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OPTIMAL INVESTMENT STRATEGY FOR A NON-LIFEINSURANCE COMPANY: QUADRATIC LOSS
Abstrat. The aim of this paper is to onstrut an optimal investmentstrategy for a non-life insurane business. We onsider an insurane ompanywhih provides, in exhange for a single premium, full overage to a portfolioof risks whih generates losses aording to a ompound Poisson proess. Theinsurer invests the premium and trades ontinuously on the �nanial marketwhih onsists of one risk-free asset and n risky assets (Blak�Sholes mar-ket). We deal with the insurer's wealth path dependent disutility optimiza-tion problem and apply a quadrati loss funtion whih penalizes deviationsbelow a reserve for outstanding liabilities as well as above a given upperbarrier. An optimal investment strategy is derived using stohasti ontroltheory in the absene of onstraints on ontrol variables. Some propertiesof the strategy and the behaviour of the insurer's wealth under the optimalontrol are investigated. The set up of our model is more general, as it analso be used in non-life loss reserving problems.1. Introdution. In the past few years optimal portfolio seletion prob-lems have gained muh interest in �nanial and atuarial literature. Thereare at least two reasons for this: the diversity of investment possibilities on�nanial markets and new regulatory requirements.The idea of portfolio seletion is to onstrut the best alloation of wealthamong assets in order to �nane a future stream of spending over a giventime horizon. This alloation of wealth hanges dynamially over time, whihimplies rebalaning of the investment portfolio.In this paper we investigate the problem of identifying the optimal invest-ment strategy for a non-life insurane ompany. Portfolio seletion problems2000 Mathematis Subjet Classi�ation: 91B28, 91B30, 93E20.Key words and phrases: optimal investment strategy, insurer's wealth path depen-dent disutility optimization, Hamilton�Jaobi�Bellman equation, Lévy-type stohasti in-tegrals. [263℄



264 �. Delongfor non-life insurane business are rather rare in atuarial literature. Stohas-ti ontrol theory is usually applied to non-life insurane models in order to�nd an optimal dividend payout sheme or optimal reinsurane ontrat (seefor example Hipp and Vogt (2003), Højgaard and Taksar (2002), Hubalakand Shahermayer (2004), Paulsen (2003) and Shmidli (2002)). For a sur-vey of ontrol theory in ruin theory models see also Hipp (2002) who dealswith optimal investment, optimal proportional reinsurane, optimal XL rein-surane, optimal premium ontrol and optimal new business.Most portfolio seletion problems in atuarial mathematis onern opti-mal asset alloations for de�ned bene�t or de�ned ontribution pension plansand other retirement problems (see for example Cairns (2000) and Habermanand Vigna (2002)). This is due to the fat that pension plans are long-termontrats and investment unertainty is greater than for short-term non-lifeontrats. However, the �nanial market o�ers the possibility to improveompany's �nanial position and a non-life insurer should be interested intrading assets on the market even in short-term.As far as investment hoies of a non-life insurane ompany on a stokmarket are onerned, there are two prominent papers of Browne (1995) andHipp and Plum (2000). Browne approximates an insurane surplus proessby a Brownian motion with a drift and determines an investment strategywhih maximizes the expeted exponential utility from �nal wealth. It isshown that this strategy also minimizes the ruin probability. Hipp and Plum(2000) derive an investment strategy whih minimizes the ruin probabilityin a lassial olletive risk model with in�nite time horizon. The reent pa-per of Korn (2005) extends the result of Browne (1995) by introduing theonept of worst-ase portfolio optimization (whih takes into aount thepossibility of a market rash) and by solving the maximization problem ofworst-ase exponential utility from �nal wealth.We onsider an insurane ompany whih ollets a single premium, in-vests it and trades ontinuously on the �nanial market adopting an invest-ment strategy whih is optimal in the sense of a spei�ed loss funtion. Weinvestigate the wealth path dependent disutility optimization problem as theinsurer's performane is evaluated in ontinuous time during the whole termof the poliy. Applying an optimal investment strategy, the insurer shouldmeet all future unpreditable liabilities. It seems that our wealth path de-pendent disutility optimization approah to the investment problem of anon-life insurer is a novelty as most papers deal with maximization of theutility from �nal wealth or minimization of the ruin probability. If we takea single premium to be an amount of money set aside by the insurer for thefuture unpaid liabilities, we obtain an investment problem for non-life lossreserving. For non-life reserving problems in the ontext of portfolio seletionsee Ahan et al. (2004).



