ommon form(11) W,ε(ε, ϕ) = Aε + z(ϕ)B−Aεa,

W,ϕ(ε, ϕ) = z′(ϕ)[B · ε + z(ϕ)D + E]where:
• in Example 1:

(12) B = −A(εb − εa) a onstant tensor,
D = 0,

E =
1

2
εb · Aεb −

1

2
εa · Aεa = onst,

• in Example 2:
B = −Aε a onstant tensor,
D = −B · (εb − εa) = const,

E = −B · εa.We point out that in the ase of homogeneous elastiity, the funtions
W,ε(ε, ϕ) and W,ϕ(ε, ϕ) are linear in ε, whih essentially simpli�es the anal-ysis.The operator Q. Let Q be the linear elastiity operator de�ned by(13) u 7→ Qu = ∇ · Aε(u) = µ∆u + (λ + µ)∇(∇ · u)where A is de�ned by (8). For further purposes we also reall two additionalproperties of the operator Q:
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• Q is strongly ellipti, i.e.

c‖u‖H2(Ω) ≤ ‖Qu‖L2(Ω) for u ∈ H2(Ω) ∩H1
0(Ω)with onstant c depending on Ω,

• Q is selfadjoint on H2(Ω) ∩H1
0(Ω), i.e.

(Qu,v)L2(Ω) = −µ(∇u,∇v)L2(Ω) − (λ + µ)(∇ · u,∇ · v)L2(Ω)

= (u,Qv)L2(Ω) for u,v ∈ H2(Ω) ∩ H1
0(Ω).

• −Q is positive on H2(Ω) ∩ H1
0(Ω), i.e.

(−Qu,u)L2(Ω) = µ‖∇u‖2
L2(Ω) + (λ + µ)‖∇ · u‖2

L2(Ω) ≥ 0for u,v ∈ H2(Ω) ∩ H1
0(Ω).In this notation problem (1), (2) orresponding to the free energy (3), with

Ψ(ϕ) given by (4), and W (ε, ϕ) as in Examples 1, 2 (homogeneous elastiity)takes the form
(14) utt − Qu = z′(ϕ)B∇ϕ + b in ΩT ,

u|t=0 = u0, ut|t=0 = u1 in Ω,

u = 0 on ST ,

(15) βϕt − γ∆ϕ + Ψ ′(ϕ) + z′(ϕ)(B · ε(u) + z(ϕ)D + E) = 0 in ΩT ,

ϕ|t=0 = ϕ0 in Ω,

n · ∇ϕ = 0 on ST ,Notation. Throughout the paper we use the following notations:
f,i =

∂f

∂xi
, i = 1, 2, 3, ft =

df

dt
,

ε(u) = (εij)i,j=1,2,3, z′(ϕ) =
dz

dϕ
,

W,ε(ε, ϕ) =

(
∂W (ε, ϕ)

∂εij

)

i,j=1,2,3

, W,ϕ(ε, ϕ) =
∂W (ε, ϕ)

∂ϕ
,where spae and time derivatives are material. For simpliity, whenever thereis no danger of onfusion, we omit the arguments (ε, ϕ). Also the spei�ationof tensor indies is omitted.Vetor and tensor valued mappings are denoted by bold letters. Thesummation onvention over repeated indies is used.We also use the following notation: for vetors a = (ai), ã = (ãi), andtensors B = (Bij), B̃ = (B̃ij), A = (Aijkl), we write

a · ã = aiãi, B · B̃ = BijB̃ij , AB = (AijklBkl).
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∇ and ∇· denote the gradient and divergene operators with respet to thematerial point x ∈ R

3. For the divergene of the tensor �eld ε(x) = (εij(x))we use the onvention of ontrating over the last index, i.e.,
∇ · ε(x) = (εij,j(x)).We use the standard Sobolev spaes notation, in partiular, for simpliitywe write

