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ON RANDOM SPLIT OF THE SEGMENT

Abstract. We consider a partition of the interval [0, 1] by two partition
procedures. In the first a chosen piece of [0,1] is split into halves, in the
second it is split by uniformly distributed points. Initially, the interval [0, 1]
is divided either into halves or by a uniformly distributed random variable.
Next a piece to be split is chosen either with probability equal to its length
or each piece is chosen with equal probability, and then the chosen piece is
split by one of the above procedures. These actions are repeated indefinitely.
We investigate the probability distribution of the lengths of the consecutive
pieces after n splits.

1. Introduction. Kopocinski [6] investigated a problem of Hugo Stein-
haus (cf. [7]) regarding the population growth of a rod-shaped bacterium.
The problem is as follows: initially, one part breaks off from the original
bacillus becoming an independent bacillus. At each step one part breaks
off from the longest bacillus. The length of the descendant is the shortest
at the moment. Steinhaus stated that if the first partition is into mutu-
ally non-rational pieces then in any given generation at most three different
lengths of bacillus exist. Moreover fractions of small, medium and large ones
oscillate over time. Kopocinski added a random component to Steinhaus’
problem so that the number of different lengths is countable and the proba-
bility distribution of the lengths oscillates over time. Kopocinski considered
the following partition of the interval [0, 1]:

e Step 1: [0,1] is divided either into halves (splitting in half), or into
two pieces by using a uniformly distributed random variable (uniform
split).
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e Step 2: First, one of the two pieces is chosen, either each with proba-
bility 1/2 (random choice), or each with probability equal to its length
(proportional choice). Then the chosen piece is divided either into
halves, or into two pieces by a uniformly distributed random variable.
And now there are three pieces.

e Step 3: Like step 2, first one of the three pieces is chosen, then the
chosen piece is divided, giving four pieces.

This action of partitioning is continued indefinitely. Denote by n the current
number of split points and by

(1) Dy, = (Din, Dapy- s Dnyin)

the vector of lengths of the consecutive pieces after n splits. Under the above
assumptions four ways of choosing and partitioning can be obtained. In
each of them Kopocinski investigated the probability distribution of D1 ,,.
But the consecutive pieces are not identically distributed except for one
case (proportional choice, uniform split). Hence in the other three cases of
nonidentically distributed pieces we are interested in the probability dis-
tribution of Dj,. Moreover, in the case of proportional choice and split-
ting in half, which corresponds to Steinhaus’ problem, we give recurrence
relations for the probability distribution and moments of D;, for any i,
1<i<n+1.

In Section 2 we give some notions which will be needed in the next sec-
tions. The types of partitioning considered in Sections 3, 4, 5, respectively
are described in the titles of these sections. We investigate the random vari-
ables

(2) Zin=—logyDipn, Tin=D;), 1<i<n+1,n>1

,n’

For R,, ~ U(0,1), 1 < m < n, ie. for a uniformly distributed random
variable on the interval [0, 1], set

(3) E,, = —logs Ry, Fp = —logy(l— Ry,).

2. Preliminaries. Denote by H(T), r € N, k € N, the harmonic number
of order r, i.e.

F 1
(4) Z—T r>1

(cf. [4, Chap. 6.3]). For » > 1 we use the Riemann Zeta function ((r) and
the Hurwitz (generalized) Zeta function ((r, q) defined by
o

1
C(T’): i_,,,a Z q+'L q#07_17

i=1 =0



Random split of the segment 245

(cf. [3, 7.422.1, 7.421.1]). There are relations between the harmonic numbers
and the Psi (or Digamma) function () := ¢(9) () defined by
d
v(x) = L1051 (z),

and the derivatives of the Psi function (or the Polygamma functions)
dr+1 T
Y0 (@) = o1 log () = -

where I'(z) = {"t*'e ' dt, z > 0, is the Gamma function. Since

HY =5+ 9k +1)

(cf. [5, (5.13.5)]), where v := —1)(1) = 0,57721566 ... is the Euler-Masche-
roni constant and

v(x), r=0,1,2...,

o0

(r-1) (D) — -
(cf. [3, 6.356]), we have
C(rk+1) = ((r) — HY = % WD (k4 1),

which implies

(ff_l)f)! (V1) = oDk + 1))

(cf. |5, (6.2.4)]). It is known (cf. [3]) that

5) 1 =

1)

(6) (k4 z)~logk, or equivalently H,£+z

~logk, z2>1,k— o0,
and
(7) klim V'(k+2)=0 or klim H,gr) =({(r), z>1,r>1

We denote by (), the Pochhammer symbol (or the shifted factorial), i.e.
(@) =z(x+1)---(x+n—-1), n>1,
and (z), =1 for n = 0.