Non-life insurane 265This paper is strutured as follows. In Setion 2 we set up a non-life insur-ane ontrat and the �nanial market, and state our optimization problem.In Setion 3 we derive an optimal investment strategy for the problem with-out onstraints on ontrol variables. Setion 4 deals with the properties ofthe strategy and the behaviour of the insurer's wealth under the optimalontrol.2. The general model. In this setion we introdue an optimizationmodel for an insurane ompany whih issues a non-life poliy and tradesassets on a �nanial market.We are given a probability spae (Ω,F , P) with �ltration F = (Ft)0≤t≤Tand FT = F , where T is a time horizon. The �ltration satis�es the usualhypotheses of ompleteness (F0 ontains all sets of P-measure zero) and rightontinuity (Ft = Ft+).Consider the olletive risk model. Let J(t) denote the aggregate laimamount up to time t, for 0 ≤ t ≤ T . We assume that the proess {J(t), 0 ≤
t ≤ T} is a ompound Poisson proess, whih means that it has a represen-tation

J(t) =

N(t)∑

i=1

Yi,(2.1)where {Yi, i ∈ N} is a sequene of positive, independent and identiallydistributed random variables with law p and N(t) is a homogeneous Poissonproess with intensity λ whih is independent of the sequene {Yi, i ∈ N}. Weassume that the proess {J(t), 0 ≤ t ≤ T} is F-adapted with àdlàg samplepaths (ontinuous on the right and having limits on the left). In insuranerisk models, Y1, Y2, . . . denote the amounts of suessive laims and N(t)ounts the number of laims up to time t. The probability measure p satis�esT∞
0 y4 p(dy) < ∞, whih means that the random variables {Yi, i ∈ N} have�rst four moments �nite; let µ = E(Yi) and µ2 = E(Y 2

i ). Let Ti = inf{t ≥ 0 :
N(t) = i}, with T0 = 0, denote the time of the ith laim and ξi = Ti−Ti−1 theinter-laim time. It is well known that {ξi, i ∈ N} is a sequene of independentand exponentially distributed random variables whih are independent of thesequene {Yi, i ∈ N}.The ompound Poisson proess {J(t), 0 ≤ t ≤ T} an also be de�nedthrough the Poisson stohasti integral of the form

J(t) =

t\
0

∞\
0

z M(ds, dz),(2.2)where M(t, A) = #{0 ≤ s ≤ t : △J(t) ∈ A}, △J(t) = J(t) − J(t−), for allBorel sets A ∈ B(0;∞), is a Poisson random measure with intensity measure
λp(A). The random measure M(t, A) ounts the jumps of the ompound



266 �. DelongPoisson proess of a spei�ed size of A up to time t and has Poisson dis-tribution. For more details on Poisson random measures, Poisson stohastiintegrals and general Lévy-type stohasti integrals see Applebaum (2004).On a �nanial market, there are n + 1 �nanial assets. One of the as-sets is risk-free and its prie {B(t), 0 ≤ t ≤ T} is desribed by an ordinarydi�erential equation of the form
dB(t)

B(t)
= r dt, B(0) = 1,(2.3)where r denotes the fore of interest. The remaining assets are risky and theirpries {Si(t), 0 ≤ t ≤ T}, for i = 1, . . . , n, evolve aording to stohastidi�erential equations

dSi(t)

Si(t)
= ai dt +

n∑

j=1

σij dWj(t), Si(0) > 0,(2.4)
where ai denotes the expeted return on the risky asset i, σij denote deter-ministi volatilities, for j = 1, . . . , n, and {W1(t), . . . , Wn(t), 0 ≤ t ≤ T} is astandard n-dimensional Brownian motion, F-adapted, whih is independentof the ompound Poisson proess J(t).Let us onsider a portfolio of insurane risks whih generates losses a-ording to the ompound Poisson proess. An insurane ompany issues apoliy, with the term of T years, overing all laims from that portfoliowhih our during the term of the ontrat. In exhange for that prote-tion, the insurane ompany reeives a olletive, single premium in theamount of x0, invests the premium on the �nanial market and trades assetsontinuously in order to improve its �nanial position. At eah time, theinsurer adopts an investment strategy (θ1(t), . . . , θn(t)), where θi(t) is thefration of the available wealth invested in the risky asset (stok) i at time t.The remaining fration of the wealth, θ0(t) = 1 −