Hm(Ω) = Wm
2 (Ω) for m ∈ N,

L2(Ω) = (L2(Ω))3,

H2(Ω) = (H2(Ω))3.The symbol (·, ·) denotes the salar produt in L2(Ω). For simpliity, we usethe same notation to denote the salar produt in L2(Ω).Throughout the paper, c denotes various generi onstants, dependingon the data of the problem and the domain Ω.3. Assumptions and main resultsAssumptions. We study the problem (1), (2) under the following assump-tions:(A1) Ω ⊂ R
3 is a bounded domain with boundary S of lass C2. Thisregularity is needed in the appliation of the ellipti regularity the-ory in a onstrution of bases in the Faedo�Galerkin method.(A2) The elastiity tensor A is given by (8) with µ > 0, 3λ + 2µ > 0.This ensures the following:

• the oerivity and boundedness of A,
(16) c|ε|2 ≤ ε ·Aε ≤ c|ε|2 for all ε ∈ S2,where S2 denotes the set of symmetri seond order tensors in R

3 ontoitself and
c = min{3λ + 2µ, 2µ}, c = max{3λ + 2µ, 2µ},

• the strong elliptiity of the operator Q de�ned by (13).The last assumption onerns the free energy density:(A3) The free energy density f(ε, ϕ,∇ϕ) : S2 × R × R
3 → R has theform (3), with Ψ : R → R+ given by (4), and W (ε, ϕ) : S2×R → Rgiven in Examples 1 or 2.We assume that the funtion z : R → [0, 1] in these examples is at leastof lass C1 satisfying (6) and suh that

|z′(ϕ)| ≤ c for all ϕ ∈ R.



420 Z. KosowskiWe note that in view of (4) and (11) it follows from (A3) that there existsa positive onstant c suh that
|Ψ ′(ϕ)| ≤ c(|ϕ|3 + 1),

|W,ϕ(ε, ϕ)| ≤ c(|ε| + 1),(17)
|W,ε(ε, ϕ)| ≤ c(|ε| + 1)for all ε ∈ S2 and ϕ ∈ R.Further, on aount of (16) the following lower bounds for the elastienergy hold true:

• in Example 1,
W (ε, ϕ) ≥ min

i∈{a,b}

{
1

2
c|ε − εi|

2

}
,

• in Example 2,
W (ε, ϕ) ≥

1

2
c|ε − εa − z(ϕ)(εb − εa)|

2.Moreover
Ψ(ϕ) ≥

1

8
ϕ4 −

1

2
.Thus we an see that the homogeneous part W (ε, ϕ) + Ψ(ϕ) of f(ε, ϕ,∇ϕ)satis�es the lower bound

W (ε, ϕ) + Ψ(ϕ) ≥ c(|ε|2+|ϕ|4) − c for all (ε, ϕ) ∈ S2 × R.Consequently,
(18) f(ε, ϕ,∇ϕ) ≥ cf (|ε|2+|ϕ|4 + |∇ϕ|2) − c′ffor all (ε, ϕ,∇ϕ) ∈ S2 × R × R

3with onstants cf > 0 and c′f ≥ 0.This is the main struture assumption that we use in deriving of energyestimates.Main results. We now state the main results of the paper.Theorem 1 (Existene on (0, T )). Let the assumptions (A1)�(A3) hold.Moreover , let the data satisfy
b ∈ L2(Ω

T ),(19)
u0 ∈ H1

0(Ω), u1 ∈ L2(Ω), ϕ0 ∈ H1(Ω).Then there exist funtions (u, ϕ) suh that
u ∈ L∞(0, T ;H1

0(Ω)), ut ∈ L∞(0, T ;L2(Ω)),

utt ∈ L2(0, T ; (H1
0(Ω))′),(20)

ϕ ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)), ϕt ∈ L2(Ω
T ),

u(0, ·) = u0, ut(0, ·) = u1, ϕ(0, ·) = ϕ0,



Fried�Gurtin model of phase transitions 421whih satisfy problem (1)�(2) in the following weak sense:
T\
0