3. Random choice, uniform split. For a given i, 1 <i < n 4 2, we
consider Dj; 41, the length of the ith piece after n + 1 splits. After n splits
there are n+1 pieces D1y, ..., Dyy1,, and D; ;11 depends on which of these
is chosen for the (n + 1)th split. When ¢ = 1, Dj ;41 depends on whether
D1, or some other is chosen, and similarly when ¢ = n+42, D), 2 5,41 depends
on whether D,, 1 , or some other is chosen. Next, when ¢ = 2 or n + 1 there
are three possibilities: for example, D3, 1 depends on whether Dq,, D>,
or some other is chosen. And generally, for 2 < ¢ < n + 1 there are four
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possibilities, according as the piece chosen is Dj,, for j <i—1, D;_1 5, D;y,
or Dj, for j > i. We now define the random variable

3 if Dj, issplit, 1 <j <i—1,
2 if D1, is split,
1
0

(4) — >q—1.
Tn if D; ,, is split, ne=t
if Djyissplit, 1 <j<n+1,
Then the probability distribution of J,gi) is given by
. p— 2 , , 1
PUP =3)=""= P =2 =pPJ0=1)= ,
®) n+1 ' n+1

7

P ) =1
(I =0 =1-——,

n>i—1,i>2.

Let AS), Bq(f) and C’T(Li) be the random variables defined as follows:
AP = 1P =, B 19 <1, CP =1 =0

for n > i — 1, where I[A] denotes the indicator of the event A. Note that

Agi), Ag), e ,AT(f ) are mutually independent. Similar statements are true for
B\, ¢V R;, Bj and F;, 1 < j <n.

Referring to (2) and (3), Kopocinski [6] showed that D; ,; satisfies the
following recursive formulae:

Dy,  if JV =0,

Dyy= Ry, Diny1=
m {Dl,an it g0 =1,

and

n

BV -
(9) Dipg1 = H R;" . Zipt1= ZB](-DE]‘-
=0 =0

We are interested in Dj 41 in (1). For n > 1 the following recursive
formulae are satisfied:

(1- Rp)Dy, it J =2,
Dyy=Ro, Dyy=1-Ro, Dyni1=1 R.Dap it 1Y =1,
Do, it 7 =0

Hence by (9) for n > 1 we have

(2) (2) (2) (2)
10) D21 =1-Fo D= (1— Rn)™ Din RE» Dy A

Zoy =Fo, Zomi1=APE, + A? 7+ BPE, + (1 - A)Z,,,.
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Since BZ.(I) = AEQ), 0<i<mn,forn>1weget

n

Dyny1 = H(l - Rj)A;z) Tiyea (=A%)

j=0

R I (=AY S AP TI 4 (-4

,] )
(11) .0 T (2) @ T (2)

Zant1 = Z(Aj H (1*141' )Fj+Bj H (1*Ai )E;

Jj=0 i=j+1 i=j4+1

2 = 2 = 2
+4P 3 AP I - AaP)E),
k=j+1 i=k+1

where A(()Q) =1and Bé2) = 0, which can be proved by induction with respect
to n using (10).
For D;p, 1 <i<n+1, we get

PRrROPOSITION 1. Under the assumptions of random choice and uniform
split, the following recursive formulae hold:

D11 =Ry, D21=1-Ry,

and
Di_1n if IV =3,
. ] op(d)
Di,n+1 — (1 Rn)szl,n Zf JT(lZ) - 27 n Z i—1.
RnDi,n Zf Jn = 17
Din if It =0,

Write ¢ = (log2)~!. From the above relations we get formulae for the
expectation, variance and covariance of 7, and Z3,.

PROPOSITION 2. Under the assumptions of random choice and uniform
split the expectation and variance of Z1 41 are given by

EZ1n1 = c(¥(n+2) +7),
2
0*Z1 g1 = (21/}(” +2) + ¢ (n+2) +2y - %) (cf. [6]).