∑n
i=1 θi(t), is investedin the risk-free asset (bank aount). We assume that the adopted strategy

{θ1(t), . . . , θn(t), 0 < t ≤ T} is a preditable proess with respet to the�ltration F.Let X(t), for 0 ≤ t ≤ T , denote the value of the insurer's wealth aris-ing from the insurane ontrat. In the lassial risk theory, the proess
{X(t), 0 ≤ t ≤ T} is alled the insurane surplus proess. It evolves aord-ing to the stohasti di�erential equation

dX(t) =
n∑

i=1

θi(t)X(t−)
{
ai dt +

n∑

j=1

σij dWj(t)
}(2.5)

+
(
1 −

n∑

i=1

θi(t)
)
X(t−)r dt − dJ(t), X(0) = x0.



Non-life insurane 267We require that investment strategies satisfy the onditions
P

( T\
0

θi(t)
2X(t−)2 dt < ∞

)
= 1, i = 1, . . . , n,(2.6)

P

( T\
0

θ0(t)X(t−) dt < ∞
)

= 1.(2.7)
These onditions ensure that the stohasti di�erential equation (2.5) is wellde�ned and that the proess {X(t), 0 ≤ t ≤ T} is an F-adapted semimartin-gale with àdlàg sample paths. Strategies whih are preditable proesseswith respet to the �ltration F and satisfy (2.6) and (2.7) are alled admis-sible for our problem.The above stohasti di�erential equation an be rewritten in matrixform as
(2.8) dX(t) = X(t−)θ(t)T π dt+X(t−)θ(t)TΣ dW(t)+X(t−)r dt−dJ(t),with X(0) = x0, where θ(t)T = (θ1(t), . . . , θn(t)) denotes the investmentstrategy adopted by the insurer, πT = (π1, . . . , πn) the vetor of risk premi-ums attahed to given assets (πi = ai − r), Σ the matrix of volatilities and
W(t)T = (W1(t), . . . , Wn(t)) the standard n-dimensional Brownian motion.A natural assumption is to onsider positive risk premiums. We assume thatthe matrix of volatilities is nonsingular. This implies that the ovarianematrix Q = ΣΣT is positive de�nite. It is worth noting that the proess
{X(t), 0 ≤ t ≤ T} is a Lévy-type stohasti integral as its stohasti di�er-ential an be represented in the form

dX(t) =
(
X(t−)θ(t)T π + X(t−)r −

\
0<y<1

yλ p(dy)
)

dt(2.9)
+ X(t−)θ(t)T Σ dW(t) −

\
y≥1

y M(dt, dy)

−
\

0<y<1

y (M(dt, dy) − λ p(dy) dt), X(0) = x0.During the term of the poliy, the insurane ompany sets aside a reserve.The reserve is the amount of money whih should ensure that the insurerwill meet all the future ontratual obligations arising from the portfolio.The reserve is usually alulated under prudential basis. This means thatthe insurer assumes in the alulations a higher loss frequeny and a moresevere laim size distribution.Traditionally, atuaries alulate reserves for the outstanding liabilitiesas the onditional expeted value of all future disounted payments,



268 �. Delong
R(t) = E

[ T\
t

e−δ̂(s−t) dĴ(s)
∣∣∣Ft

]
, 0 ≤ t < T,(2.10)

where δ̂ is a prudent rate of return on investments (disount rate) and Ĵ(t)is a ompound Poisson proess with Poisson intensity λ̂ ≥ λ and laim sizedistribution with �nite �rst moment µ̂ ≥ µ.In order to alulate the above expeted value we use the followingwell known fat from the theory of Poisson proesses (see for example Sato(1999)).Lemma 2.1. The distribution of the random vetor (T1, . . . , Tn), ondi-tioned on N(t) = n, is given by the density funtion
f(T1,...Tn)|N(t)=n(t1, . . . , tn) =

n!

