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REGULARIZATION OF NONCOERCIVE
CONSTRAINTS IN HENCKY PLASTICITY

Abstract. The aim of this paper is to find the largest lower semiconti-
nuous minorant of the elastic-plastic energy of a body with fissures. The
functional of energy considered is not coercive.

1. Introduction. The largest lower semicontinuous (l.s.c.) minorant
(called the l.s.c. regularization) of a functional with linear growth at infi-
nity is found in the papers [3|, [6] and [9], under the assumption of local
coercivity of the functional. The largest l.s.c. minorant of a non-coercive
functional is found in [5], but the set K(x) of admissible stresses (defined
in that paper) does not take into account the influence of fissures. However,
the original elastic-plastic energy which describes a body with fissures is not
locally coercive, because the energy on a fissure is not coercive.

The propagation of a crack is considered in [1]. The domain of the func-
tional is the space of functions of bounded variation BV. Namely, in [1] the
potential is elastic in all the body. Here we present the static problem for a
fixed fissure, taking into account the plastic zone at the tip of the fissure.

The physical problem of energy concentrated on a fixed smooth surface X
(contained in a domain §2) is considered in [7]. The problem of a body with
fissure is not studied in [7], because the authors assume “local coercivity” of
the original functional (cf. [7, hypothesis (H4)|).

Here we are concerned with the situation where a Hencky elastic-perfectly
plastic material has fissures. We apply the method from [5] to find the largest
l.s.c. minorant of the original elastic-plastic energy.

We give only those fragments of the proofs which are different from those
in [5]. The multifunction I (which describes the set of admissible stresses)
and the elastic-plastic potential j take into account the influence of the
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fissure. In the functional IP’f\ of total elastic-plastic energy the work of volume
forces is omitted. The bipolar functional (IP’&)** is the l.s.c. regularization of
Pi in the topology o(Y!(£2), Cqiv(£2,E?)) (see (3.18), (3.19) and [11]).

As in [5], if we assume that IP’f\ is globally coercive (cf. [5, (5.5)]), then
we can prove that (]P’Z\)** is the l.s.c. regularization of IP’&' in the weak*
BD topology, since the weak* BD topology and o(Y!(£2), C4iy(£2,E")) are
equal on bounded sets in [BD(£2), | - ||zp] (or on bounded sets in the space
[YY(£2),] - |lm,], which is isomorphic to the former).

Note that ﬁ’i\;ﬂ?’i\, SO a priori (IF’&)** is not the l.s.c. regularization of Pf\.

2. Some basic definitions and theorems. Throughout this work
(2 denotes a nonempty, bounded, open, connected set of class C! in R™.
C(£2,R™) denotes the space of R™-valued continuous functions on {2, while
Co(£2,R™), or simply Cj, stands for the space of continuous functions which
take the value 0 on the boundary Fr {2 of {2. Moreover C. is the space of con-
tinuous functions with compact supports, and My (£2, R™), or M, stands for
the space of R™-valued, Radon bounded regular measures on {2, equipped
with the norm || - [[ag, (2,rm)-

We will use the duality pairs (M., C.) and (My, Cy), where M, is the
space of regular measures. For g = (g1,...,9m) € C(2,R™) and p =
(B1,-- s pim) € My(2,R™), we write {,g-p = >, {,gip. Finally,
L0(£2,R™),, stands for the set of y-measurable functions from {2 into R™.

The scalar product of z and z* € R™ is denoted by z-z* = Y | 22 and
the scalar product of w and w* € R™*™ = E™ by w : w* = Z;?Zl wijwfj,
where E" is the space of real m x m matrices. Moreover, E7"* is the space of
symmetric real m X m matrices.

If F: X - RU{oo} is a function defined on a vector space X, then F™*
denotes its polar function (cf. [11]). For an arbitrary set C'in X, I¢(-) stands
for its indicator function (I¢(x) =0if z € C and I¢(z) = 0 if x ¢ C).

The notation cly(Z) stands for the closure of the set Z C V' in the to-
pology of the space V. We set ||[e;]||rm = > i~ |ei], where [e;] € R™. The
tensor product (resp. symmetric tensor product) is denoted by ® (resp. ®s).
The symmetric tensor product is given by the expression (p ®; v);; =
(pivj + pjvi) /2.