The expectation and variance of Zs 11 are given by
n
(12) EZsni1 = C(W” +2)+ T 7>,

2 2
(13)  0°Zypy1 = <2¢(n +2) + ¢ (n+2) + nnf oy — 7T_>'
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The covariance of the random variables Z1 p41 and Za ny1 has the form

(14)  Cov(Zint1, Z2m+1)

2n+3 2n—i—3 712
2 /
+9) 4+ N+ +2)—1——).

The correlation coefficient of Z1 py1 and Za n1 15 given by

_q1_z

g g® :

on = ntl - "nt+l = Hndl
e 1 1 " ‘
\/(2H7(1+)1 HZ) @HY, - B, + wi)

Proof. First note that

(15) EE] = EF} = rlc’,
2
(16) EE,F; = ¢ (2 - %)

The formula (12) can be proved by induction with respect to n or directly
from (11). The inductive proof will be presented here. For n = 1 by (10),
(15) and (8) we have EZy 9 = 2¢ = C(H2(1) + 1/2), as required. Now assume
that (12) is true for n; we show that it is true for n + 1. By (10), (15) and
(8) we get

c 1 1
EZ =— EZ — 1- EZ
2,n+1 n+1+n+1 1nt+ +1+< n+1> 2,n

1 n
—elg® L~
C( n +n+1+n+1)’

upon using the formula for the expectation of Z; ,,. Since H( )1 = H( )
we find that (12) holds.

The formulae for the variance and covarlance follow dlrectly from (11).
Using the identity (3°7_ aj)? = = > i 0a; R 123 Y0 GjGm, We get
EZQQ’nJrl = 51+ 52, where

1
n+1’

S ;:Z{E(AP 2BF? H E(1- AP +EBY)EE? [ EQ-AP)?
=0 i=j+1 i=j+1

+EAP)? Y EAP)? T] E(1—A§2>)2EE]2.}

and
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n m—1 n
—23>" > E{a? H (1— AP F +BY [ a-AP)E
m=1 j=0 1= ]+1 i=j+1
A S 4P [ a- AP @ ] a-a?)r,
k=j+1 i=k+1 i=m+1
+B® ﬁ (1— AP)E, + AY Zn: AP ﬁ (1— AP En .
i=m-+1 k=m+1 i=k+1

For S1, we see that by (8) and (15),
S =22y —— 4225y —
Le e Z n+1 e Z n+1 Z Z
7=0 7j=1 0 k=j+
9 4 :
as BIT0 ;0 (1 = A7) = [T, 41 77 = 5. Hence by (4),

_a.2( n
S1 = 2¢ <Hn+1—|—n+1>.

Now for Sy, multiplying the expressions in brackets and using the property

(17) EAPB® =0 and EAP(1-4P) =0,
we see that
n m-—1 n
Sy =2 Z {EA®BR T[] (1 - 4AP)FE,
m=1 j=0 i:j—i-l
2 d 2
+EBPB® [ (1- Al ))EjEm}
i=j+1
n m—1 n n
+23 Y EaA? Z AP T[ - AP EA® T (- AP)E,
m=1 j=0 k=j+1 i=k+1 i=m+1
n m-—1 n n
+23 Y EaA? Z AP T[] - APhE;BR [ - AP)Es
m=1 j=0 k=j+1 i=k+1 i=m-+1
n m—1 n
+23 Y EA? Z AY T - AP E; A% Z AP
m=1 j=0 k=j+1 i=k+1 k=m+1

n
. H (1-— AEQ))Em =: 2891 + 2599 + 2593 + 2594,
i=k+1

say. For sa1, by (8) and (15) we see that
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Sa1 = {EA§.2)B<2> [] - AP)FE,

+EBP B [ (1 - AP)E; B}
i=j+1

_ a2 2n Hﬁl 1
S21 = ¢C — + .
n+l n+1 (n+1)2

For s99, after changing the order of summation, by (8) and (15) we get

n

n—1 n n n
sp= > EAP ST a® TT - AP)EA? [[ - 4P)E,

§=0 m=j+1 k=j+1 i=k+1 i=m+1
n—1 n n
2 2 2
=Y BA? S 4?2 [[ a-Aa?)EE,
j=0 k=j+1 i=kt1
n—1 n
1 1
— 2 Z Q(H(l) _ 1)
. n+1
= j+1 Mo n+1
Since E(1 — AZ-2))2 =E(1- AZ@)) = h+1 we have
n m-—1 n
S93 = EAP S a® T[] 0 - AP BR [ - AP)E,
m=1 j=0 k=j+1 i=k+1 i=m-+1
n m—1 m—1 n
2 2 2
= EAY 3" EAPEB? T] E(1-4P)
m=1 j=0 k=j+1 i=k+1
n m-—1 . n
_ 2 m—(j+1) 2( 1 nH__n )
_szljzo(n—i—l)(]—i—l)m ¢ 71—#1231 m™on+1)’
and
n m—1 n n
S94 = EAY ST AP TT - AP)E;AY
m=1 j=0 k=j+1 i=k+1
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3
L
3

