Jarosław L. Bojarski (Warszawa)

REGULARIZATION OF NONCOERCIVE CONSTRAINTS IN HENCKY PLASTICITY

Abstract. The aim of this paper is to find the largest lower semicontinuous minorant of the elastic-plastic energy of a body with fissures. The functional of energy considered is not coercive.

1. Introduction. The largest lower semicontinuous (l.s.c.) minorant (called the *l.s.c. regularization*) of a functional with linear growth at infinity is found in the papers [3], [6] and [9], under the assumption of local coercivity of the functional. The largest l.s.c. minorant of a non-coercive functional is found in [5], but the set $\mathcal{K}(x)$ of admissible stresses (defined in that paper) does not take into account the influence of fissures. However, the original elastic-plastic energy which describes a body with fissures is not locally coercive, because the energy on a fissure is not coercive.

The propagation of a crack is considered in [1]. The domain of the functional is the space of functions of bounded variation BV. Namely, in [1] the potential is elastic in all the body. Here we present the static problem for a fixed fissure, taking into account the plastic zone at the tip of the fissure.

The physical problem of energy concentrated on a fixed smooth surface Σ (contained in a domain Ω) is considered in [7]. The problem of a body with fissure is not studied in [7], because the authors assume "local coercivity" of the original functional (cf. [7, hypothesis (H4)]).

Here we are concerned with the situation where a Hencky elastic-perfectly plastic material has fissures. We apply the method from [5] to find the largest l.s.c. minorant of the original elastic-plastic energy.

We give only those fragments of the proofs which are different from those in [5]. The multifunction \mathcal{K} (which describes the set of admissible stresses) and the elastic-plastic potential j take into account the influence of the

²⁰⁰⁰ Mathematics Subject Classification: 26B30, 47N10, 47H04, 49K99, 74A50, 74C05. Key words and phrases: regularization (relaxation), functions of bounded deformation, Hencky plasticity, clefts, Signorini problem, variations.

fissure. In the functional \mathbb{P}^{j}_{λ} of total elastic-plastic energy the work of volume forces is omitted. The bipolar functional $(\mathbb{P}^{j}_{\lambda})^{**}$ is the l.s.c. regularization of \mathbb{P}^{j}_{λ} in the topology $\sigma(\mathbf{Y}^{1}(\overline{\Omega}), C_{\text{div}}(\overline{\Omega}, \mathbf{E}^{n}_{s}))$ (see (3.18), (3.19) and [11]).

As in [5], if we assume that \mathbb{P}^{j}_{λ} is globally coercive (cf. [5, (5.5)]), then we can prove that $(\mathbb{P}^{j}_{\lambda})^{**}$ is the l.s.c. regularization of \mathbb{P}^{j}_{λ} in the weak* BD topology, since the weak* BD topology and $\sigma(\mathbf{Y}^{1}(\overline{\Omega}), C_{\text{div}}(\overline{\Omega}, \mathbf{E}^{n}_{s}))$ are equal on bounded sets in $[BD(\Omega), \|\cdot\|_{BD}]$ (or on bounded sets in the space $[\mathbf{Y}^{1}(\overline{\Omega}), \|\cdot\|_{\mathbb{M}_{b}}]$, which is isomorphic to the former).

Note that $\widetilde{\mathbb{P}}_{\lambda}^{j} \neq \mathbb{P}_{\lambda}^{j}$, so a priori $(\widetilde{\mathbb{P}}_{\lambda}^{j})^{**}$ is not the l.s.c. regularization of \mathbb{P}_{λ}^{j} .

2. Some basic definitions and theorems. Throughout this work Ω denotes a nonempty, bounded, open, connected set of class C^1 in \mathbb{R}^n . $C(\overline{\Omega}, \mathbb{R}^m)$ denotes the space of \mathbb{R}^m -valued continuous functions on $\overline{\Omega}$, while $C_0(\Omega, \mathbb{R}^m)$, or simply C_0 , stands for the space of continuous functions which take the value 0 on the boundary Fr Ω of Ω . Moreover C_c is the space of continuous functions with compact supports, and $\mathbb{M}_b(\Omega, \mathbb{R}^m)$, or \mathbb{M}_b , stands for the space of \mathbb{R}^m -valued, Radon bounded regular measures on Ω , equipped with the norm $\|\cdot\|_{\mathbb{M}_b(\Omega, \mathbb{R}^m)}$.

We will use the duality pairs (\mathbb{M}_r, C_c) and (\mathbb{M}_b, C_0) , where \mathbb{M}_r is the space of regular measures. For $\mathbf{g} = (g_1, \ldots, g_m) \in C(\overline{\Omega}, \mathbb{R}^m)$ and $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_m) \in \mathbb{M}_b(\Omega, \mathbb{R}^m)$, we write $\int_{\Omega} \mathbf{g} \cdot \boldsymbol{\mu} \equiv \sum_{i=1}^m \int_{\Omega} g_i \mu_i$. Finally, $\mathcal{L}^0(\Omega, \mathbb{R}^m)_{\mu}$ stands for the set of μ -measurable functions from Ω into \mathbb{R}^m .

The scalar product of \mathbf{z} and $\mathbf{z}^* \in \mathbb{R}^m$ is denoted by $\mathbf{z} \cdot \mathbf{z}^* = \sum_{i=1}^m z^i z_i^*$ and the scalar product of \mathbf{w} and $\mathbf{w}^* \in \mathbb{R}^{m \times m} \equiv \mathbf{E}^m$ by $\mathbf{w} : \mathbf{w}^* = \sum_{ij=1}^m w^{ij} w_{ij}^*$, where \mathbf{E}^m is the space of real $m \times m$ matrices. Moreover, \mathbf{E}^m_s is the space of symmetric real $m \times m$ matrices.

If $F: X \to \mathbb{R} \cup \{\infty\}$ is a function defined on a vector space X, then F^* denotes its polar function (cf. [11]). For an arbitrary set C in X, $I_C(\cdot)$ stands for its indicator function ($I_C(x) = 0$ if $x \in C$ and $I_C(x) = \infty$ if $x \notin C$).

The notation $\operatorname{cl}_V(Z)$ stands for the closure of the set $Z \subset V$ in the topology of the space V. We set $\|[e_i]\|_{\mathbb{R}^m} \equiv \sum_{i=1}^m |e_i|$, where $[e_i] \in \mathbb{R}^m$. The tensor product (resp. symmetric tensor product) is denoted by \otimes (resp. \otimes_s). The symmetric tensor product is given by the expression $(\mathbf{p} \otimes_s \boldsymbol{\nu})_{ij} \equiv (p_i\nu_j + p_j\nu_i)/2$.

We define the following Banach spaces (see [13], [15]):

(2.1)
$$LD(\Omega) \equiv \left\{ \mathbf{u} \in L^{1}(\Omega, \mathbb{R}^{n}) \, \middle| \right.$$

$$\varepsilon_{ij}(\mathbf{u}) \equiv \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \in L^{1}(\Omega), \, i, j = 1, \dots, n \right\},$$
(2.2)
$$BD(\Omega) \equiv \left\{ \mathbf{u} \in L^{1}(\Omega, \mathbb{R}^{n}) \, \middle| \, \varepsilon_{ij}(\mathbf{u}) \in \mathbb{M}_{b}(\Omega), \, i, j = 1, \dots, n \right\},$$

with the natural norms

(2.3)
$$\|\mathbf{u}\|_{LD} = \|\mathbf{u}\|_{L^{1}} + \sum_{i,j=1}^{n} \|\varepsilon_{ij}(\mathbf{u})\|_{L^{1}},$$
$$\|\mathbf{u}\|_{BD} = \|\mathbf{u}\|_{L^{1}} + \sum_{i,j=1}^{n} \|\varepsilon_{ij}(\mathbf{u})\|_{\mathbb{M}_{b}}.$$

There exists a continuous linear trace $\gamma_B : BD(\Omega) \to L^1(\operatorname{Fr} \Omega, \mathbb{R}^n)$ such that $\gamma_B(\mathbf{u}) = \mathbf{u}_{|\operatorname{Fr} \Omega}$ for all $\mathbf{u} \in BD(\Omega) \cap C(\overline{\Omega}, \mathbb{R}^n)$ (see [15]). We define

(2.4)
$$W^{n}(\Omega, \operatorname{div}) \equiv \{ \boldsymbol{\sigma} \in L^{\infty}(\Omega, \mathbf{E}_{s}^{n}) \mid \operatorname{div} \boldsymbol{\sigma} \in L^{n}(\Omega, \mathbb{R}^{n}) \}$$

endowed with the norm $\|\boldsymbol{\sigma}\|_{W^n(\Omega,\operatorname{div})} = \|\boldsymbol{\sigma}\|_{L^{\infty}(\Omega,\mathbf{E}_s^n)} + \|\operatorname{div}\boldsymbol{\sigma}\|_{L^n(\Omega,\mathbb{R}^n)}$ (cf. [15, Chap. 2, Sec. 7] and [4]). The distribution $\boldsymbol{\sigma}: \boldsymbol{\varepsilon}(\mathbf{u})$, where $\boldsymbol{\sigma} \in W^n(\Omega,\operatorname{div})$, $\mathbf{u} \in BD(\Omega)$, defined (for $\varphi_1 \in C_c^{\infty}(\Omega)$) by

(2.5)
$$\langle \boldsymbol{\sigma} : \boldsymbol{\varepsilon}(\mathbf{u}), \varphi_1 \rangle_{D' \times D} = -\int_{\Omega} (\operatorname{div} \boldsymbol{\sigma}) \cdot \mathbf{u} \varphi_1 \, dx - \int_{\Omega} \boldsymbol{\sigma} : (\mathbf{u} \otimes \nabla \varphi_1) \, dx,$$

is a bounded measure on Ω (see [15]).