〈utt, η〉(H1
0
(Ω))′,H1

0
(Ω) dt +

T\
0

(Aε(u), ε(η))L2(Ω) dt

=

T\
0

(z′(ϕ)B∇ϕ + b, η)L2(Ω) dt for any η ∈ L2(0, T ;H1
0(Ω)),

(21)
T\
0

(βϕt − γ∆ϕ + Ψ ′(ϕ)+W,ϕ(ε(u), ϕ), ξ)L2(Ω) dt = 0for any ξ ∈ L2(0, T ; L2(Ω)).Moreover , (u, ϕ) satis�es the a priori estimates
(22)

‖u‖L∞(0,T ;L2(Ω)) + ‖ε(u)‖L∞(0,T ;L2(Ω)) + ‖ϕ‖L2(0,T ;L4(Ω))

+ ‖∇ϕ‖L∞(0,T ;L2(Ω)) + ‖ϕt‖L2(ΩT ) ≤ c0,

‖ϕ‖L∞(0,T ;H1(Ω)) ≤ c1,

‖ϕ‖L2(0,T ;H2(Ω)) ≤ c2(T ),

‖utt‖L2(0,T ;(H1
0
(Ω))′) ≤ c3(T )where

(23) c0 = c(‖u0‖H1(Ω), ‖u1‖L2(Ω), ‖ϕ0‖H1(Ω), ‖b‖L1(0,T ;L2(Ω)), cf , c′f ),

c1 = c(c0, Ω),

c2(T ) = c(c1)T
1/2,

c3(T ) = c(c0, ‖b‖L2(ΩT ))T
1/2.Theorem 2 (Global existene). Assume the hypotheses of Theorem 1hold , and

b ∈ L1(R+,L2(Ω)),

sup
k∈N∪{0}

‖b‖L2(kT,(k+1)T ;L2(Ω)) < ∞,

u0 ∈ H1
0(Ω), u1 ∈ L2(Ω), ϕ0 ∈ H1(Ω).Then there exists a global solution (u, ϕ) to problem (1)�(2) suh that

u ∈ L∞(R+;H1
0(Ω)), ut ∈ L∞(R+;L2(Ω)),

ϕ ∈ L∞(R+; H1(Ω)), ϕt ∈ L∞(R+; L2(Ω)),

u(0) = u0, ut(0) = u1, ϕ(0) = ϕ0,satisfying the following estimates :
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• estimates uniform in time:

‖u‖L∞(R+;H1
0
(Ω)) + ‖ε(u)‖L∞(R+;L2(Ω)) + ‖ϕ‖L∞(R+;L4(Ω))

+ ‖∇ϕ‖L∞(R+;L2(Ω)) + ‖ϕt‖L2(R+;L2(Ω)) ≤ c0,

‖ϕ‖L∞(R+;H1(Ω)) ≤ c1.

• estimates on �nite intervals (t, t+T ) where t ∈ R+ and T > 0 is �xed :
‖ϕ‖L2(t,t+T ;H2(Ω)) ≤ c2(T ),

‖utt‖L2(t,t+T ;(H1
0
(Ω))′) ≤ c̃3(T ),with onstants c0, c1, c2(T ) spei�ed by (23), and

c̃3(T ) = c(c0, sup
k∈N∪{0}

‖b‖L2(kT,(k+1)T ;L2(Ω)))T
1/2.

4. The Faedo�Galerkin approximation of the problemAn approximation. To prove Theorems 1 and 2 using the Faedo�Galerkinmethod we onstrut bases for the spaes H1
0(Ω) and

H2
N (Ω) = {w ∈ H2(Ω) : n · ∇w = 0 on S}.For j ∈ N, onsider the eigenvalue problems(24) −Qvj = λ

(1)
j vj in Ω,

vj = 0 on S,and(25) −∆wj = λ
(2)
j wj in Ω,

n · ∇wj = 0 on S.We reall that, by the ellipti regularity theory for a domain with boundaryof lass C2, the solutions of (24) and (25) satisfy
vj ∈ H2(Ω), wj ∈ H2(Ω).We take the family {vj}j=1,2,... as a basis ofH1