[
o
no
[

m=1 j=0 '7 k=m+1 1=k+1
n m—1 P n
=33 e w2
oo s G+ 1)(m+1) n+1 4=

which by the identity
n—1

(18) >
k=13

(cf. [4]) gives

n

1 1 1
> L= Ly L
- 1k 2 2

n+1 —
Hence
o () 2 (1) 2 2 ) 2 (2)
Sy =c ((Hn+1) +2Hn+l_n+1 —n+1Hn+1+m—Hn+1 :

which gives

n? B 2 H(l) B
( _|_1)2 n+1 n+1 n+1

BZ3 000 = & <(H( ')+ 4aHY, 42

and

n2
0 Zy i1 = ¢ <2H7(i21 -HZ, + m) ;
and by (2) and (5) proves (13).

Similarly for

EZin1Zop+1 = Ezn: z”: Ag)Em{Af) f[ (1- AP F;

§=0 m=0 i=j+1
n
+B? [T (1 AP)E; + A® Z AP H (1- AP},
i=j+1 k=j+1 i=k+1

using the equality

n on n j—1

)IEES 35 LTINS SLED P SR

7=0m=0 j=1m=0 7=0m=j5+1

and property (17) we get
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EZ1n1Zomi1 = Z ZEA AP + B TT (1 - AP)EELEF,
j=1m=0 i=j+1

= 2 2
+ 3 EBAD)? [T (- AP)EE;F;
j i=j+1

n j—1 n n
+3° 3 EA®AP ST AP TT (- AP)EE,EE;

j=1m=0 k=j+1 i=j+1

+ZEA 2) Z A f[ (1- AP)EE?
k=j+1 i=j+1

n

+Z Z EAP(AD)? T] (- AP)EEEE,
J=0m=j+1 t=m-+1

n

+Z Z EAYAZ S AP H APNEE,EE,,.

j=0m=j+1 k=m+1 i=j+1
Hence by (8), (15) and (16) we obtain

n j—1 9
1 T
EZ Z =2 - 92 )2
1n+142n+1 C ZZ m+1)(n+1)+( 6>C
7=1m=0
n j—1 n n—1 n
+etd D 2. +EY D) T
j=1m= o ( m+1 JU+1) k:’+ln+1 J=0 m=j+1 (7 +1(n+1)
- 1
202 2
+CZ Zn+1+czz G+1) m+1) 2. o+l
Jj=0m=j+1 k=m+
2
1 U 1 2
= P 1+ (H) - 2,

upon using (18) and the identity
ZH —(n+1)HY, —(n+1)

(cf. [4]). Therefore,

2n+3 72
Cov(Z1nt1, Zont1) = 02< HY) —HE), —1- —),

which by (2) and (5) proves (14). =
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REMARK 1. By (6) and (7) we get
EZ;, ~ logyn, 02Z27n ~ 2cloggn, onp—1, n—o0.
Now we investigate the asymptotic behaviour of the distribution of Z3 .

LEMMA 1. Under the assumptions of random choice and uniform split,
Z2,n - Zl,n P
_

v/1logan

where L5 denotes convergence in probability.

0, n— oo,

Proof. By Chebyshev’s inequality and Proposition 2 we have
P< Zom — Zin > €> < 0'2Z17n + 0'2Z27;1 — QCOV(ZLR, Zgyn)
v/1ogom e?logyn
2_—2 2n+1 2 (1)
e 3+ % — 25 hr — narHein)

= —0, n—oo. =
log, n

THEOREM 1. Under the assumptions of random choice and uniform split,
the random variable Zs ,, is asymptotically normal with expected value logy n
and variance @ logy 1.