tn
, 0 ≤ t1 ≤ · · · ≤ tn ≤ t,(2.11)whih means that the random vetor (T1, . . . , Tn), onditioned on N(t) = n,is distributed as the vetor of n ordered statistis taken from the uniformdistribution on the interval [0, t].With the above lemma, alulation of the expetation in (2.10) is straight-forward. Beause of the independene and stationarity of the inrements ofthe ompound Poisson proess and the lak of memory for the inter-laimtimes, the reserve at time t is equal to

R(t) = E

[ N̂(T−t)∑

i=1

e−δ̂T̂i Ŷi

]
.(2.12)Using the properties of the onditional expetation and the independene ofthe sequenes {ξ̂i, i ≥ 1} and {Ŷi, i ≥ 1} we arrive at

R(t) =
∞∑

n=0

E

[ N̂(T−t)∑

i=1

e−δ̂T̂i Ŷi

∣∣∣ N̂(T − t) = n
]
Pr(N̂(T − t) = n)(2.13)

= µ̂

∞∑

n=0

E

[ N̂(T−t)∑

i=1

e−δ̂T̂i

∣∣∣ N̂(T − t) = n
]
Pr(N̂(T − t) = n).From Lemma 2.1 it follows that

E

[ n∑

i=1

e−δ̂T̂i

∣∣∣ N̂(T − t) = n
]

= n

T−t\
0

e−δ̂s 1

T − t
ds(2.14)

= n
1 − e−δ̂ (T−t)

δ̂(T − t)
.



Non-life insurane 269Finally, at time t, the reserve for the outstanding liabilities is equal to
R(t) =

µ̂λ̂

δ̂
(1 − e−δ̂(T−t)), 0 ≤ t < T.(2.15)The insurane ompany an hoose the parameters δ̂, λ̂, µ̂ taking into a-ount its own attitude towards insurane risk (λ̂, µ̂) and investment risk (δ̂),or there exist solveny regulations whih require the insurer to set reservesfor future payments on a spei�ed basis. In atuarial literature, the marketreserve, whih is the market value of insurane liabilities, is gaining muhinterest. For the onept of no-arbitrage between insurane and reinsuranemarkets and the arbitrage-free priing of non-life business see Jang and Kr-vavyh (2004) and Sondermann (1991).We investigate the following insurer's wealth path dependent disutilityoptimization problem. The aim of the insurer is to �nd an investment strat-egy whih minimizes the quadrati loss funtion

(2.16) E

[ T\
0

{(R(s) − X(s))2 + α(R(s) − X(s)} ds

+ β(X(T )2 − αX(T ))
∣∣∣ X(0) = x0

]
.The above quadrati loss funtion penalizes deviations of the insurane sur-plus proess below the reserve for outstanding liabilities, and rewards devia-tions above the reserve, whih prompts the insurer to gain from the �nanialmarket. It is lear that the insurane ompany should have interest in keep-ing the wealth arising from the poliy above the required reserve, just forsolveny reasons. However, if the wealth rosses the upper barrier, whih isgiven by the parameter α ≥ 0, the loss funtion penalizes those deviationsabove again. This means that when the wealth beomes too large it is au-tiously invested. Notie that the �real� target imposed by suh a quadratifuntion is R(t) + α/2. The parameter α ≥ 0 an be interpreted as the in-surer's attitude towards investment risk, as a higher value of α orrespondsto a lower risk aversion (see Haberman and Vigna (2002)). Stability of thesurplus and the neessity of redistribution of large pro�ts to the insured anserve as another explanation for laying down the upper barrier. The param-eter β > 0 attahes a weight to the terminal ost. Applying the investmentstrategy whih minimizes (2.16) the insurer should meet all the ontratualpayments and make a pro�t on the issued poliy.In Setions 3 and 4 we use the following lemma.Lemma 2.2. The solutions to the ordinary di�erential equations

1 + a′(t) + φa(t) = 0, a(T ) = β,(2.17)
− 2R(t) − α − 2µλa(t) + b′(t) + ϕb(t) = 0, b(T ) = −αβ,(2.18)