0(Ω) and the family {wj}j=1,2,...as a basis of H2
N (Ω). By the properties of Q we have

λ
(1)
i (vi,vj) = (λ

(1)
i vi,vj) = (−Qvi,vj) = (vi,−Qvj) = (vi, λ

(1)
j vj)

= λ
(1)
j (vi,vj).These identities show, by the Poinaré�Friedrihs inequality, that the family

{vj} is orthogonal in H1(Ω) and L2(Ω) salar produts.Similarly, the family {wj}j=1,2,... satis�es
λ

(2)
i (wi, wj) = (λ

(2)
i wi, wj) = (−∆wi, wj) = (∇wi,∇wj)

= (wi,−∆wj) = (wi, λ
(2)
j wj) = λ

(2)
j (wi, wj).



Fried�Gurtin model of phase transitions 423Hene, by the Poinaré inequality, the family {wj}j=1,2,... is orthogonal in
H2(Ω), H1(Ω) and L2(Ω) salar produts.We an normalize both families in L2(Ω) and L2(Ω) salar produtsrespetively.For m ∈ N set

Vm = span{v1, . . . ,vm}, Wm = span{w1, . . . , wm};these are �nite-dimensional subspaes of H1
0(Ω) and H2

N (Ω) respetively.For any m ∈ N we will �nd a pair of funtions (um, ϕm) in the form
um(x, t) =

m∑

i=1

em
i (t)vi(x), ϕm(x, t) =

m∑

i=1

cm
i (t)wi(x)(26)

satisfying for a.e. t ∈ [0, T ],
(um

tt ,vj) + (Aε(um), ε(vj)) = (z′(ϕm)B∇ϕm + b,vj),

β(ϕm
t , wj) − γ(∆ϕm, wj) + (Ψ ′(ϕm) + W,ϕ(ε(um), ϕm), wj) = 0,

(27) for j = 1, . . . , m,

um(0) = um
0 , um

t (0) = um
1 , ϕm(0) = ϕm

0where W,ϕ(ε(u), ϕ), B, D, E are given by (12).Furthermore, um
0 ,um

1 ∈ Vm, ϕm
0 ∈ Wm are projetions of u0,u1, ϕ0respetively, satisfying, as m → ∞,

(28) um
0 → u0 strongly in H1

0(Ω),

um
1 → u1 strongly in L2(Ω),

ϕm
0 → ϕ0 strongly in H1(Ω).Existene of solutions to the Faedo�Galerkin approximation. Substitut-ing (26) into (27), taking into aount that

(um
tt ,vj) =

( m∑

i=1

em
i,tt(t)vi,vj

)
=

m∑

i=1

em
i,tt(t)(vi,vj) = em

j,tt(t),

(ϕm
t , wj) =

( m∑

i=1

cm
i,t(t)wi, wj

)
=

m∑

i=1

cm
i,t(t)(wi, wj) = cm

j,t(t),

−(Aε(um),vj) =

( m∑

i=1

−em
i (t)Aε(vi),vj

)
=

m∑

i=1

em
i (t)(−Aε(vi),vj)

=
m∑

i=1

em
i (t)(λ

(1)
i vi,vj) = λ

(1)
j em

j (t)(vj,vj) = λ
(1)
j em

j (t),
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(−∆ϕm, wj) =

( m∑

i=1

−cm
i (t)∆wi, wj

)
=

m∑

i=1

cm
i (t)(−∆wi, wj)

=
m∑

i=1

cm
i (t)(λ

(2)
i wi(x), wj) = cm

j (t)(λ
(2)
j wj(x), wj)