Proof. Note that

ZQ,n - 10g2 n _ Z2,n - Zl,n Zl,n - 10g2 n
V/2clogyn V/2clogyn V2clogyn

Since
Z1n —logan

v/2clogyn

the assertion follows from Lemma 1 and the Slucki theorem (cf. [1]). m

— Z ~N(0,1), n — oo,

To prove the next theorem we use Etemadi’s method.

THEOREM 2. Under the assumptions of random choice and uniform split,

A
Zhn 4S9y ond

logy n logn

Z2,n a.s.
1, n—oo.

Zl,'n
logy n

Proof. Note that E — 1, n — oco. Now let € > 0. By Chebyshev’s

inequality we have

P Zl,n _EZI,n >
logon  logyn

Uzzln 2c
e) < 5 < 3 ;
e2logzn — e%logan
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which gives the rate of convergence in probability. We prove the almost sure
convergence using Etemadi’s method (cf. [2]). Let o > 1 and m,, = [a""]
for n > 1, where [z] is the smallest integer greater than or equal to z (the
notation from [4]), i.e. [z] denotes the ceiling function of z. In what follows,
C denotes a finite positive constant that can vary from step to step. Then

00 0o 0o
Zlm EZlm 1 1

E P - — > <C§ <C’E — < 0.

[ _E]_ “—logmn — L n? >

= logom,  logymy,
The Borel-Cantelli lemma implies that

Zl,mn a.s.
— — 1, n — Q.
10g2 Mn

Let p(n) be such that Mpny < N < Mpp)41 for n > 1. Since the sequence
(Z1 ) is nondecreasing we have

Z 4 log, m
lim inf 1" > lim inf Lmpn 82 Mp(n)

n—oo 10gy 1 n—oo 108y My(n) 108y Myp(n) 11

VA 2
> fim M < p(n) ) —1
n—oo log, Mep(n) p(n)+1

Similarly, we get an analogous relation for the upper limit:

1, Z1mpn 1 1082 Mp(n)41

lim sup < lim sup
n—oo l0goM n—oo 10gy Mp(n)+1 log, Mp(n)

2
n—0o0 10g2 Mp(n)+1 p(n)

Thus Z; ,,/logyn — 1 almost surely. The proof of the statement for Zs, is
similar. m

4. Random choice, splitting in half. Suppose that Ag), Bg) and

BT(E) satisfy the assumptions of the previous section. Referring to (2) and
(3), the following recursive formulae hold:

1 Dy, it JY =0
Dip=5, Dipt1= ’ ’
2 ! {Dl,an it SV =1,

and
n 1 B](,l) n
1
D =I1(3) 2w =3B (b
j=0 j=0

We are interested in Dy 11, for which the following recursive formula holds
for n > 1:
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1Dy, it =2,

1 1
Din=35, Dai=g5, Diny1=19 3D, if I =1,
Dy, i JP =0.

Hence by (9) we have

1 INAY @ 71\ BY @)
Doy =35, Dopni= <§> Dy, <§> Dy,
1

Zo1=1, Zopt1= Aﬁf) + A%Q)Zl,n + Bff) +(1- Af))zz,m
and

< 1 ) A;-Z) H:'l:j-H (1—‘42('2))

2 n 2 1 n 2 n 2
1\ B T A+ BY S0 A T (1-AF)
2

Y

Zwr = 3 (AP TT (1= 4®)+ 52 [T (- 42)
j=0 i=j+1 i=j+1

+42 3 AP T a —A§.2))), n>1,
k=j+1 i=k+1
where A(()Q) =1 and 382) =0.

In general, considering D; ,, 1 <7 <n + 1, we get

PROPOSITION 3. Under the assumptions of random choice and splitting
into halves, the following recursive formulae hold for n > i — 1:

Di1n if I =3

1 1 ip._ f I =9
Din=5, Dai=5, Dipy1=92" b Z.f W

Din if I =0

The probability generating function of Zi ;41 is given by

n .
S J (S)n—i-l

— Eg4int1 — = .
921011(8) = Es g<j+1+j+1) (n+1)!

Note that

n

10ggZ1,n+1 (5) = Z log(s + .]) - log(n + 1)!5
=0
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and differentiating both sides we have

n

(S)n-i-l 1

n+1)!j_ s+’

(Tl + 1)' ’ n+1
921, (5) = (8)nt1 921011 (5) (n + D= (s +J

gIZl,n_,.l (S) = (

Taking into account that EZ; ,, 11 = 9,21,n+1( ) and EZl,n+1(Z1,n+1 -1) =
ggl,nJrl (1) we can easily get the formulae for the expectation and variance of
Z1n+1 given below in Proposition 6.