270 �. Delongwhere φ, ϕ are onstant parameters, are given by
a(t) =

1

φ
(eφ(T−t) − 1) + βeφ(T−t)(2.19)and

b(t) = −αβeϕ(T−t) −
α

ϕ
(eϕ(T−t) − 1) − 2

T\
t

R(s)eϕ(s−t) ds(2.20)
− 2µλ

T\
t

a(s)eϕ(s−t) ds

= −αβeϕ(T−t) − (eϕ(T−t) − 1)

(
2µ̂λ̂

δ̂ϕ
+

α

ϕ
−

2µλ

φϕ

)

+ (eϕ(T−t) − e−δ̂(T−t))
2µ̂λ̂

δ̂(ϕ + δ̂)

− (eϕ(T−t) − eφ(T−t))
2µλ

φ(ϕ − φ)
(1 + βφ).Proof. Solve the equations using variation of onstants or hek by diretsubstitution.Remark 2.1. Notie that a(t) ≥ β > 0 and b(t) ≤ 0 for all t ∈ [0, T ].Let (a(t), b(t)) ∼ (φ, ϕ) denote the funtions whih solve the ordinarydi�erential equations from Lemma 2.2 with parameters φ, ϕ. This notationis used in Setions 3 and 4.Remark 2.2. Notie that we solve the di�erential equations in Lemma2.2 and alulate the reserve in (2.15) assuming non-zero parameters. If aparameter appears to be zero, an appropriate limit in the given formulasshould be taken.In the next setion we solve our optimization problem.3. The solution of the optimization problem. In this setion wepresent the solution to the optimization problem without onstraints onontrol variables. This means that we allow short selling of assets and bor-rowing from a bank aount.Let V (t, x) denote the optimal value funtion for our optimization prob-lem de�ned as

V (t, x) = inf
θ(·)∈Rn

E

[ T\
t

{(R(s) − X(s))2 + α(R(s) − X(s))} ds(3.1)
+ β(X(T )2 − αX(T ))

∣∣∣X(t) = x
]
, 0 ≤ t < T,



Non-life insurane 271and V (T, x) = β(x2 − αx). We �rst derive the Hamilton�Jaobi�Bellmanequation heuristially, based on the Dynami Programming Priniple, andthen state the veri�ation theorem.We have for all t, 0 < t ≤ T ,
V (t−, x) = inf

θ(t)∈Rn

{(R(t−) − x)2dt + α(R(t−) − x)dt(3.2)
+ E[V (t, X(t)) |X(t−) = x]}.Applying It�'s formula for Lévy-type stohasti integrals (see Applebaum(2004)), we arrive at

dV (t, X(t)) =
∂V

∂t
(t, X(t−)) dt(3.3)

+
∂V

∂x
(t, X(t−)){X(t−)θ(t)Tπ + X(t−)r} dt

+
1

2

∂2V

∂x2
(t, X(t−))X(t−)2θ(t)T Qθ(t) dt

+
∂V

∂x
(t, X(t−))X(t−)θ(t)TΣ dW(t)

+

∞\
0

{V (t, X(t−) − y) − V (t, X(t−))}M(dt, dy).

Let Vt = ∂V
∂t

(t, x), Vx = ∂V
∂x

(t, x), Vxx = ∂2V
∂x2 (t, x). The Hamilton�Jaobi�Bellman equation for our problem is of the form

0 = (R(t) − x)2 + α(R(t) − x) + Vt + Vx(3.4)
+

∞\
0

{V (t, x − y) − V (t, x)}λ p(dy)

+ inf
θ∈Rn

{VxxθT π +
1

2
Vxxx2θT Qθ}.The optimal ontrol at time t, 0 < t ≤ T , is given by

θ∗(t) = −
Vx

Vxxx
Q−1π.(3.5)Substituting this value into the Hamilton�Jaobi�Bellman equation, we ar-rive at the partial integro-di�erential equation whih the optimal value fun-tion V (t, x) must satisfy. We �nd that

0 = (R(t) − x)2 + α(R(t) − x) + Vt + Vxxr −
1

2

V 2
x

Vxx
πT Q−1π(3.6)

+ λ

∞\
0

{V (t, x − y) − V (t, x)} p(dy),with the boundary ondition V (T, x) = β(x2 − αx).