= λ
(2)
j cm

j (t)we get
em
j,tt(t) = λ

(1)
j em

j (t) + (z′(ϕm)B∇ϕm + b,vj),

βcm
j,t(t) = −γλ

(2)
j cm

j (t) − (Ψ ′(ϕm) − W,ϕ(ε(um), ϕm), wj),for j = 1, . . . , m.Consequently, the system (11) an be examined as a system of �rst order or-dinary di�erential equations for the oe�ients (em
1 , . . . , em

m), (em
1,t, . . . , e

m
m,t),

(cm
1 , . . . , cm

m).The above system for any m has a solution loal in time on an interval
[0, Tm], Tm > 0. The uniform (in m) a priori estimates proved below inLemmas 1 and 2 show that this system has a solution on an interval [0, T ],
T > 0.A priori estimates for the Faedo�Galerkin approximationLemma 1 (Energy estimate). Assume that (A1)�(A3) hold and the datasatisfy

u0 ∈ H1
0(Ω), u1 ∈ L2(Ω), ϕ0 ∈ H1(Ω), b ∈ L1(0, T ;L2(Ω)).Then a solution (um, ϕm) to the problem (1)�(2) satis�es the estimate

(29) ‖um
t ‖L∞(0,T ;L2(Ω)) + ‖ε(um)‖L∞(0,T ;L2(Ω))

+ ‖ϕm‖L∞(0,T ;L4(Ω)) + ‖∇ϕm‖L∞(0,T ;L2(Ω)) + ‖ϕm
t ‖L2(ΩT ) ≤ c0with a onstant

c0 = c(‖u0‖H1(Ω), ‖u1‖L2(Ω), ‖ϕ0‖H1(Ω), ‖b‖L1(0,T ;L2(Ω)), cf , c′f ).Proof. We derive the energy identity for system (1)�(2). First, note that,aording to (11)1 we have
∇ · W,ε(ε(u), ϕ) = ∇ · Aε(u) + z′(ϕ)B∇ϕ.Thus integration by parts shows that (27)1 may be rewritten as(30) (um
tt ,vj) + (W,ε(ε(um), ϕm), ε(vj)) = (b,vj).Testing (30) with um

t (t) (i.e. multiplying by em
j (t) and summing over j from

j = 1 to j = m) gives(31) 1

2

d

dt
‖um

t ‖2
L2(Ω) + (W,ε(ε(um), ϕm), ε(um

t )) = (b,um
t ).
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t (t) and integrating by parts gives

(32) β‖ϕm
t ‖2

L2(Ω) + (Ψ ′(ϕm) + W,ϕ(ε(um), ϕm), ϕm
t )

+
γ

2

d

dt
‖∇ϕm‖2

L2(Ω) = 0.Summing up (31) and (32) we arrive at the energy identity
(33)

1

2

d

dt

\
Ω

|um
t |2 dx +

d

dt

\
Ω

(
W (ε(um, ϕm) + Ψ(ϕm) +

1

2
γ|∇ϕm|2

)
dx

+ β
\
Ω

(ϕm
t )2 dx =

\
Ω

b · um
t dx.

Integration of (33) over (0, t) for t ∈ (0, T ) gives
(34)

1

2
‖um

t (t)‖2
L2(Ω) +

\
Ω

f(ε(um(t)), ϕm(t),∇ϕm(t)) dx + β
\
Ω

(ϕm
t )2 dx dt

=
1

2
‖um

1 ‖2
L2(Ω) +

\
Ω

f(ε(um
0 ), ϕm

0 ,∇ϕm
0 ) dx +

\
Ωt

b · um
t dx dt′

with f(ε(u), ϕ,∇ϕ) de�ned by (3).Using the struture ondition (18) and estimating the last integral in (34)with the help of the Young inequality by
∣∣∣
\

Ωt

b · um
t dx dt′

∣∣∣ ≤ ‖ut′‖L∞(0,t;L2(Ω))‖b‖L1(0,t;L2(Ω))

≤
1

4
‖ut′‖

2
L∞(0,t;L2(Ω)) + ‖b‖2

L1(0,t;L2(Ω)),we dedue the a priori estimate
(35)

1

4
‖um

t (t)‖2
L2(Ω)+cf (‖ε(um(t))‖2

L2(Ω)+‖ϕm(t)‖4
L4(Ω)+‖∇ϕm(t)‖2

L2(Ω))