We define the following Banach spaces (see [13], [15]):

(2.1) LD(Q)= {u € LY(2,R)

gij(u) = 2<8xj + 3$i> €L (Q),z,]—l,...,n},

(2.2)  BD(2)={ue LY(2,R") | g;(u) € My(2), 4,5 =1,...,n},
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with the natural norms

n
lallzp = llallzs + ) lleii(w)
(2.3) we
lallzp = lullz + > llew (),
ij=1
There exists a continuous linear trace yg : BD({2) — LY (Fr 2, R™) such
that yp(u) = ujp g for all u € BD(2) N C(£2,R") (see [15]). We define

(2.4) Wn(R,div) = {o € L®(2,E") | dive € L"(2,R")}

endowed with the norm |o|wn(0daiv) = ollre@Er) + [dive|inorr
(cf. [15, Chap. 2, Sec. 7] and [4]). The distribution o : e(u), where o €
Wn(£2,div), u € BD(S2), defined (for p; € C°(£2)) by

(2.5) (o:e(u),o1)pxp = —S(div o) -upydr — SO’ :(u® V) de,
2 Q
is a bounded measure on {2 (see [15]).

ASSUMPTION 1. {2 and (2; are bounded open connected sets of class C!
in R™. Furthermore, {2 CC (.

There is a continuous linear map Gp from W" ({2, div) onto L*>°(Fr 2, R")
such that for every o € C(2,E"), Bg(a) = Oy - V, where v denotes the
exterior unit vector normal to Fr {2 (see [15]). Moreover, for all u € BD({2)
and all o € W"(£2,div), the following formula holds:

(2.6) SO’ ce(u) + S(diva) ‘udr = S Bg(o) - vg(u)ds.
9] 9] Fr 2

3. Mathematical description of an elastic-plastic body with fis-
sure. Let {T;};cs be a finite family of bounded connected sets of class C!
in R™. In this paper, the Lebesgue and Hausdorff measures on R™ and Fr {2,
Fr 2y, FrT; (for ¢ € I) are denoted by dx and ds, respectively. We assu-
me that ds(FrT; NFrTy) = 0, ds(Fr 2 NFrT;) =0, ds(Fr& NFrT;) =0
for every i,k € I, i # k. The boundary of {2 is composed of Iy and I3
(= I'1) such that Iy and Iy are Borel subsets of Fr2, Iy N I} = () and
dS(FI'_Q— (F()Upl)) = 0.

Let S be a closed subset of 2N |J,c; FrT; such that S = clint S (where
the interior is taken relative to (J;c; Fr T;).

We consider an elastic-perfectly plastic body occupying f2. In this body
we have a fissure (or fissures) S.

Below we define the set K(x) of admissible stresses, for every x € £2— 5.
Moreover, we define the elastic-plastic potential (x,e(u)) — j(z,e(u)) for
dz-almost every (dz-a.e.) x € {2 — S (where €(u) is the strain tensor).
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The set () and potential (z,e(u)) — j(z,e(u)) are defined in a special
way on S. Namely, to prevent the overlapping of opposite edges of the fis-
sure, we introduce the so-called non-penetration condition. We assume that
penetration of the material is restricted (see (3.4)). The non-penetration
condition on S is described by the potential j;. The dual functional to
R™ 5 z — ji(z,(z ®s v)) (cf. (3.4)) is the indicator function of the set
A% (cf. (3.5)) on the fissure. Finally, for x € S, we define the potential
E? > w — j(z,w) on the larger space E? (since R" ®; {v} C E? and
R™ @5 {v} # E?). Therefore the dual functional to j (on S) is the indica-
tor function of the set {o € E? | tra < 0, o = 0} of admissible stresses
on S, where o = o — %6tra and 6;; = 1 for i = j, 6;;j = 0 for ¢ # j.
The final definition of j on S describes the original non-penetration con-
dition on S. Here the unilateral contact condition on S without friction is
studied.

We say that a subset w of {2 has u-measure zero if dx(w) = 0 and
ds(wnS) =0. Let K : 2 — 25 be a multifunction.

ASSUMPTION 2 (cf. [4]). K(x) is a convex and closed subset of E} for all
x € §2. There exists zg € C1(2, E?) such that zo(x) € K(z) for every z € §2.
Moreover:

(i) if z(z) € K(z) for u-almost every (u-a.e.) z € £2, z € C(2,E") and
Zjing o € W (82,div), then z(y) € K(y) for every y € o}

(ii) for every y € £2 and every w € K(y) there exists z € C(2,ED)
such that zy,. o € W"(§2,div), z(y) = w and z(z) € K(x) for every

x € (2.