ASSUMPTION 1. Ω and Ω_1 are bounded open connected sets of class C^1 in \mathbb{R}^n . Furthermore, $\Omega \subset\subset \Omega_1$.

There is a continuous linear map β_B from $W^n(\Omega, \operatorname{div})$ onto $L^{\infty}(\operatorname{Fr} \Omega, \mathbb{R}^n)$ such that for every $\sigma \in C(\overline{\Omega}, \mathbf{E}_s^n)$, $\beta_B(\sigma) = \sigma_{|\operatorname{Fr} \Omega} \cdot \boldsymbol{\nu}$, where $\boldsymbol{\nu}$ denotes the exterior unit vector normal to $\operatorname{Fr} \Omega$ (see [15]). Moreover, for all $\mathbf{u} \in BD(\Omega)$ and all $\sigma \in W^n(\Omega, \operatorname{div})$, the following formula holds:

(2.6)
$$\int_{\Omega} \boldsymbol{\sigma} : \boldsymbol{\varepsilon}(\mathbf{u}) + \int_{\Omega} (\operatorname{div} \boldsymbol{\sigma}) \cdot \mathbf{u} \, dx = \int_{\operatorname{Fr} \Omega} \boldsymbol{\beta}_{B}(\boldsymbol{\sigma}) \cdot \boldsymbol{\gamma}_{B}(\mathbf{u}) \, ds.$$

3. Mathematical description of an elastic-plastic body with fissure. Let $\{T_i\}_{i\in I}$ be a finite family of bounded connected sets of class C^1 in \mathbb{R}^n . In this paper, the Lebesgue and Hausdorff measures on \mathbb{R}^n and Fr Ω , Fr Ω_1 , Fr T_i (for $i\in I$) are denoted by dx and ds, respectively. We assume that $ds(\operatorname{Fr} T_i \cap \operatorname{Fr} T_k) = 0$, $ds(\operatorname{Fr} \Omega \cap \operatorname{Fr} T_i) = 0$, $ds(\operatorname{Fr} \Omega_1 \cap \operatorname{Fr} T_i) = 0$ for every $i, k \in I$, $i \neq k$. The boundary of Ω is composed of Γ_0 and Γ_1 (= $\overline{\Gamma}_1$) such that Γ_0 and Γ_1 are Borel subsets of $\operatorname{Fr} \Omega$, $\Gamma_0 \cap \Gamma_1 = \emptyset$ and $ds(\operatorname{Fr} \Omega - (\Gamma_0 \cup \Gamma_1)) = 0$.

Let S be a closed subset of $\overline{\Omega} \cap \bigcup_{i \in I} \operatorname{Fr} T_i$ such that $S = \operatorname{clint} S$ (where the interior is taken relative to $\bigcup_{i \in I} \operatorname{Fr} T_i$).

We consider an elastic-perfectly plastic body occupying Ω . In this body we have a fissure (or fissures) S.

Below we define the set $\mathcal{K}(x)$ of admissible stresses, for every $x \in \Omega - S$. Moreover, we define the elastic-plastic potential $(x, \varepsilon(\mathbf{u})) \mapsto j(x, \varepsilon(\mathbf{u}))$ for dx-almost every (dx-a.e.) $x \in \Omega - S$ (where $\varepsilon(\mathbf{u})$ is the strain tensor). The set $\mathcal{K}(x)$ and potential $(x, \boldsymbol{\varepsilon}(\mathbf{u})) \mapsto j(x, \boldsymbol{\varepsilon}(\mathbf{u}))$ are defined in a special way on S. Namely, to prevent the overlapping of opposite edges of the fissure, we introduce the so-called non-penetration condition. We assume that penetration of the material is restricted (see (3.4)). The non-penetration condition on S is described by the potential j_1 . The dual functional to $\mathbb{R}^n \ni \mathbf{z} \mapsto j_1(x, (\mathbf{z} \otimes_s \boldsymbol{\nu}))$ (cf. (3.4)) is the indicator function of the set A^s (cf. (3.5)) on the fissure. Finally, for $x \in S$, we define the potential $\mathbf{E}^n_s \ni \mathbf{w} \mapsto j(x, \mathbf{w})$ on the larger space \mathbf{E}^n_s (since $\mathbb{R}^n \otimes_s \{\boldsymbol{\nu}\} \subset \mathbf{E}^n_s$ and $\mathbb{R}^n \otimes_s \{\boldsymbol{\nu}\} \neq \mathbf{E}^n_s$). Therefore the dual functional to j (on S) is the indicator function of the set $\{\boldsymbol{\sigma} \in \mathbf{E}^n_s \mid \operatorname{tr} \boldsymbol{\sigma} \leq 0, \boldsymbol{\sigma}^D = \mathbf{0}\}$ of admissible stresses on S, where $\boldsymbol{\sigma}^D = \boldsymbol{\sigma} - \frac{1}{n}\boldsymbol{\delta}\operatorname{tr} \boldsymbol{\sigma}$ and $\delta_{ij} = 1$ for i = j, $\delta_{ij} = 0$ for $i \neq j$. The final definition of j on S describes the original non-penetration condition on S. Here the unilateral contact condition on S without friction is studied.

We say that a subset ω of $\overline{\Omega}$ has μ -measure zero if $dx(\omega) = 0$ and $ds(\omega \cap S) = 0$. Let $\mathcal{K} : \overline{\Omega} \to 2^{\mathbf{E}_s^n}$ be a multifunction.

ASSUMPTION 2 (cf. [4]). $\mathcal{K}(x)$ is a convex and closed subset of \mathbf{E}_s^n for all $x \in \overline{\Omega}$. There exists $\mathbf{z}_0 \in C^1(\overline{\Omega}, \mathbf{E}_s^n)$ such that $\mathbf{z}_0(x) \in \mathcal{K}(x)$ for every $x \in \overline{\Omega}$. Moreover:

- (i) if $\mathbf{z}(x) \in \mathcal{K}(x)$ for μ -almost every (μ -a.e.) $x \in \Omega$, $\mathbf{z} \in C(\overline{\Omega}, \mathbf{E}_s^n)$ and $\mathbf{z}_{| \text{int } \Omega} \in W^n(\Omega, \text{div})$, then $\mathbf{z}(y) \in \mathcal{K}(y)$ for every $y \in \overline{\Omega}$;
- (ii) for every $y \in \overline{\Omega}$ and every $\mathbf{w} \in \mathcal{K}(y)$ there exists $\mathbf{z} \in C(\overline{\Omega}, \mathbf{E}_s^n)$ such that $\mathbf{z}_{|\text{int }\Omega} \in W^n(\Omega, \text{div}), \ \mathbf{z}(y) = \mathbf{w} \text{ and } \mathbf{z}(x) \in \mathcal{K}(x) \text{ for every } x \in \overline{\Omega}.$

DEFINITION 1 (cf. [11, Chap. 8, p. 232]). A mapping $j^*: \Omega \times \mathbf{E}_s^n \to \mathbb{R} \cup \{\infty\}$ is a convex, normal integrand if:

- (a) the function $\mathbf{E}_s^n \ni \mathbf{w}^* \mapsto j^*(x, \mathbf{w}^*)$ is convex and l.s.c. for μ -a.e. $x \in \Omega$;
- (b) there exists a Borel function $\widetilde{j}^*: \Omega \times \mathbf{E}_s^n \to \mathbb{R} \cup \{\infty\}$ such that $\widetilde{j}^*(x,\cdot) = j^*(x,\cdot)$ for μ -a.e. $x \in \Omega$.

Moreover, assume

(3.1)
$$\{\mathbf{w}^* \in \mathbf{E}_s^n \mid j^*(x, \mathbf{w}^*) < \infty\} = \mathcal{K}(x) \quad \text{ for } \mu\text{-a.e. } x \in \Omega.$$

Assumption 3 (see [5]). For every $\hat{r} > 0$ there exists $c_{\hat{r}}$ such that

(3.2)
$$\sup \left\{ \int_{\Omega} j^*(x, \mathbf{z}^*) \, dx \, \middle| \, \mathbf{z}^* \in L^{\infty}(\Omega, \mathbf{E}_s^n), \, \|\mathbf{z}^*\|_{L^{\infty}} < \widehat{r} \right.$$
 and $\mathbf{z}^*(x) \in \mathcal{K}(x)$ for dx -a.e. $x \in \Omega \right\} < c_{\widehat{r}} < \infty$.

ASSUMPTION 4. There exist $\mathbf{u}^e \in LD(\Omega)$ and $q \in L^1(\Omega, \mathbb{R})$ such that $j^*(x, \mathbf{w}^*) \geq \varepsilon(\mathbf{u}^e)(x) : \mathbf{w}^* + q(x)$ for μ -a.e. $x \in \Omega$ and every $\mathbf{w}^* \in \mathbf{E}_s^n$, and $\gamma_B(\mathbf{u}^e) = \mathbf{0}$ on Fr Ω .