+ β‖ϕm
t ‖2

L2(Ωt) ≤ c0 for t ∈ (0, T )with a onstant c0 depending only on ‖u0‖H1(Ω), ‖u1‖L2(Ω), ‖ϕ0‖H1(Ω),
‖b‖L1(0,t;L2(Ω)) and c′f . This proves the assertion.Further estimates. Clearly, (29) implies that(36) ‖ϕm‖L∞(0,T ;H1Ω)) ≤ c1with a onstant c1 = C(c0, Ω). Hene, by the Sobolev imbedding,(37) ‖ϕm‖L∞(0,T ;L6(Ω)) ≤ c1.Further, sine um = 0 on ST , it follows from (29) by Korn's inequality that(38) ‖um‖L∞(0,T ;H1Ω)) ≤ c1.



426 Z. KosowskiLemma 2. Let the assumptions of Lemma 1 hold. Then, for t ∈ (0, T ],(39) ‖ϕm‖L2(0,T ;H2(Ω)) ≤ c2(t)with a onstant c2(t) = c(c1)t
1/2.Proof. By the de�nition (25) of the basis {w1, . . . , wm} identity (27)2implies that

(40) β(ϕm
t , ∆wj)−γ(∆ϕm, ∆wj)+ (Ψ ′(ϕm)+W,ϕ(ε(um), ϕm), ∆wj) = 0for j = 1, . . . , m. Multiplying this equality by cm

j (t) and summing from j = 1to j = m gives
γ(∆ϕm, ∆ϕm) = β(ϕm

t , ∆ϕm) + (Ψ ′(ϕm) + W,ϕ(ε(um), ϕm), ∆ϕm).Hene, integrating with respet to t, we have
(41) γ

t\
0

\
Ω

|∆ϕm|2 dx dt

=

t\
0

\
Ω

(βϕm
t + Ψ ′(ϕm) + W,ϕ(ε(um), ϕm))∆ϕm dx dt.Now, using the Cauhy�Shwarz inequality and the growth onditions (17),

|Ψ ′(ϕ)| ≤ c(|ϕ|3 + 1), |W,ϕ(ε(u), ϕ)| ≤ c(|ε(u)| + 1),it follows that
γ‖∆ϕm‖L2(Ωt)

≤ β‖ϕm
t ‖L2(Ωt) + ‖Ψ ′(ϕm)‖L2(Ωt) + ‖W,ϕ(ε(um), ϕm)‖L2(Ωt)

≤ β‖ϕm
t ‖L2(Ωt) + ct1/2(‖ϕm‖3

L∞(0,t;L6(Ω)) + ‖ε(um)‖L∞(0,t;L2(Ω)) + 1).Hene, by (29), (37) and (38), we onlude that(42) ‖∆ϕm‖L2(Ωt) ≤ ct1/2.Now, on aount of the inequality(43) ‖ϕ‖H2(Ω) ≤ c(‖∆ϕ‖L2(Ω) + ‖ϕ‖L2(Ω)),whih holds true for funtions satisfying the ondition n · ∇ϕ = 0 on S,inequalities (42) and (43) imply the assertion of the lemma.Using standard duality arguments we shall also estimate the time deriva-tive um
tt .Lemma 3. Let the assumptions of Lemma 1 hold , and b ∈ L2(Ω

T ).Then, for t ∈ (0, T ],(44) ‖um
t′t′‖L2(0,t;(H0(Ω))′) ≤ c3(t)where c3(t) = c(c0, ‖b‖L2(Ωt))t

1/2.
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0(Ω)) we test (27)1 with η

m = Pm
η where Pmdenotes the projetion de�ned by

Pm
η =

m∑

i=1

(η,vi)L2(Ω)v
i.Then using the Cauhy�Shwarz inequality, and realling the energy estimate(29), we obtain