From the above probability generating function using the identity (x), =
> g cln, §)27 (cf. [4]), where ¢(n,j) are the unsigned Stirling numbers of
the first kind, we get

PROPOSITION 4. The rth moment of Z1 n1 is given by

1 n+1
EZ?ln,n—l—l = (TL+ 1)' ZC(TL+ 17])]T
=

Let pn(j) = P(Z1,n = j). Kopocinski [6] showed that

n
) = - 1 .
Prt1(d) = pu(j) e + pn(j )nle

Hence one can prove

PROPOSITION 5. Under the assumptions of random choice and splitting
in half, the moments of Z1,, satisfy the following recurrence relation:

1 -
As in the proof of Proposition 2, one can show

PROPOSITION 6. Under the assumptions of random choice and splitting
in half, the expectation and variance of Z1 41 are given by

EZipnt1=9%(n+2) +7,
2
L = 0 +2) 4 +2) £y - (e [6]).

The expectation and variance of Zs 11 are given by

EZQ’n+1 = 1/1(71 + 2) + v+ ?

2
02 Zg i1 = V(0 +2) + 1 (n+2) — T

(n+ 12
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The covariance of the random variables Z1 p41 and Za ny1 has the form

n —+ n 42 2
Cov(Z1nt1, Zopt1) = —— w(n +2)+ ' (n+2)+ marc R A 1.
The correlation coeﬁicient of Zl,n+1 and Z n4+1 s given by

1 1 2
Hr(Lle + nLJrlez—al - H7(1421

On = .
1) (2) 1) (2) n
\/(Hn—H Hn-i—l)(Hn-i-l — Hyp - (n+1)2)
Proof. The steps of the proof are the same as in the proof of Propo-

sition 2. It is enough to replace F; and Fj by 1, and then make similar
calculations. We drop them here. Finally, we get

n
EZsni1 = H7(11421 + PR 0% Zo 1 = H7(1421 H( )

-1

and P
_n (1) (2)
Cov(Zin+1, Zamt1) = - 1 Hefr — Hoy — L

which by (2) and (5) gives the required assertions. m
REMARK 2.
EZy, ~ logn, 02Z27n ~logn, o,—1, n—oo.
Now we investigate the limit behaviour of Z;, and Zs .

LEMMA 2. Under the assumptions of random choice and splitting in half
722’71 —Zin L 0 n — 00
Viogn ’ ’
The next two theorems correspond to Theorems 1 and 2, and the proofs
are similar.

THEOREM 3. Under the assumptions of random choice and splitting in
half, the random variable Zs ,, is asymptotically normal with expected value
logn and variance logn.

THEOREM 4. Under the assumptions of random choice and splitting in

half,

Zl,n a.s. Z2,n a.s.
—— —=1 and —— —1, n— .
logn ogn

5. Proportional choice, splitting in half. We give recurrence rela-
tions for the probability distribution of D;,, 1 <4 < n+1, and also recursive

formulae for the moments of D;,, and T;,. As a special case we can obtain
the results for D, presented by Kopocinski [6] and also for Dy ,,.

Define p\’(j) = P(D;n = 1/27) for fixed i, 1 <i < n+ 1. Let
Son =0, Sm,n = Smfl,n + Dm,na I<m<n+1.

)
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PROPOSITION 7. Under the assumptions of proportional choice and split-
ting in half , the random variable D; ,, and its probability distribution pg) (j) =
P(D;y, = 1/27), 1 < j < n, satisfy the following recursive formulae for
n>1—1:

Di1n  if Ry < Si—2.m,

D1, if Sicon < Rp < Sicim,
tD; if Sicin < Ry < Sin,
D, if Ry > Sin,

1 1
Dy = 2 Dy, = 3 Diny1 =

and

i-1), .
0 (i—1)

(@) ;
. i—1)( pn (J—1) pn(g—1
P () = oGBS+ P U 2]

1
#3000 (1- 35~ BSia).

Proof. Using the recursive formula for D; ;1 we have
P () =" 1>< )P(Ro < Sizam)

1 .