The set $\mathcal{K}(x)$ denotes the elasticity convex domain at any point $x \in \Omega - S$. A Borel set $\mathcal{C} \subseteq \mathbb{R}^n$ is called a *Caccioppoli set* if $\sup\{\int_{\mathcal{C}} \operatorname{div} \widetilde{f} \, dx \mid \widetilde{f} \in C_0^1(\Omega_2, \mathbb{R}^n), \|\widetilde{f}(x)\|_{\mathbb{R}^n} \leq 1 \, \forall x \in \Omega_2\} < \infty$ for all bounded open subsets Ω_2 of \mathbb{R}^n (see [12]).

ASSUMPTION 5. $\Gamma_1 = \operatorname{Fr} \Omega \cap \mathcal{C}$ and $S = \bigcup_{i \in I} (\operatorname{Fr} T_i \cap \mathcal{C}_i)$, where $\mathcal{C} = \operatorname{clint} \mathcal{C} \subset \Omega_1$ and $\mathcal{C}_i = \operatorname{clint} \mathcal{C}_i \subset \Omega_1$ (for $i \in I$) are closed Caccioppoli sets, $ds(\operatorname{Fr} \Omega \cap \operatorname{Fr} \mathcal{C}) = 0$ and $ds(\operatorname{Fr} T_i \cap \operatorname{Fr} \mathcal{C}_i) = 0$ (for $i \in I$).

By a finite induction, from [15, Chap. 2, Lemma 2.2], we obtain the following decomposition of the measure $\varepsilon(\mathbf{u})$, for every $\mathbf{u} \in BD(\Omega_1)$:

(3.3)
$$\varepsilon(\mathbf{u}) = \varepsilon(\mathbf{u})_{|\Omega-S} + (\gamma_B^+(\mathbf{u}) - \gamma_B^-(\mathbf{u}))_{|S} \otimes_s \boldsymbol{\nu} ds$$
$$+ (\gamma_B^O(\mathbf{u}) - \gamma_B^I(\mathbf{u}))_{|\operatorname{Fr}\Omega} \otimes_s \boldsymbol{\nu} ds + \varepsilon(\mathbf{u})_{|\Omega_1-\overline{\Omega}},$$

where $\boldsymbol{\nu}$ denotes the exterior unit vector normal to Fr Ω or the normal vector to Fr T_i for some $i \in I$ (cf. [2]). The inside trace $\boldsymbol{\gamma}_B^I : BD(\Omega) \to L^1(\operatorname{Fr}\Omega,\mathbb{R}^n)$ and outside trace $\boldsymbol{\gamma}_B^O : BD(\Omega_1 - \overline{\Omega}) \to L^1(\operatorname{Fr}\Omega,\mathbb{R}^n)$ are given by $\boldsymbol{\gamma}_B^I(\mathbf{u}) = \mathbf{u}_{|\operatorname{Fr}\Omega}$ for $\mathbf{u} \in BD(\Omega) \cap C(\overline{\Omega},\mathbb{R}^n)$, and $\boldsymbol{\gamma}_B^O(\mathbf{u}) = \mathbf{u}_{|\operatorname{Fr}\Omega}$ for $\mathbf{u} \in BD(\Omega_1 - \overline{\Omega}) \cap C(\Omega_1 - \Omega,\mathbb{R}^n)$ respectively. The traces $\boldsymbol{\gamma}_B^- : BD(T_i) \to L^1(\operatorname{Fr}T_i,\mathbb{R}^n)$ and $\boldsymbol{\gamma}_B^+ : BD(\mathbb{R}^n - T_i) \to L^1(\operatorname{Fr}T_i,\mathbb{R}^n)$ are defined for every $i \in I$, where $\boldsymbol{\nu}$ denotes the exterior unit vector normal to the boundary of T_i .

Below we take into account the influence of the fissure.

The original potential on the fissure (or fissures) is described by

(3.4)
$$j_1(x, (\boldsymbol{\gamma}_B^+(\mathbf{u}) - \boldsymbol{\gamma}_B^-(\mathbf{u})) \otimes_s \boldsymbol{\nu}) = \begin{cases} \infty & \text{if } \operatorname{tr}(\boldsymbol{\gamma}_B^+(\mathbf{u}) - \boldsymbol{\gamma}_B^-(\mathbf{u})) \otimes_s \boldsymbol{\nu} < 0, \\ 0 & \text{otherwise,} \end{cases}$$

for ds-a.e. $x \in S$. Define

(3.5)
$$A^{s} = \{ \boldsymbol{\sigma} \in \mathbf{E}_{s}^{n} \mid \sigma_{ij}((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu})_{ij} \leq 0 \ \forall \mathbf{u} \text{ such that} \\ \operatorname{tr}((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}) = (\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \cdot \boldsymbol{\nu} \geq 0 \}.$$

We find that the potential on the fissure, dual to the original one, is given by

$$(3.6) j_1^*(x, \boldsymbol{\sigma}) = \sup \left\{ \sum_{i,j=1}^n \sigma_{ij} ((\boldsymbol{\gamma}_B^+(\mathbf{u}) - \boldsymbol{\gamma}_B^-(\mathbf{u})) \otimes_s \boldsymbol{\nu})_{ij} \right. \\ \left. - j_1(x, (\boldsymbol{\gamma}_B^+(\mathbf{u}) - \boldsymbol{\gamma}_B^-(\mathbf{u})) \otimes_s \boldsymbol{\nu}) \, \middle| \, (\boldsymbol{\gamma}_B^+(\mathbf{u}) - \boldsymbol{\gamma}_B^-(\mathbf{u})) \in L^1(S, \mathbb{R}^n) \right\} \\ = \left\{ \begin{matrix} 0 & \text{if } \boldsymbol{\sigma} \in A^s, \\ \infty & \text{otherwise,} \end{matrix} \right.$$

for ds-a.e. $x \in S$ and every $\sigma \in \mathbf{E}_s^n$.

LEMMA 1. Let $\sigma^D = \sigma - \frac{1}{n} \delta \operatorname{tr} \sigma$ where $\delta_{ij} = 1$ for i = j and $\delta_{ij} = 0$ for $i \neq j$. Then

(3.7)
$$\{ \boldsymbol{\sigma} \in \mathbf{E}_s^n \mid \operatorname{tr} \boldsymbol{\sigma} \le 0, \, \boldsymbol{\sigma}^D = \mathbf{0} \} \subset A^s.$$

Proof. Follows from the decomposition

(3.8)
$$\sum_{i,j=1}^{n} \sigma_{ij} ((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu})_{ij} = \frac{1}{n} \operatorname{tr} \boldsymbol{\sigma} \operatorname{tr} ((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu})$$
$$+ \sum_{i,j=1}^{n} \sigma_{ij}^{D} ((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu})_{ij}^{D}. \quad \blacksquare$$

LEMMA 2. If $\{ \boldsymbol{\sigma} \in \mathbf{E}_s^n \mid \operatorname{tr} \boldsymbol{\sigma} \leq 0, \, \boldsymbol{\sigma}^D = \mathbf{0} \} \subset \mathcal{K}_1$, then

$$(3.9) \quad j_1(x, (\boldsymbol{\gamma}_B^+(\mathbf{u}) - \boldsymbol{\gamma}_B^-(\mathbf{u})) \otimes_s \boldsymbol{\nu}) = (j_1^* + I_{\mathcal{K}_1})^* (x, (\boldsymbol{\gamma}_B^+(\mathbf{u}) - \boldsymbol{\gamma}_B^-(\mathbf{u})) \otimes_s \boldsymbol{\nu})$$
$$= j_1^{**} (x, (\boldsymbol{\gamma}_B^+(\mathbf{u}) - \boldsymbol{\gamma}_B^-(\mathbf{u})) \otimes_s \boldsymbol{\nu})$$

for ds-a.e. $x \in S$ and all $\mathbf{u} \in BD(\Omega)$, where K_1 is any convex and closed set in \mathbf{E}^n_s , and $I_{K_1}(\cdot)$ is the indicator function of K_1 .

Proof. By (3.5) and (3.7) we obtain $\{ \boldsymbol{\sigma} \in \mathbf{E}_s^n \mid \operatorname{tr} \boldsymbol{\sigma} \leq 0, \ \boldsymbol{\sigma}^D = \mathbf{0} \} \subset A^s \cap \mathcal{K}_1 \subset A^s$. Then by (3.6) and (3.8) we have

$$(3.10) j_{1}(x, (\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu})$$

$$= \sup \{ \boldsymbol{\sigma} : ((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}) \mid \operatorname{tr} \boldsymbol{\sigma} \leq 0, \, \boldsymbol{\sigma}^{D} = \mathbf{0} \}$$

$$\leq (j_{1}^{*} + I_{\mathcal{K}_{1}})^{*}(x, (\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu})$$

$$\leq j_{1}^{**}(x, (\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu})$$

for ds-a.e. $x \in S$ and all $\mathbf{u} \in BD(\Omega)$. Since $j_1 \geq j_1^{**}$ we obtain (3.9).

Assumption 6. The inclusion $\{ \boldsymbol{\sigma} \in \mathbf{E}_s^n \mid \operatorname{tr} \boldsymbol{\sigma} \leq 0, \, \boldsymbol{\sigma}^D = \mathbf{0} \} \subset \mathcal{K}(x)$ holds for every $x \in \overline{\Omega}$.