∣∣∣
t\
0

(um
t′t′ , η) dt′

∣∣∣ =
∣∣∣

t\
0

(um
t′t′ , P

m
η) dt′

∣∣∣

=
∣∣∣

t\
0

[−(Aε(um), ε(Pm
η)) + (z′(ϕm)B∇ϕm + b, Pm

η)] dt′
∣∣∣

≤ c(‖ε(um)‖L2(Ωt)‖∇Pm
η‖L2(Ωt))

+ c(‖∇ϕm‖L2(Ωt) + ‖b‖L2(Ωt))‖P
m

η‖L2(Ωt)

≤ c(c0t
1/2 + ‖b‖L2(Ωt))‖P

m
η‖L2(0,t;H1(Ω))

≤ c(c0, ‖b‖L2(Ωt))t
1/2‖η‖L2(0,t;H1(Ω))for any η ∈ L2(0, t;H1

0(Ω)). This shows the assertion.5. Proof of Theorems 1, 2Proof of Theorem 1. From (29), (36)�(39), (44) it follows that there existsa pair (u, ϕ) with
u ∈ L∞(0, T ;H1

0(Ω)), ut ∈ L∞(0, T ;L2(Ω)),

utt ∈ L2(0, T ; (H1
0(Ω))′),(45)

ϕ ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)), ϕt ∈ L2(Ω
T ),and a subsequene (um, ϕm) of solutions to (27) (whih we still denote bythe same indies) suh that

(46)

um → u weak∗ in L∞(0, T ;H1
0(Ω)),

um
t → ut weak∗ in L∞(0, T ;L2(Ω)),

um
tt → utt weakly in L2(0, T ; (H1

0(Ω))′),

ϕm → ϕ weak∗ in L∞(0, T ; H1(Ω)) and weakly in L2(0, T ; H2(Ω)),

ϕm
t → ϕt weakly in L2(Ω

T ).Then by the standard ompatness results ([10, Corollary 4℄) it follows inpartiular that for subsequenes (still denoted by the same indies)
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(47)

um → u strongly in L2(0, T ;Lq(Ω)) ∩ C([0, T ];Lq(Ω))for q < 6, and a.e. in ΩT ,

um
t → ut strongly in C([0, T ]; (H1

0(Ω))′),

ϕm → ϕ strongly in L2(0, T ; H1(Ω)) ∩ C([0, T ]; L2(Ω))and a.e. in ΩT .Hene,
(48)

um(0) = um
0 → u(0) strongly in Lq(Ω), q < 6,

um
t (0) = um

1 → ut(0) strongly in (H1
0(Ω))′,

ϕm(0) = ϕm
0 → ϕ(0) strongly in L2(Ω),whih together with onvergenes (28) implies that(49) u(0) = u0, ut(0) = u1, ϕ(0) = ϕ0.The relations (45) and (49) imply the assertion (20) of the theorem.We introdue the weak formulation orresponding to the Faedo�Galerkinapproximation (27):

T\
0

(〈um
tt , η〉(H1

0
(Ω))′,H1

0
(Ω) + (Aε(um), ε(η))) dt

=

T\
0

(z′(ϕm)B∇ϕm + b, η) dt for any η ∈ EVm
,

(50)
T\
0

(βϕm
t − γ∆ϕm + Ψ ′(ϕm) + W,ϕ(ε(um), ϕm), ξ) dt = 0for any ξ ∈ EWm

,where
EVm

=
{
η : η =

m∑

j=1

em
j (t)vj(x), em

j ∈ L2(0, T ), vj ∈ Vm

}
,

EWm
=

{
ξ : ξ =

m∑

j=1

cm
j (t)wj(x), cm

j ∈ L2(0, T ), wj ∈ Wm

}
.To pass to the limit as m → ∞ in (50) we follow the standard proedure(see e.g. [7℄). Namely, we �x m = m0 ∈ N in the spaes of test funtions