272 �. DelongAs the loss funtion is quadrati in x, we are looking for a quadratisolution of the form V (t, x) = a(t)x2 + b(t)x + c(t). Then
(3.7) Vt = a′(t)x2 + b′(t)x + c′(t), Vx = 2a(t)x + b(t), Vxx = 2a(t),

(3.8) λ

∞\
0

{V (t, x − y) − V (t, x)} p(dy) = −2µλa(t)x + µ2λa(t) − µλb(t).Substituting (3.7) and (3.8) into (3.6) we arrive at
0 = R(t) − 2R(t)x + x2 + αR(t) − αx + a′(t)x2 + b′(t)x + c′(t)(3.9)

+ 2ra(t)x2 + rb(t)x − 2µλa(t)x + µ2λa(t) − µλb(t)

− πT Q−1πa(t)x2 − πT Q−1πb(t)x − πT Q−1π
b(t)2

4a(t)
.The problem of �nding the optimal value funtion V (t, x) satisfying thepartial integro-di�erential equation (3.6) is equivalent to �nding funtions

a(t), b(t), c(t) satisfying the ordinary di�erential equations
(3.10) 0 = 1 + a′(t) + (2r − πT Q−1π)a(t), a(T ) = β,

(3.11) 0 = −2R(t) − α − 2µλa(t) + b′(t) + (r − πT Q−1π)b(t),

b(T ) = −αβ,

(3.12) 0 = c′(t) + (1 + α)R(t) + µ2λa(t) − µλb(t) −
b(t)2

4a(t)
πT Q−1π,

c(T ) = 0.As the optimal ontrol depends only on the funtions a(t), b(t) we solveonly the �rst two equations. It su�es to set φ = 2r − πT Q−1π and ϕ =
r − πT Q−1π to reover our solutions from Lemma 2.2.Theorem 3.1. If there exists a funtion V (t, x) ∈ C1,2([0, T ]×R) satis-fying the Hamilton�Jaobi�Bellman equation

0 = (R(t) − x)2 + α(R(t) − x) + Vt + Vxxr(3.13)
+

∞\
0

{V (t, x − y) − V (t, x)}λ p(dy)

+ inf
θ∈Rn

{
VxxθT π +

1

2
Vxxx2θT Qθ

}
,with the boundary ondition V (T, x) = β(x2 − αx), suh that the proesses

t\
0

∂V

∂x
(s, X(s−))X(s−)θi(s) dWj(s), i, j = 1, . . . , n,(3.14)

t\
0

∞\
0

{V (s, X(s−) − y) − V (s, X(s−))} (M(ds, dy) − λp(dy)ds),(3.15)



Non-life insurane 273are martingales for t ∈ [0, T ], and there exists an admissible ontrol θ∗(·) forwhih the in�mum is reahed , then
V (t, x) = inf

θ(·)∈Rn

E

[ T\
t

{(R(s) − X(s))2 + α(R(s) − X(s)} ds(3.16)
+ β(X(T )2 − αX(T ))

∣∣∣ X(t) = x
]
,and θ∗(·) is the optimal ontrol for the problem.Remark 3.1. In order to have the martingale property for the proesses(3.14) and (3.15), the funtion V (t, x) should satisfy the onditions

E

[ T\
0

{
∂V

∂x
(t, X(t−))X(t−)θi(t)

}2

dt

]
< ∞, i = 1, . . . , n,(3.17)

E

[ T\
0

∞\
0

{V (t, X(t−) − y) − V (t, X(t−))}2λ p(dy) dt
]

< ∞.(3.18)
Proof of Theorem 3.1. The funtion satisfying (3.13) is of the form a(t)x2

+ b(t)x + c(t), where a(t), b(t), c(t) solve (3.10)�(3.12), and it is of lass
C1,2([0, T ] × R). As a(t) is positive for 0 ≤ t ≤ T and the matrix Q ispositive de�nite, the feedbak ontrol

θ∗(t) = −

(
X∗(t−) +

b(t)

2a(t)

)
1

X∗(t−)
Q−1π,where

(a(t), b(t)) ∼ (2r − πT Q−1π, r − πT Q−1π),minimizes the quadrati form as required. One an also show that
supt∈[0,T ] E|X