DEFINITION 2. Let

$$(3.11) j(x, \mathbf{w}) = j^{**}(x, \mathbf{w}) = \sup\{\mathbf{w} : \mathbf{w}^* - j^*(x, \mathbf{w}^*) \mid \mathbf{w}^* \in \mathbf{E}_s^n\}$$

for μ -a.e. $x \in \mathbf{E}_s^n$, where j^* is defined by Definition 1, Assumptions 3 and 4. Among the functions j and \mathcal{K} defined by Definition 1, Assumptions 2, 3, 4 and 6 there are also functions which satisfy

(3.12)
$$j(x, \mathbf{w}) = \begin{cases} \infty & \text{if tr } \mathbf{w} < 0, \\ 0 & \text{otherwise,} \end{cases}$$

for ds-a.e. $x \in S$ and every $\mathbf{w} \in \mathbf{E}_s^n$, and $\mathcal{K}(x) = \{ \boldsymbol{\sigma} \in \mathbf{E}_s^n \mid \operatorname{tr} \boldsymbol{\sigma} \leq 0, \boldsymbol{\sigma}^D = \mathbf{0} \}$ for every $x \in S$.

The above defined multifunction \mathcal{K} and potential j describe the elasticplastic body with fissure (or fissures) S. Moreover, \mathcal{K} and j satisfy Definition 1, Assumption 2, 3, 4, 6 and expression (3.1), for μ -a.e. $x \in \Omega$. We have $\mathcal{K}(x) = \{ \boldsymbol{\sigma} \in \mathbf{E}_s^n \mid \operatorname{tr} \boldsymbol{\sigma} \leq 0, \, \boldsymbol{\sigma}^D = \mathbf{0} \} \text{ for every } x \in S.$

Since j^* is a normal integrand, j is a convex normal integrand (cf. (3.11) and [11]). The dual potential j^* satisfies

(3.13)
$$j^*(x, \mathbf{w}^*) = \sup\{\mathbf{w} : \mathbf{w}^* - j(x, \mathbf{w}) \mid \mathbf{w} \in \mathbf{E}_s^n\}$$

(3.13) $j^{-}(x, \mathbf{w}^{-}) = \sup_{\mathbf{w} \in \mathbf{w}} \mathbf{w} \cdot \mathbf{w}$ $j^{-}(x, \mathbf{w}^{-}) = \sup_{\mathbf{w} \in \mathbf{w}} \mathbf{w} \cdot \mathbf{w}$ for μ -a.e. $x \in \Omega$. Define the recession function $j_{\infty} : \overline{\Omega} \times \mathbf{E}_{s}^{n} \to \mathbb{R} \cup \{\infty\}$ by

(3.14)
$$j_{\infty}(x, \mathbf{w}) = \sup\{\mathbf{w} : \mathbf{w}^* - I_{\mathcal{K}}(x, \mathbf{w}^*) \mid \mathbf{w}^* \in \mathbf{E}_s^n\}$$

for $x \in \overline{\Omega}$ and $\mathbf{w} \in \mathbf{E}_s^n$.

Let $\zeta \in \mathbb{M}_b(\Omega, \mathbf{E}_s^n)$. We recall that $|\zeta|$ is the total variation measure associated with ζ , and the density of ζ with respect to $|\zeta|$ will be denoted by $d\zeta/d|\zeta|$. Let $\zeta = \zeta_a(x) dx + \zeta_s$ be the Lebesgue decomposition of ζ into the absolutely continuous and singular parts with respect to dx. If a bounded measure $\zeta \in \mathbb{M}_b(\Omega, \mathbf{E}_s^n)$ is absolutely continuous with respect to dx, then we write $\boldsymbol{\zeta} \in L^1(\Omega, \mathbf{E}_s^n)$.

Let $\mathbf{f} \in L^n(\Omega, \mathbb{R}^n)$ and $\mathbf{g} \in L^{\infty}(\Gamma_1, \mathbb{R}^n)$. In this paper we consider the functional

(3.15)
$$BD(\Omega) \ni \mathbf{u} \mapsto P_{\lambda,i}(\mathbf{u}) = \lambda F(\mathbf{u}) + G_i(\boldsymbol{\varepsilon}(\mathbf{u})),$$

where

(3.16)
$$\lambda F(\mathbf{u}) \equiv -\lambda L(\mathbf{u}) + I_{C_a}(\mathbf{u}), \quad L(\mathbf{u}) \equiv \int_{\Omega} \mathbf{f} \cdot \mathbf{u} \, dx + \int_{\Gamma_1} \mathbf{g} \cdot \boldsymbol{\gamma}_B(\mathbf{u}) \, ds,$$

and $C_a \equiv \{\mathbf{u} \in BD(\Omega) \mid \gamma_B(\mathbf{u}) = \mathbf{0} \text{ on } \Gamma_0\}$. The functional $G_j : \mathbb{M}_b(\Omega, \mathbf{E}_s^n)$ $\to \mathbb{R} \cup \{\infty\}$ is given by

$$(3.17) \quad G_{j}(\zeta) \equiv \begin{cases} \int\limits_{\Omega-S} j(x,\zeta)\,dx + \int\limits_{S} j(x,\zeta)\,ds & \text{if } \zeta_{\mid \Omega-S} \in L^{1}(\Omega-S,\mathbf{E}_{s}^{n}) \\ & \text{and } \zeta_{\mid S} \in L^{1}(S,\mathbf{E}_{s}^{n}), \\ \\ \infty & \text{if } \zeta \text{ is not absolutely continuous with} \\ & \text{respect to } dx \text{ in } \Omega \text{ or to } ds \text{ in } S, \end{cases}$$

$$(\text{cf. } (3.3)).$$

(cf. (3.3)).

The formula (3.15) describes the total elastic-perfectly plastic energy of a body occupying the given subset Ω of \mathbb{R}^n . This body is subjected to the volume forces $\mathbf{f} \in L^n(\Omega, \mathbb{R}^n)$ and boundary forces $\mathbf{g} \in L^{\infty}(\Gamma_1, \mathbb{R}^n)$. The constant $\lambda \geq 0$, $\lambda < \infty$ is the load multiplier (see [15]). The body is clamped on Γ_0 . Moreover, in Ω there is a fissure (or fissures) S.

Assumption 7. There exists $\sigma_0 \in C(\overline{\Omega}, \mathbf{E}_s^n)$ such that $\sigma_{0|\inf\Omega} \in$ $W^n(\Omega, \operatorname{div}), \, \boldsymbol{\beta}_B(\boldsymbol{\sigma}_0) = \lambda \mathbf{g} \, \text{ on } \, \Gamma_1 \, \text{and } \, \boldsymbol{\sigma}_0(x) \in \mathcal{K}(x) \, \text{ for } \mu\text{-a.e. } x \in \Omega.$

By Assumption 7, the boundary force $\mathbf{g} \in L^{\infty}(\Gamma_1, \mathbb{R}^n)$ is a regular function.

We consider the spaces $\mathbf{Y}^1(\overline{\Omega})$ and $C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ given by

(3.18)
$$\mathbf{Y}^{1}(\overline{\Omega}) \equiv \{ \mathbf{M} \in \mathbb{M}_{b}(\overline{\Omega}, \mathbf{E}_{s}^{n}) \mid \exists \mathbf{u}_{1} \in BD(\Omega_{1}), \\ \boldsymbol{\varepsilon}(\mathbf{u}_{1})_{\mid \overline{\Omega}} = \mathbf{M}, \ \mathbf{u}_{1\mid \Omega_{1} - \overline{\Omega}} = \mathbf{0} \},$$

(3.19)
$$C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n) \equiv \{ \sigma \in C(\overline{\Omega}, \mathbf{E}_s^n) \mid \boldsymbol{\sigma}_{|\Omega} \in W^n(\Omega, \operatorname{div}) \}.$$

These are topological vector spaces in duality defined by the bilinear pairing

(3.20)
$$\langle \mathbf{M}, \boldsymbol{\sigma} \rangle_{\mathbf{Y}^1 \times C} = \int_{\overline{\Omega}} \boldsymbol{\sigma} : \mathbf{M} = \sum_{i,j=1}^n \int_{\overline{\Omega}} \sigma_{ij} M^{ij}$$

(cf. [5, Remark 2]). We say that a net $\{\mathbf{M}_k\}_{k\in K}\subset \mathbf{Y}^1(\overline{\Omega})$ converges to \mathbf{M}_0 in the topology $\sigma(\mathbf{Y}^1(\overline{\Omega}), C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n))$ if $\langle (\mathbf{M}_k - \mathbf{M}_0), \boldsymbol{\sigma} \rangle_{\mathbf{Y}^1 \times C} \to 0$ for every $\boldsymbol{\sigma} \in C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n)$.

The functional $\mathbb{P}^{j}_{\lambda}: \mathbf{Y}^{1}(\overline{\Omega}) \to \mathbb{R} \cup \{\infty\}$ of the original elastic-plastic energy is defined by

$$(3.21) \quad \mathbb{P}_{\lambda}^{j}(\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}) \equiv -\int_{\Gamma_{1}} \boldsymbol{\sigma}_{0} : (\boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu}) \, ds + \int_{\Omega - S} j(x, \boldsymbol{\varepsilon}(\mathbf{u})) \, dx + \int_{S} j(x, \boldsymbol{\varepsilon}(\mathbf{u})) \, ds + \int_{\Gamma_{0}} I_{\{\boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu} = 0\}} (\boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu}) \, ds$$

if $\boldsymbol{\varepsilon}(\mathbf{u})_{|\Omega-S} \in L^1(\Omega-S, \mathbf{E}^n_s)$ and $\mathbf{u}_{|\Omega_1-\overline{\Omega}} = 0$, where $\boldsymbol{\beta}_B(\boldsymbol{\sigma}_0) = \lambda \mathbf{g}$ on Γ_1 , and $\mathbb{P}^j_{\lambda}(\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}) \equiv \infty$ otherwise. In \mathbb{P}^j_{λ} the work of the volume forces is omitted. The expression \mathbb{P}^j_{λ} is obtained from $P_{\lambda,j}$ by means of the formula $\int_{\Gamma_1} \boldsymbol{\beta}_B(\boldsymbol{\sigma}_0) \cdot \boldsymbol{\gamma}_B(\mathbf{u}) \, ds = \int_{\Gamma_1} \boldsymbol{\sigma}_0 : (\boldsymbol{\gamma}^I_B(\mathbf{u}) \otimes_s \boldsymbol{\nu}) \, ds$ (which holds for every $\mathbf{u} \in BD(\Omega)$, cf. (3.15) and [5, (3.16)]).