η, ξ, and take subsequenes (46) with m ≥ m0.Clearly, by the weak onvergenes (46) the linear terms in (50) onvergeto the orresponding limits.Thus, it remains to examine the onvergene of the nonlinear terms
z′(ϕm)B∇ϕm, Ψ ′(ϕm) and W,ϕ(ε(um), ϕm). Realling the growth ondi-tions (17), and using the energy bounds (29), (37) it follows that
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‖z′(ϕm)B∇ϕm‖L∞(0,T ;L2(Ω)) ≤ c‖∇ϕm‖L∞(0,T ;L2(Ω)) ≤ cc0,

‖Ψ ′(ϕm)‖L∞(0,T ;L2(Ω)) ≤ c(‖ϕm‖3
L∞(0,T ;L6(Ω)) + 1) ≤ c,(51)

‖W,ϕ(ε(um), ϕm)‖L∞(0,T ;L2(Ω)) ≤ c(‖ε(um)‖L∞(0,T ;L2(Ω)) + 1) ≤ c.Thanks to the uniformity in m of these estimates and the pointwise onver-genes (47) we an apply the standard nonlinear onvergene lemma (see [6,Chap. 1, Lemma 1.3℄) to onlude that
z′(ϕm)B∇ϕm → z′(ϕ)B∇ϕ weak∗ in L∞(0, T ;L2(Ω)),

Ψ ′(ϕm) = 2(ϕm)3 − 3(ϕm)2 + ϕm → 2ϕ3 − 3ϕ2 + ϕ = Ψ ′(ϕ)weak∗ in L∞(0, T ; L2(Ω)),
(52)

W,ϕ(ε(um), ϕm) = z′(ϕm)(B · ε(um) + Dz(ϕm) + E)

→ z′(ϕ)(B · ε(u) + Dz(ϕ) + E) = W,ϕ(ε(u), ϕ)weak∗ in L∞(0, T ; L2(Ω)).Consequently, passing to the limit in (50) for a subsequene m0 ≤ m

→ ∞, we onlude that the identities in Theorem 1 are satis�ed for alltest funtions η ∈ EVm0
, ξ ∈ EWm0

.Next, letting m0 → ∞, by density arguments we arrive at identities (21).Clearly, the a priori estimates (22) are onsequenes of the uniform estimatesin Lemmas 1�3 and the weak onvergenes (46). This proves the theorem.Proof of Theorem 2. Let F (t) denote the total energy of the system,(54) F (t) =
\
Ω

[
1

2
|ut|

2 + W (ε(u), ϕ) + Ψ(ϕ) +
1

2
γ|∇ϕ|2

]
dx.

By the same arguments as in Lemma 1 we an show that solutions of problem(1)�(2) satisfy the following energy identity in the distribution sense on theinterval (0, T ):(55) dF (t)

dt
+ β
\
Ω

ϕ2
t dx =

\
Ω

b · ut dx.

Further, from (55) it follows that (f. (35))
(56)

1

4
‖ut(t)‖

2
L2(Ω)+cf (‖ε(u(t))‖2

L2(Ω)+‖ϕ(t)‖4
L4(Ω)+‖∇ϕ(t)‖2

L2(Ω))−c′f

≤ F (t) + β

t\
0

‖ϕt‖
2
L2(Ω) dt′ ≤ F (0) + ‖b‖2

L1(0,T ;L2(Ω)).From (55) we dedue the ontinuity of F (t) beause by estimate (22)1, using
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‖b‖L2(ΩT ) ≤ c, we get

|F (t′) − F (t′′)| ≤ c0|t
′ − t′′|1/2

t′\
t′′

‖b‖2
L2(Ω) dt ≤ c|t′ − t′′|1/2

for |t′ − t′′| small enough. Moreover, (56) implies that for any k ∈ N ∪ {0},
‖ut(kT )‖2

L2(Ω) + ‖u(kT )‖2
H1(Ω) + ‖ϕ(kT )‖2

H1(Ω)

≤ c(F (0)) + ‖b‖2
L1(R+;L2(Ω)) + c′f ).Hene, the loal solution from Theorem 1 an be prolonged step by step onthe intervals [kT, (k + 1)T up to k = ∞.
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