∗(t)|4 < ∞ (see the next setion for a short explanation). It isstraightforward to hek that the ontrol is a preditable proess and satis-�es (2.6) and (2.7), so it is admissible, and that onditions (3.17) and (3.18)are satis�ed. Applying It�'s alulus, one an show that the derived funtionis the optimal value funtion for our optimization problem and the derivedoptimal ontrol is the optimal investment strategy.Next, we investigate some properties of the optimal investment strategyand the evolution of the insurer's wealth under this optimal strategy.4. The optimal strategy and the insurer's wealth. The optimalinvestment strategy, at time t, 0 < t ≤ T , for our optimization problemwithout onstraints on ontrol variables is given in the feedbak form
θ∗(t) = (g(t) − X∗(t−))

1

X∗(t−)
Q−1π,(4.1)



274 �. Delongwhere g(t) = −b(t)/2a(t) and (a(t), b(t)) ∼ (2r − πT Q−1π, r − πT Q−1π).The evolution of the insurer's wealth under the optimal investment strategyis given by
dX∗(t) = X∗(t−)θ∗(t)T π dt + X∗(t−)θ∗(t)T Σ dW(t)(4.2)

+ X∗(t−)r dt − dJ(t), X∗(0) = x0.Substituting the optimal strategy we arrive at
dX∗(t) = (g(t) − X∗(t−))πT Q−1π dt + X∗(t−)r dt(4.3)

+ (g(t) − X∗(t−))(Σ−1π)T dW(t) − dJ(t), X∗(0) = x0.As the oe�ients in the di�usion part of the equation (4.3) satisfy Lip-shitz and growth onditions and the ompound Poisson distribution has�nite fourth moment, the above stohasti di�erential equation has a uniquesolution suh that supt∈[0,T ] E|X
∗(t)|4 < ∞.We solve this stohasti di�erential equation. Let H(t) = g(t) − X∗(t).The stohasti di�erential of the proess {H(t), 0 ≤ t ≤ T} is

dH(t) = g′(t) dt − dX∗(t)(4.4)
= g′(t)dt − g(t)r dt + H(t−)(r − πT Q−1π) dt

− H(t−)(Σ−1π)T dW(t) + dJ(t), H(0) = g(0) − x0.Let us introdue the proess {Z(t), 0 ≤ t ≤ T}, with ontinuous samplepaths, of the form
Z(t) = e−(r−πT Q−1π)t+ 1

2
‖Σ−1π‖2t+(Σ−1π)T W(t),(4.5)where ‖ · ‖ denotes the vetor norm. The stohasti di�erential of this proessis

dZ(t) = Z(t){−(r − πT Q−1π) dt + ‖Σ−1π‖2dt + (Σ−1π)T dW(t)}.(4.6)Multiplying both sides of (4.4) by Z(t) we arrive at
(4.7) Z(t) dH(t)−H(t−)Z(t)(r−πT Q−1π) dt+H(t−)Z(t)(Σ−1π)T dW(t)

= Z(t)(g′(t) dt − g(t)r dt + dJ(t)), H(0) = g(0) − x0.Let us reall It�'s produt formula for two Lévy-type stohasti integrals
Y1(t) and Y2(t) (see Applebaum (2004)):

d(Y1(t)Y2(t)) = Y1(t−) dY2(t) + Y2(t−) dY1(t) + d[Y1, Y2] dt,(4.8)where
[Y1, Y2](t) = [Y c

1 , Y c
2 ](t) +

∑

0≤s≤t

△Y1(s)△Y2(s),(4.9)
[·](t) denotes the quadrati variation proess and c denotes the ontinuousparts of the proesses. Now we reognize that the left-hand side of (4.7) is the



Non-life insurane 275stohasti di�erential for H(t)Z(t). Notie that Z(t) has ontinuous samplepaths and the seond term in (4.9) is zero. We arrive at
H(t) =

1

Z(t)

{
H(0) +

t\
0

Z(s)(g′(s) − g(s)r) ds(4.10)
+

t\
0

∞\
0

Z(s)y M(ds, dy)
}
,where the last term is a Poisson stohasti integral. Finally, the insurer'swealth, under the optimal investment strategy, at time t is equal to