We assume that there exists $\widetilde{\mathbf{u}} \in BD(\Omega_1)$ with $\varepsilon(\widetilde{\mathbf{u}})_{|\Omega-S} \in L^1(\Omega-S, \mathbf{E}_s^n)$ and $\mathbb{P}^j_{\lambda}(\varepsilon(\widetilde{\mathbf{u}})_{|\overline{\Omega}}) < \infty$.

4. Lower semicontinuous regularization. In this section the l.s.c. regularization of the functional \mathbb{P}^j_λ is found, where the space $\mathbf{Y}^1(\overline{\Omega})$ is endowed with the topology $\sigma(\mathbf{Y}^1(\overline{\Omega}), C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}^n_s))$. Unfortunately, the explicit formula for the bipolar functional $(\mathbb{P}^j_\lambda)^{**}$ is not found directly. Therefore a modification $\widetilde{\mathbb{P}}^j_\lambda$ of \mathbb{P}^j_λ is defined below, and only $(\widetilde{\mathbb{P}}^j_\lambda)^{**}$ is found explicitly. In Theorem 11 it is shown that $(\widetilde{\mathbb{P}}^j_\lambda)^{**} = (\mathbb{P}^j_\lambda)^{**}$. The reasoning given below is a modification of the method of [5]. Only those fragments of the proofs which are different from those in [5] are given. In the functionals \mathbb{P}^j_λ and $\widetilde{\mathbb{P}}^j_\lambda$ the work of the volume forces is omitted (cf. [5, Section 5]).

Because of the duality between $\mathbf{Y}^1(\overline{\Omega})$ and $C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n)$, we define a functional $(\mathbb{P}^j_{\lambda})^* : C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n) \to \mathbb{R} \cup \{\infty\}$ by

$$(4.1) \quad (\mathbb{P}_{\lambda}^{j})^{*}(\boldsymbol{\sigma}) = \sup\{\langle \boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}, \boldsymbol{\sigma} \rangle_{\mathbf{Y}^{1} \times C} - \mathbb{P}_{\lambda}^{j}(\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}) \mid \mathbf{u} \in BD(\Omega_{1}), \\ \boldsymbol{\varepsilon}(\mathbf{u})_{|\Omega-S} \in L^{1}(\Omega - S, \mathbf{E}_{s}^{n}) \text{ and } \mathbf{u}_{|\Omega_{1}-\overline{\Omega}} = \mathbf{0}\}.$$

We say that $(\mathbb{P}^{j}_{\lambda})^{*}$ is the dual functional to \mathbb{P}^{j}_{λ} with respect to the duality between $\mathbf{Y}^{1}(\overline{\Omega})$ and $C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}^{n}_{s})$ (see [11, pp. 16–18]). The bidual functional $(\mathbb{P}^{j}_{\lambda})^{**}: \mathbf{Y}^{1}(\overline{\Omega}) \to \mathbb{R} \cup \{\infty\}$ is defined by

$$(4.2) \qquad (\mathbb{P}_{\lambda}^{j})^{**}(\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}})$$

$$= \sup\{\langle \boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}, \boldsymbol{\sigma} \rangle_{\mathbf{Y}^{1} \times C} - (\mathbb{P}_{\lambda}^{j})^{*}(\boldsymbol{\sigma}) \mid \boldsymbol{\sigma} \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_{s}^{n}) \}.$$

The space $\mathbf{Y}^1(\overline{\Omega})_{|\operatorname{Fr}\Omega}$ is isomorphic to $\{-\gamma_B(\mathbf{u}) \otimes_s \boldsymbol{\nu} \in L^1(\operatorname{Fr}\Omega, \mathbf{E}_s^n) \mid \mathbf{u} \in BD(\Omega)\}$ (cf. (3.3)). It follows that the bilinear form between $\mathbb{M}_b(\Omega, \mathbf{E}_s^n) \times \mathbf{Y}^1(\overline{\Omega})_{|\operatorname{Fr}\Omega}$ and $C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ is given by

$$(4.3) \qquad \langle (\widetilde{\mathbf{w}}, -\boldsymbol{\gamma}_B^I(\mathbf{u}) \otimes_s \boldsymbol{\nu}), \boldsymbol{\sigma} \rangle_1 \equiv \int_{\Omega} \boldsymbol{\sigma} : \widetilde{\mathbf{w}} + \int_{\operatorname{Fr}, \Omega} \boldsymbol{\sigma} : (-\boldsymbol{\gamma}_B^I(\mathbf{u}) \otimes_s \boldsymbol{\nu}) \, ds$$

for $\widetilde{\mathbf{w}} \in \mathbb{M}_b(\Omega, \mathbf{E}_s^n)$, $-\gamma_B^I(\mathbf{u})ds \otimes_s \boldsymbol{\nu} \in \mathbf{Y}^1(\overline{\Omega})_{|\operatorname{Fr}\Omega}$ and $\boldsymbol{\sigma} \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n)$. Therefore a net $\{\boldsymbol{\sigma}_{\delta}\}_{\delta \in D} \subset C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ converges to $\boldsymbol{\sigma}_0 \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ in the topology

(4.4)
$$\sigma(C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n), L^1_{\mu}(\Omega, \mathbf{E}_s^n) \times \mathbf{Y}^1(\overline{\Omega})_{|\operatorname{Fr}\Omega})$$

if $\langle (\widetilde{\mathbf{w}}, -\boldsymbol{\gamma}_B^I(\mathbf{u}) \otimes_s \boldsymbol{\nu}), \boldsymbol{\sigma}_0 - \boldsymbol{\sigma}_\delta \rangle_1 \to 0$ for every $\widetilde{\mathbf{w}}_{|\Omega - S|} \in L^1(\Omega - S, \mathbf{E}_s^n)$, every $\mathbf{h} \in L^1(S, \mathbb{R}^n)$ where $\widetilde{\mathbf{w}}_{|S|} = \mathbf{h} \otimes_s \boldsymbol{\nu}$, and every $-\boldsymbol{\gamma}_B^I(\mathbf{u}) ds \otimes_s \boldsymbol{\nu} \in \mathbf{Y}^1(\overline{\Omega})_{|\operatorname{Fr}\Omega|}$. The extension $\widetilde{\mathbb{P}}_{\lambda}^j$ onto the space $\mathbb{M}_b(\Omega, \mathbf{E}_s^n) \times \mathbf{Y}^1(\overline{\Omega})_{|\operatorname{Fr}\Omega|}$ is given by

$$(4.5) \qquad \widetilde{\mathbb{P}}_{\lambda}^{j}(\mathbf{w}, (\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}, -\boldsymbol{\gamma}_{B}(\mathbf{u}) ds \otimes_{s} \boldsymbol{\nu})$$

$$\equiv -\int_{\Gamma_{1}} \boldsymbol{\sigma}_{0} : (\boldsymbol{\gamma}_{B}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu}) ds + \int_{\Omega - S} j(x, \mathbf{w}) dx$$

$$+ \int_{S} j(x, (\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}) ds + \int_{\Gamma_{0}} I_{\{\boldsymbol{\gamma}_{B}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu} = 0\}} (\boldsymbol{\gamma}_{B}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu}) ds$$

if $\mathbf{w} \in L^1(\Omega - S, \mathbf{E}_s^n)$ and $\mathbf{u} \in BD(\Omega)$, where $\boldsymbol{\beta}_B(\boldsymbol{\sigma}_0) = \lambda \mathbf{g}$ on Γ_1 , and $\widetilde{\mathbb{P}}_{\lambda}^j(\mathbf{w}, (\boldsymbol{\gamma}_B^+(\mathbf{u}) - \boldsymbol{\gamma}_B^-(\mathbf{u})) \otimes_s \boldsymbol{\nu}, -\boldsymbol{\gamma}_B(\mathbf{u}) ds \otimes_s \boldsymbol{\nu}) \equiv \infty$ otherwise.