1 ( 1

Since R, is uniformly distributed on (0, 1) we see that
1 1
P\ Si—im < Ry < Si—ip+ 21 = 21
and P(R, < Si—2,m) = ESij_2,, which ends the proof. =

COROLLARY 1. The random variable D1 ,, and its probability distribution
pg)(j) = P(Di1,, = 1/27),1 < j < n, satisfy the following recursive formulae
forn > 1:

%Dl,n Zf Rn < Dl,na

1
Diy=—-, D =
L= 35 1n+1 {DM if Ry, > D1y,

and

1 1
pgl)(l) =1 p7(11+)1(3) PG =1) 5 2j—1 +pi )<1 a 2_3)

The random variable Do, and its probability distribution

PP () = P(Dyy =1/27), 1<j<n,
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satisfy the following recursive formulae for n > 1:

1 1 %Dl,n Zf Rn < Dl,n’
Din=5. D=5 Dopn= D2y if D1y < Ry < Diy+ Doy,

D2,n Zf Rn > Dl,n + D2,n;

and pg)(l) =1,

PG =pG = 1) == +pP (G — 1) =

201

, 1
+p0(5) (1 — 5 - EDl,n>.

PROPOSITION 8. Under the assumptions of proportional choice and split-
ting in half, the moments of D; ,, and T;,,, 1 < i < n+1, satisfy the following
recurrence relations for r > 1:

1
EDj, 1 = ED/ T ES; o, + ?EDTH + (1 = ESi—10)EDg,

i—1n i—1,n

1 1
+ (27 — 1)ED;"; :

and

ET], 11 = BT}y ,ESi 2+ 2 BT}, + (1-BS; 1) BT, + (2 — ) ET], .

2

COROLLARY 2. The moments of D1, and T1, satisfy the following re-
currence relations:

1n>

1
ED{,TL-&-I = ED{,TL + <? — 1) EDT+1

ET], ., = ET{, + (2" - 1) ET{,', r>1,

1n >

1 1
EDii=35, EDipp1 =EDiy -3 ED? ETy, =n+1.

1,n

The moments of Doy, and 1>, satisfy the following recurrence relations:

1 1
EDS,n+1 = ?ED{}_LI + (1 - EDl,n)EDg’n + <2—'r — 1>EDT+1

2,n

BTy, =2"ED] ' + (1 -ED1,)ET;, + (2" — 1)ET; ', r>1,

2n
ED271 g 57 EDQ,’VL—}—l = §ED1,TL + (1 - EDLn)EDQ’n - §ED277L,
1 n
EDzn1 = 5 (J](1—EDyy)
j=1
n n
+ Z (1- EDl,k)(ED%,n-‘rl—j - ED%,n—i—l—j))?

j=1 k=n+2—j



260 M. Bieniek and D. Szynal
ET27H+1 =3+ (1 — EDl,n)ETZna

n n n
ETyni1 =3 ] (1-EDiy)+2]J(1-EDyy),

j=1 k=n+2—j j=1
9 3 5 11 9
ET5 41 = 3" + 5" +5+ (1= ED1,)ET5,, + 3ETy 5,
9 3 5 11 9
o TQ,nJrl = 5 n° + ? n—4+ (1 - EDLn)O' Tgm + 3(2ED17H — 1)ET27H

+ED1 (1 — ED1,)(ETo0)*.
The next propositions can be proved using Jensen’s inequality.

PROPOSITION 9. Under the assumptions of proportional choice and split-
ting in half, the moments of D; , and T;,, 1 <i < n+ 1, satisfy

EDj, > (ET],)”", r=>1
ProOPOSITION 10. Under the assumptions of proportional choice and
splitting in half, the moments of Z; ,, 1 <1 < n + 1, satisfy
EZ?, <log3(ET;, + 1),
Bler + Zin)" < (cr +10gy(ET:0)), 7> 1,
where ¢, = (r — 1) logy e — 1.
COROLLARY 3 ([6]). The moments of Z , satisfy
EZ}, <logj(n+2),
E(c, + Z12)" < (¢ +1ogy(n+1))", r>1.

REMARK 3. Let Uy, = T;,/ET;,, 1 <i < n+ 1. Then under the as-
sumptions of proportional choice and splitting in half, the support of the
random variable Z; ,, 1 <i<n+1,is {1,...,n} and Z;,, has the represen-
tation

Zin —logy (ET; ) =logo Uiy, as.,

which implies that U; ,, is not a degenerate random variable.
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