X∗(t) = g(t) −
1

Z(t)

{
g(0) − x0 +

t\
0

Z(s)(g′(s) − g(s)r) ds(4.11)
+

t\
0

∞\
0

Z(s)y M(ds, dy)
}
.It is possible to derive a formula for the expeted value of the insurer'swealth under the optimal investment strategy. If we take the expeted valueon both sides of (4.3) and let m(t) = EX∗(t), then we obtain an ordinarydi�erential equation for the funtion m(t):

m′(t) = (g(t) − m(t))πT Q−1π + m(t)r − λµ, m(0) = x0.(4.12)This equation has the solution
m(t) = x0e

(r−πT Q−1π)t −
λµ

r − πT Q−1π
{e(r−πT Q−1π)t − 1}(4.13)

+ πT Q−1π

t\
0

g(s)e(r−πT Q−1π)(t−s) ds.

The insurane ompany an hoose the parameters δ̂, λ̂, µ̂, α and β in theoptimization proess. These parameters re�et the insurer's attitude towardsthe risk it faes and introdue the risk pro�le of the insurer.Let us onsider the ase of one risky asset. Then the optimal investmentstrategy is given by
θ∗(t) = (g(t) − X∗(t−))

1

X∗(t−)

a − r

σ2
,(4.14)where

g(t) = −
b(t)

2a(t)
and (a(t), b(t)) ∼

(
2r −

(
a − r

σ

)2

, r −

(
a − r

σ

)2)
.The parameters δ̂, λ̂, µ̂ have an in�uene on the reserve. The higher theloss frequeny λ̂, the higher the reserve, and the same relation holds for the



276 �. Delongexpeted severity of laims µ̂. However, the lower the rate of return δ̂, thehigher the reserve. The reserve onstitutes the lower and upper barrier onthe loss funtion and has an impat on the optimal investment strategy andon the insurer's expeted wealth under this strategy. The higher the reserve,the higher the fration of the wealth invested in the risky asset (given thesame positive level of available wealth) and the higher the expeted valueof the insurer's wealth. This an be seen from equations (2.20), (4.13) and(4.14), as g(t) is dereasing in b(t) and b(t) is dereasing in the reserve.The parameter α a�ets the �real� target imposed by the loss funtionand it also has an impat on the optimal investment strategy and on theinsurer's expeted wealth under this strategy. The higher the value of α, thehigher the fration of the wealth invested in the risky asset (given the samepositive level of available wealth) and the higher the expeted value of theinsurer's wealth. This an be seen again from equations (2.20), (4.13) and(4.14), as b(t) is dereasing in α. The above relations are intuitively lear.Notie that the statements onerning the insurer's expeted wealth alsohold in the multi-asset eonomy, as πT Q−1π is positive (the matrix Q−1 ispositive de�nite).It is straightforward to derive regions where the strategy of short sellingthe asset or borrowing from a bank aount is optimal. We observe that
θ∗(t) < 0 ⇔ X∗(t−) < 0 ∨ X∗(t−) > g(t),(4.15)
θ∗(t) > 1 ⇔ 0 < X∗(t−) <

g(t)

1 + σ2

a−r

.(4.16)If the wealth is low (but positive), the insurer should borrow from a bankaount and invest aggressively in the risky asset in order to reah the de-sired target. When the wealth is inreasing, the insurer should invest moreautiously and derease the fration of the wealth invested in the risky asset.However, if the wealth is too large, then the optimal strategy is short-sellingof the asset, whih means throwing money away. Notie that in the opti-mization problem with onstraints on ontrol variables (no short selling ofassets or borrowing from a bank aount), α would be the parameter settingthe amount of wealth whih �satis�es� the insurer and over whih the insurertakes no investment risk and invests only in the risk free asset. In the aseof negative wealth, the short-selling strategy gives the insurer a hane toreover the positive level of wealth. This oinides with the properties of theapplied quadrati loss funtion.Summing up, in this paper we have investigated the onstrution of aninvestment strategy for a non-life insurane ompany. We have dealt with awealth path dependent disutility optimization problem and for a quadratiloss funtion we have derived an optimal investment strategy. The solution
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