By duality between $\mathbb{M}_b(\Omega, \mathbf{E}_s^n) \times \mathbf{Y}^1(\overline{\Omega})_{|\operatorname{Fr}\Omega}$ and $C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n)$, we define the dual functional $(\widetilde{\mathbb{P}}_{\lambda}^j)^* : C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n) \to \mathbb{R} \cup \{\infty\}$ (cf. (4.3)). It is given by

4.6)
$$(\widetilde{\mathbb{P}}_{\lambda}^{j})^{*}(\boldsymbol{\sigma}) = \sup \left\{ \int_{\Omega - S} \boldsymbol{\sigma} : \mathbf{w} \, dx + \int_{S} \boldsymbol{\sigma} : ((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}) ds \right.$$

$$\left. - \int_{\operatorname{Fr} \Omega} \boldsymbol{\beta}_{B}(\boldsymbol{\sigma}) \cdot \boldsymbol{\gamma}_{B}(\mathbf{u}) \, ds - \widetilde{\mathbb{P}}_{\lambda}^{j}(\mathbf{w}, (\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}, -\boldsymbol{\gamma}_{B}(\mathbf{u}) ds \otimes_{s} \boldsymbol{\nu}) \right|$$

$$\mathbf{w} \in L^{1}(\Omega - S, \mathbf{E}_{s}^{n}), \, \mathbf{u} \in BD(\Omega) \right\}.$$

The bidual functional $(\widetilde{\mathbb{P}}_{\lambda}^{j})^{**}: \mathbf{Y}^{1}(\overline{\Omega}) \to \mathbb{R} \cup \{\infty\}$ is defined by

$$(4.7) \qquad (\widetilde{\mathbb{P}}_{\lambda}^{j})^{**}(\boldsymbol{\varepsilon}(\mathbf{u})|_{\Omega-S}, (\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}, -\boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) \, ds \otimes_{s} \boldsymbol{\nu})$$

$$= (\widetilde{\mathbb{P}}_{\lambda}^{j})^{**}(\boldsymbol{\varepsilon}(\mathbf{u})|_{\overline{\Omega}}) = \sup \left\{ \int_{S} \boldsymbol{\sigma} : ((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}) \, ds \right\}$$

$$+ \int\limits_{\Omega-S} \boldsymbol{\sigma} : \boldsymbol{\varepsilon}(\mathbf{u})_{\mid \Omega-S} \, dx - \int\limits_{\operatorname{Fr} \Omega} \boldsymbol{\beta}_B(\boldsymbol{\sigma}) \cdot \boldsymbol{\gamma}_B^I(\mathbf{u}) \, ds - (\widetilde{\mathbb{P}}_{\lambda}^j)^*(\boldsymbol{\sigma}) \, \, \Big| \, \, \boldsymbol{\sigma} \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n) \Big\}$$

for $\varepsilon(\mathbf{u})_{|\overline{\Omega}} = (\varepsilon(\mathbf{u})_{|\Omega-S}, (\boldsymbol{\gamma}_B^+(\mathbf{u}) - \boldsymbol{\gamma}_B^-(\mathbf{u})) \otimes_s \boldsymbol{\nu}, -\boldsymbol{\gamma}_B^I(\mathbf{u}) ds \otimes_s \boldsymbol{\nu}) \in \mathbf{Y}^1(\overline{\Omega})$ (cf. (3.3) and [5, (3.16)]).

LEMMA 3 (see [5] and [4]). For every $\boldsymbol{\sigma} \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ we have $(\widetilde{\mathbb{P}}_{\lambda}^j)^*(\boldsymbol{\sigma}) \geq (\mathbb{P}_{\lambda}^j)^*(\boldsymbol{\sigma})$. Moreover, $(\widetilde{\mathbb{P}}_{\lambda}^j)^{**}(\mathbf{M}) \leq (\mathbb{P}_{\lambda}^j)^{**}(\mathbf{M})$ for every $\mathbf{M} \in \mathbf{Y}^1(\overline{\Omega})$.

Proposition 4. The functional $(\widetilde{\mathbb{P}}_{\lambda}^{j})^{**}$ is given by the expression

$$(4.8) \qquad (\widetilde{\mathbb{P}}_{\lambda}^{j})^{**}(\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}) = -\int_{\Gamma_{1}} \boldsymbol{\sigma}_{0} : (\boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu}) \, ds$$

$$+ \int_{\Gamma_{0}} j_{\infty}(x, -\boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu}) \, ds + \int_{S} j(x, (\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}) \, ds$$

$$+ \int_{\Omega - S} j(x, \boldsymbol{\varepsilon}(\mathbf{u})_{a}) \, dx + \int_{\Omega - S} j_{\infty}(x, d\boldsymbol{\varepsilon}(\mathbf{u})_{s}/d|\boldsymbol{\varepsilon}(\mathbf{u})_{s}|) \, d|\boldsymbol{\varepsilon}(\mathbf{u})_{s}|$$

for $\varepsilon(\mathbf{u})_{|\overline{\Omega}} \in \mathbf{Y}^1(\overline{\Omega})$, where $\beta_B(\boldsymbol{\sigma}_0) = \lambda \mathbf{g}$ on Γ_1 and $\varepsilon(\mathbf{u}) = \varepsilon(\mathbf{u})_a dx + \varepsilon(\mathbf{u})_s$ is the Lebesgue decomposition of $\varepsilon(\mathbf{u})$ into absolutely continuous and singular parts with respect to dx.

Proof. By [14, Theorem 3A and Proposition 2M] we obtain $(\widetilde{\mathbb{P}}_{\lambda}^{j})^{*}$. From [8, Theorem 1] we get (4.8) (see also [5, Proposition 7]). We note that in the functional $(\widetilde{\mathbb{P}}_{\lambda}^{j})^{*}$ the normal integrand over S is given by the expression

$$\sup \left\{ \int_{S} \boldsymbol{\sigma} : \left((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu} \right) ds - \int_{S} j(x, (\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}) ds \right|$$

$$\mathbf{u} \in BD(\Omega) \right\} = \int_{S} I_{A^{s}}(\boldsymbol{\sigma}(x)) ds$$

(cf. (3.5), (3.6), (3.8) and (3.9)).

LEMMA 5. For every $\mathbf{u} \in BD(\Omega_1)$ such that $\varepsilon(\mathbf{u})_{|\Omega-S} \in L^1(\Omega-S, \mathbf{E}_s^n)$, $\mathbf{u}_{|\Omega_1-\overline{\Omega}} = \mathbf{0}$ and $\gamma_B^I(\mathbf{u})_{|\Gamma_0} = \mathbf{0}$, we have $(\mathbb{P}_{\lambda}^j)^{**}(\varepsilon(\mathbf{u})_{|\overline{\Omega}}) = (\widetilde{\mathbb{P}}_{\lambda}^j)^{**}(\varepsilon(\mathbf{u})_{|\overline{\Omega}}) = \mathbb{P}_{\lambda}^j(\varepsilon(\mathbf{u})_{|\overline{\Omega}})$.

Proof. By Lemma 3, we have $(\widetilde{\mathbb{P}}_{\lambda}^{j})^{**}(\mathbf{M}) \leq (\mathbb{P}_{\lambda}^{j})^{**}(\mathbf{M}) \leq \mathbb{P}_{\lambda}^{j}(\mathbf{M})$ for every $\mathbf{M} \in \mathbf{Y}^{1}(\overline{\Omega})$. Therefore, by (4.8), we get the assertion. \blacksquare

LEMMA 6 (see [5, Lemma 9]). For every $\sigma \in C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ and every $\sigma_s \in C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ such that $\mathrm{div} \, \sigma_s = \mathbf{0}$, we have $(\mathbb{P}^j_{\lambda})^*(\sigma) = (\mathbb{P}^j_{\lambda})^*(\sigma + \sigma_s)$.

We say that a net $\{\boldsymbol{\sigma}_k\}_{k\in K}\subset C_{\mathrm{div}}(\overline{\Omega},\mathbf{E}^n_s)$ converges to $\widehat{\boldsymbol{\sigma}}\in C_{\mathrm{div}}(\overline{\Omega},\mathbf{E}^n_s)$ in the topology

(4.9)
$$\sigma(C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n), L^1(\Omega - S, \mathbf{E}_s^n) \times (L^1(S, \mathbb{R}^n) \otimes_s \boldsymbol{\nu}) \times \{\varphi \in \mathbf{Y}^1(\overline{\Omega})_{|\operatorname{Fr}\Omega} \mid \varphi_{|\Gamma_0} = \mathbf{0}\})$$

if

(4.10)
$$\int_{\Omega - S} (\boldsymbol{\sigma}_k - \widehat{\boldsymbol{\sigma}}) : \mathbf{w} \, dx + \int_{S} (\boldsymbol{\sigma}_k - \widehat{\boldsymbol{\sigma}}) : (\mathbf{p}^1 \otimes_s \boldsymbol{\nu}) \, ds + \int_{\Gamma_1} (\boldsymbol{\sigma}_k - \widehat{\boldsymbol{\sigma}}) : (\mathbf{p} \otimes_s \boldsymbol{\nu}) \, ds \to 0$$

for every $\mathbf{w} \in L^1(\Omega, \mathbf{E}_s^n)$, $\mathbf{p}^1 \in L^1(S, \mathbb{R}^n)$ and $\mathbf{p} \in L^1(\Gamma_1, \mathbb{R}^n)$.

LEMMA 7. Let $\widehat{f}: C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n) \to \mathbb{R}$ be a linear functional, continuous in the topology (4.9), such that $\widehat{f}(\boldsymbol{\sigma}_s) = 0$ for every $\boldsymbol{\sigma}_s \in C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ with $\mathrm{div}\,\boldsymbol{\sigma}_s = \mathbf{0}$ in Ω . Then there exists $\widetilde{\mathbf{u}} \in BD(\Omega)$ such that for every $\boldsymbol{\sigma} \in C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n)$,

(4.11)
$$\widehat{f}(\boldsymbol{\sigma}) = \int_{\Omega - S} \boldsymbol{\sigma} : \boldsymbol{\varepsilon}(\widetilde{\mathbf{u}}) \, dx + \int_{S} \boldsymbol{\sigma} : ((\boldsymbol{\gamma}_{B}^{+}(\widetilde{\mathbf{u}}) - \boldsymbol{\gamma}_{B}^{-}(\widetilde{\mathbf{u}})) \otimes_{s} \boldsymbol{\nu}) \, ds$$
$$- \int_{\mathbb{R}^{n}} \boldsymbol{\sigma} : (\boldsymbol{\gamma}_{B}(\widetilde{\mathbf{u}}) \otimes_{s} \boldsymbol{\nu}) \, ds,$$

$$\gamma_B(\widetilde{\mathbf{u}}) = \mathbf{0} \text{ on } \Gamma_0 \text{ and } \boldsymbol{\varepsilon}(\widetilde{\mathbf{u}})_{|\Omega - S} \in L^1(\Omega - S, \mathbf{E}_s^n).$$

Proof. Since \widehat{f} is continuous in the topology (4.9), by Theorem V.3.9 of [10] there exist $\mathbf{m} \in L^1(\Omega - S, \mathbf{E}_s^n)$, $\mathbf{m}_1 \in L^1(S, \mathbb{R}^n)$ and $\widehat{\mathbf{u}} \in BD(\Omega)$ such that $\gamma_B(\widehat{\mathbf{u}}) = \mathbf{0}$ on Γ_0 and $\widehat{f}(\boldsymbol{\sigma}) = \int_{\Omega - S} \boldsymbol{\sigma} : \mathbf{m} \, dx + \int_S \boldsymbol{\sigma} : (\mathbf{m}_1 \otimes_s \boldsymbol{\nu}) \, dx - \int_{\operatorname{Fr} \Omega} \boldsymbol{\sigma} : (\gamma_B(\widehat{\mathbf{u}}) \otimes_s \boldsymbol{\nu}) \, ds$ for all $\boldsymbol{\sigma} \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n)$. Next, we proceed similarly to the proof of Lemma 10 in [5]. \blacksquare

Let $Q: C_{\text{div}}(\overline{\Omega}, \mathbf{E}_s^n) \to \mathbb{R} \cup \{\infty\}$ be defined by

$$(4.12) Q(\boldsymbol{\sigma}) = \inf\{(\widetilde{\mathbb{P}}_{\lambda}^{j})^{*}(\boldsymbol{\sigma} + \boldsymbol{\sigma}_{s}) \mid \boldsymbol{\sigma}_{s} \in C(\overline{\Omega}, \mathbf{E}_{s}^{n}) \text{ and div } \boldsymbol{\sigma}_{s} = \mathbf{0}\}.$$

PROPOSITION 8. For every $\sigma \in C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ we have

$$(4.13) \qquad (\mathbb{P}_{\downarrow}^{j})^{*}(\boldsymbol{\sigma}) = \operatorname{cl}_{(4.9)} Q(\boldsymbol{\sigma}),$$

where $\operatorname{cl}_{(4.9)}Q$ denotes the largest minorant of Q which is l.s.c. in the topology (4.9) (i.e. $\operatorname{cl}_{(4.9)}Q$ is the l.s.c. regularization of Q in (4.9)).

Proof. We proceed similarly to Steps 1–5 of the proof of Proposition 11 in [5]. We say that a net $\{\sigma_k\}_{k\in K}\subset C_{\operatorname{div}}(\overline{\varOmega},\mathbf{E}^n_s)$ is convergent to $\widehat{\boldsymbol{\sigma}}\in$

 $C_{\rm div}(\overline{\Omega}, \mathbf{E}_s^n)$ in the topology

(4.14)
$$\sigma(C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n), \{ \varphi \in \mathbf{Y}^1(\overline{\Omega}) \mid \exists \mathbf{u} \in BD(\Omega_1), \varepsilon(\mathbf{u}) = \varphi, \\ \varepsilon(\mathbf{u})_{|\Omega - S|} \in L^1(\Omega - S, \mathbf{E}_s^n), \mathbf{u}_{|\Omega_1 - \overline{\Omega}|} = \mathbf{0}, \gamma_B^I(\mathbf{u}) = \mathbf{0} \text{ on } \Gamma_0 \})$$

if

$$(4.15) \qquad \int_{\Omega - S} (\boldsymbol{\sigma}_{k} - \widehat{\boldsymbol{\sigma}}) : \boldsymbol{\varepsilon}(\mathbf{u}) \, dx + \int_{S} (\boldsymbol{\sigma}_{k} - \widehat{\boldsymbol{\sigma}}) : ((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu}) \, ds$$
$$- \int_{\operatorname{Fr} \Omega} (\boldsymbol{\sigma}_{k} - \widehat{\boldsymbol{\sigma}}) : (\boldsymbol{\gamma}_{B}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu}) \, ds \to 0$$

for every $\mathbf{u} \in BD(\Omega)$ such that $\boldsymbol{\varepsilon}(\mathbf{u})_{|\Omega-S} \in L^1(\Omega-S, \mathbf{E}_s^n)$ and $\boldsymbol{\gamma}_B(\mathbf{u}) = \mathbf{0}$ on Γ_0 . The l.s.c. regularization of $(\widetilde{\mathbb{P}}_{\lambda}^j)^*$ in the topology (4.14) (denoted by $\operatorname{cl}_c(\widetilde{\mathbb{P}}_{\lambda}^j)^*$) is given by

$$(4.16) \quad \operatorname{cl}_{c}(\widetilde{\mathbb{P}}_{\lambda}^{j})^{*}(\boldsymbol{\sigma}) = \sup \left\{ \int_{\Omega - S} \boldsymbol{\sigma} : \boldsymbol{\varepsilon}(\mathbf{u}) \, dx - \int_{\operatorname{Fr} \Omega} \boldsymbol{\sigma} : (\boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu}) \, ds \right. \\ \left. + \int_{S} \boldsymbol{\sigma} : \left((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu} \right) ds - (\widetilde{\mathbb{P}}_{\lambda}^{j})^{**}(\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}) \right| \\ \mathbf{u} \in BD(\Omega_{1}), \, \boldsymbol{\varepsilon}(\mathbf{u})_{|\Omega - S} \in L^{1}(\Omega - S, \mathbf{E}_{s}^{n}), \, \mathbf{u}_{|\Omega_{1} - \overline{\Omega}} = \mathbf{0}, \, \boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) = \mathbf{0} \text{ on } \Gamma_{0} \right\} \\ = \sup \left\{ \int_{\Omega - S} \boldsymbol{\sigma} : \boldsymbol{\varepsilon}(\mathbf{u}) \, dx + \int_{S} \boldsymbol{\sigma} : \left((\boldsymbol{\gamma}_{B}^{+}(\mathbf{u}) - \boldsymbol{\gamma}_{B}^{-}(\mathbf{u})) \otimes_{s} \boldsymbol{\nu} \right) ds \right. \\ \left. - \int_{\operatorname{Fr} \Omega} \boldsymbol{\sigma} : \left(\boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) \otimes_{s} \boldsymbol{\nu} \right) ds - \mathbb{P}_{\lambda}^{j}(\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}) \, \right| \, \mathbf{u} \in BD(\Omega_{1}),$$

$$\boldsymbol{\varepsilon}(\mathbf{u})_{|\Omega-S} \in L^1(\Omega-S,\mathbf{E}^n_s), \ \mathbf{u}_{|\Omega_1-\overline{\Omega}} = \mathbf{0}, \ \boldsymbol{\gamma}^I_B(\mathbf{u}) = \mathbf{0} \ \text{on} \ \varGamma_0 \Big\} = (\mathbb{P}^j_\lambda)^*(\boldsymbol{\sigma})$$

for $\sigma \in C_{\text{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ (cf. Lemma 5). Similarly to the proof of Proposition 11 in [5], we obtain a contradiction.

LEMMA 9. For every $\widehat{r} > 0$, the topology (4.9) is stronger than the topology $\sigma(C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n), \mathbf{Y}^1(\overline{\Omega}))$ over the set $\{\boldsymbol{\sigma} \in C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n) \mid \|\mathrm{div}\,\boldsymbol{\sigma}\|_{L^n} \leq \widehat{r}\}.$

Proof. By [5, Lemma 12] the topology (4.12) defined in [5] is stronger than $\sigma(C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n), \mathbf{Y}^1(\overline{\Omega}))$ over the set $\{\boldsymbol{\sigma} \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n) \mid \|\operatorname{div} \boldsymbol{\sigma}\|_{L^n} \leq \widehat{r}\}$. Moreover, the topology (4.9) is stronger than the topology (4.12) from [5].

PROPOSITION 10. Let $A_k \equiv \{ \boldsymbol{\sigma} \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n) \mid \|\operatorname{div} \boldsymbol{\sigma}\|_{L^n} \leq k \}$. For every $\widehat{\boldsymbol{\sigma}} \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ and every $k > \|\operatorname{div} \widehat{\boldsymbol{\sigma}}\|_{L^n}$,

(4.17)
$$(\mathbb{P}^{j}_{\lambda})^{*}(\widehat{\boldsymbol{\sigma}}) = \operatorname{cl}_{A_{k}} Q(\widehat{\boldsymbol{\sigma}}),$$

where $\operatorname{cl}_{A_k}Q(\cdot)$ is the l.s.c. regularization of the function $\sigma \mapsto Q(\sigma) + I_{A_k}(\sigma)$ in the topology (4.9) and $I_{A_k}(\cdot)$ is the indicator function of A_k .

Proof. Step 1. Suppose there exist $\sigma_1 \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ and constants $\delta_0 > 0$, k > 0 such that $k > \|\operatorname{div} \boldsymbol{\sigma}_1\|_{L^n}$ and $(\mathbb{P}_{\lambda}^j)^*(\boldsymbol{\sigma}_1) + \delta_0 < \operatorname{cl}_{A_k} Q(\boldsymbol{\sigma}_1)$. On account of Lemmas 3 and 6, it suffices to show that this assumption leads to a contradiction.

For every $\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}} \in \mathbf{Y}^1(\overline{\Omega})$ let

$$(4.18) \qquad (\widetilde{\mathbb{P}}_{\lambda}^{j})^{*k}(\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}) \equiv \sup\{\langle \boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}, \boldsymbol{\sigma} \rangle_{\mathbf{Y}^{1} \times C} - (\widetilde{\mathbb{P}}_{\lambda}^{j})^{*}(\boldsymbol{\sigma}) \mid \boldsymbol{\sigma} \in A_{k}\},$$

$$(4.19) (\widetilde{\mathbb{P}}_{\lambda}^{j})_{\parallel A_{k}}^{*}(\boldsymbol{\sigma}) \equiv (\widetilde{\mathbb{P}}_{\lambda}^{j})^{*}(\boldsymbol{\sigma}) + I_{A_{k}}(\boldsymbol{\sigma}) \quad \forall \boldsymbol{\sigma} \in C_{\operatorname{div}}(\overline{\Omega}, \mathbf{E}_{s}^{n})$$

(cf. [5, Proof of Proposition 13]). For every $\sigma \in C_{\mathrm{div}}(\overline{\Omega}, \mathbf{E}_s^n)$ let

$$(4.20) \quad \operatorname{cl}_{c}(\widetilde{\mathbb{P}}_{\lambda}^{j})_{\|A_{k}}^{*}(\boldsymbol{\sigma}) = \sup\{\langle \boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}, \boldsymbol{\sigma} \rangle_{\mathbf{Y}^{1} \times C} - (\widetilde{\mathbb{P}}_{\lambda}^{j})^{*k}(\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}) \mid$$

$$\mathbf{u} \in BD(\Omega_1), \, \boldsymbol{\varepsilon}(\mathbf{u})_{|\Omega-S} \in L^1(\Omega-S,\mathbf{E}^n_s), \, \mathbf{u}_{|\Omega_1-\overline{\Omega}} = \mathbf{0}, \, \boldsymbol{\gamma}^I_B(\mathbf{u}) = \mathbf{0} \, \, \text{on} \, \, \boldsymbol{\Gamma}_0\},$$

where cl_c is the l.s.c. regularization (of the functional considered) in the topology (4.14). Then for every $\widehat{k} > 0$ such that $\|\operatorname{div} \boldsymbol{\sigma}_1\|_{L^n} < \widehat{k}$ we have

(4.21)
$$\operatorname{cl}_{c}(\widetilde{\mathbb{P}}_{\lambda}^{j})_{\parallel A_{\widehat{r}}}^{*}(\boldsymbol{\sigma}_{1}) = (\mathbb{P}_{\lambda}^{j})^{*}(\boldsymbol{\sigma}_{1})$$

(cf. (4.16)). Indeed,

$$(4.22) \quad \sup\{\langle \boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}, \boldsymbol{\sigma}_{1} \rangle_{\mathbf{Y}^{1} \times C} - (\widetilde{\mathbb{P}}_{\lambda}^{j})^{*k} (\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}) \mid \mathbf{u} \in BD(\Omega_{1}), \\ \boldsymbol{\varepsilon}(\mathbf{u})_{|\Omega-S} \in L^{1}(\Omega - S, \mathbf{E}_{s}^{n}), \, \mathbf{u}_{|\Omega_{1}-\overline{\Omega}} = \mathbf{0}, \, \boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) = \mathbf{0} \text{ on } \Gamma_{0}\} \\ = \sup\{\langle \boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}, \boldsymbol{\sigma}_{1} \rangle_{\mathbf{Y}^{1} \times C} - (\widetilde{\mathbb{P}}_{\lambda}^{j})^{**} (\boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}) \mid \mathbf{u} \in BD(\Omega_{1}), \\ \boldsymbol{\varepsilon}(\mathbf{u})_{|\Omega-S} \in L^{1}(\Omega - S, \mathbf{E}_{s}^{n}), \, \mathbf{u}_{|\Omega_{1}-\overline{\Omega}} = \mathbf{0}, \, \boldsymbol{\gamma}_{B}^{I}(\mathbf{u}) = \mathbf{0} \text{ on } \Gamma_{0}\}$$

if $k > \|\operatorname{div} \boldsymbol{\sigma}_1\|_{L^n}$, since $(\widetilde{\mathbb{P}}^j_{\lambda})^{*k}$ is the supremum over all affine mappings $\mathbf{Y}^1(\overline{\Omega}) \ni \boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}} \mapsto \langle \boldsymbol{\varepsilon}(\mathbf{u})_{|\overline{\Omega}}, \boldsymbol{\sigma} \rangle_{\mathbf{Y}^1 \times C} + \text{const which are less than } (\widetilde{\mathbb{P}}^j_{\lambda})$, and $\boldsymbol{\sigma} \in A_k$.

Step 2. Similarly to the proof of [5, Proposition 11], for every k > 0, there exists a linear functional $f_k : C_{\text{div}}(\overline{\Omega}, \mathbf{E}_s^n) \to \mathbb{R}$ given by

$$(4.23) f_k(\boldsymbol{\sigma}) = \int_{\Omega} \boldsymbol{\sigma} : \boldsymbol{\varepsilon}(\mathbf{u}_k) \, dx - \int_{\operatorname{Fr} \Omega} \boldsymbol{\sigma} : (\boldsymbol{\gamma}_B(\mathbf{u}_k) \otimes_s \boldsymbol{\nu}) \, ds,$$

where $\gamma_B(\mathbf{u}_k) = \mathbf{0}$ on Γ_0 and $\varepsilon(\mathbf{u}_k)_{|\Omega-S} \in L^1(\Omega-S, \mathbf{E}_s^n)$ for every k > 0 (see Lemma 7). Moreover (by the proof of [5, Proposition 11]) for all k > 0 there exists $c_k \in \mathbb{R}$ such that

$$(4.24) (\mathbb{P}_{\lambda}^{j})^{*}(\boldsymbol{\sigma}_{1}) + \delta_{0} < f_{k}(\boldsymbol{\sigma}_{1}) + c_{k} \text{ and } f_{k}(\widetilde{\boldsymbol{\sigma}}) + c_{k} < \operatorname{cl}_{A_{k}} Q(\widetilde{\boldsymbol{\sigma}})$$

for every $\widetilde{\boldsymbol{\sigma}} \in C_{\text{div}}(\overline{\Omega}, \mathbf{E}_s^n)$. From (4.20), (4.21), (4.23) and (4.24) we obtain a contradiction. \blacksquare

THEOREM 11. For every $\varphi \in \mathbf{Y}^1(\overline{\Omega})$ we have $(\widetilde{\mathbb{P}}^j_{\lambda})^{**}(\varphi) = (\mathbb{P}^j_{\lambda})^{**}(\varphi)$.

Proof. We prove this result similarly to that in [5, Theorem 14].

REMARK 1. If we assume that the functional considered is globally coercive then we easily obtain the existence theorem.

References

- [1] E. Acerbi, I. Fonseca and N. Fusco, Regularity results for equilibria in a variational model for fracture, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 889–902.
- [2] L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation, Arch. Rat. Mech. Anal. 139 (1997), 201–238.
- [3] A. C. Barroso, I. Fonseca and R. Toader, A relaxation theorem in the space of functions of bounded deformation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000), 19–49.
- [4] J. L. Bojarski, The relaxation of Signorini problems in Hencky plasticity, I: Three-dimensional solid, Nonlinear Anal. 29 (1997), 1091–1116.
- [5] —, General method of regularization. I: Functionals defined on BD space, Appl. Math. (Warsaw) 31 (2004), 175–199.
- [6] G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation, Arch. Rat. Mech. Anal. 145 (1998), 51–98.
- [7] —, —, —, Relaxation of variational problems under trace constraints, Nonlinear Anal. 49 (2002), 221–246.
- [8] G. Bouchitté and M. Valadier, Integral representation of convex functionals on a space of measures, J. Funct. Anal. 80 (1988), 398-420.
- [9] A. Braides, A. Defranceschi and E. Vitali, A relaxation approach to Hencky's plasticity, Appl. Math. Optim. 35 (1997), 45–68.
- [10] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
- [11] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam and New York, 1976.
- [12] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monogr. Math. 80, Birkhäuser, 1984.
- [13] R. Kohn and R. Temam, Dual spaces of stresses and strains with applications to Hencky plasticity, Appl. Math. Optim. 10 (1983), 1–35.
- [14] R. T. Rockafellar, Integral functionals, normal integrands and measurable selections, in: Nonlinear Operators and the Calculus of Variations, Lecture Notes in Math. 543, Springer, Berlin, 1975, 157–207.
- [15] R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985.

Department of Applied Mathematics Warsaw Agricultural University (SGGW) Nowoursynowska 159 02-787 Warszawa, Poland E-mail: JarekLBojarski@poczta.onet.pl

> Received on 28.6.2004; revised version on 24.1.2005 (1750)