DEFINITION 1 (cf. [11, Chap. 8, p. 232]). A mapping j* : 2 x EI' —
R U {0} is a conver, normal integrand if:

(a) the function E} > w* — j*(z,w") is convex and ls.c. for p-a.e.
x € {2 _

(b) there exists a Borel function j* : 2 x E' — R U {oco} such that
j*(z,) = j*(x,-) for p-a.e. x € (2.

Moreover, assume
(3.1) {w* e E} | j(z,w") < oo} =K(z) for py-ae. z e i
AsSsuMPTION 3 (see [5]). For every 7 > 0 there exists ¢; such that

(3.2) sup{g (@, 2") da | 2* € L®(Q,ED), ||z*||p~ < 7
Q
and z*(x) € K(z) for dz-a.e. x € Q} < ¢p < 00.
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ASSUMPTION 4. There exist u® € LD(f2) and ¢ € L'(£2,R) such that
J (x,w*) > e(u)(z) : w* + g(x) for p-a.e. x € 2 and every w* € E”, and
vp(u®) =0 on Fr (2.

The set K(x) denotes the elasticity convex domain at any point x € £2—S.

A Borel set C C R" is called a Caccioppoli set if sup{gc divfdx | f €

Ca(22,R"), || f()||lrn < 1 Vz € 29} < oo for all bounded open subsets 2
of R™ (see [12]).

AssuMPTION 5. I = Fr2NC and S = [J;;(FrT; N C;), where C =
clintC C 27 and C; = clintC; C 21 (for i € I) are closed Caccioppoli sets,
ds(Fr2NFrC) =0 and ds(FrT; NFrC;) =0 (for i € I).

By a finite induction, from [15, Chap. 2, Lemma 2.2|, we obtain the
following decomposition of the measure e(u), for every u € BD({2;):

(3.3) e(u) = e(u)jg-s + (V(u) — vp(u)))s ®s vds

+ (‘)’g(u) - ‘YIB(U))|FrQ ®s vds + €(u)|91_§,

where v denotes the exterior unit vector normal to Fr {2 or the normal vector
to Fr T; for some i € I (cf. [2]). The inside trace v5 : BD(§2) — L!(Fr 2,R")
and outside trace ¥3 : BD(2; — 2) — L'(Fr 2,R") are given by v5(u) =
up o for u € BD(£2)N C(2,R"), and 7g(u) = up for u € BD(f1 —
2) N C(21 — 2,R") respectively. The traces vz : BD(T;) — L' (FrT;,R")
and 75 : BD(R" — T;) — L' (FrT;,R") are defined for every i € I, where v
denotes the exterior unit vector normal to the boundary of 7;.

Below we take into account the influence of the fissure.
The original potential on the fissure (or fissures) is described by

(34) 1o (v (0) —7p(0) ®ev) = {

for ds-a.e. x € S. Define

(3.5)  A*={o € E!|0;j((v5(u) —v5(u)) ®s v);; <0 Vu such that
tr((v5(w) — v5(w) ®s v) = (v5(w) = vp(w) - v > 0}.

We find that the potential on the fissure, dual to the original one, is given by

n

(3.6)  ji(z,0) = s { D oy (v (w) — vp(w) @, V),
2,7=1
— (e, (VW) = vp(w) 8, v) | (v(w) — (W) € L'(S,R") }
_ {0 if o e A%,

oo otherwise,

oo if tr(vh(u) — vp(u) ©s v <0,
0  otherwise,

for ds-a.e. x € S and every o € E7.
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LEMMA 1. Let oP = o — %(Hra where 6;; = 1 for i = j and 6;; = 0 for
1 # j. Then
(3.7) {c €E" |tro <0, 0’ =0} C A°.

Proof. Follows from the decomposition

n

(38) Y oul(vh(m) —vp(0) B vy = - trotr{(yh(w) —vp(0) 2, )
i,j=1

+ Y o2V () — v () @, 1)7. u
4,7=1

LEMMA 2. If {0 €E? |[tro <0, 0P =0} C Ky, then
(3.9)  jile, (vp(a) = vp(0) @5 v) = (i + Ix,) " (z, (Y (w) — vp(w)) @5 v)
= ji"(z, (Y (u) = v5(w) ®s v)

for ds-a.e. x € S and all u € BD((2), where K1 is any convex and closed set
in EY, and Ik, () is the indicator function of K;.

Proof. By (3.5) and (3.7) we obtain {o € E? | tro < 0, 6” = 0} C
ANy C A®. Then by (3.6) and (3.8) we have

(3.10)  Ji(x, (v5 () — vp(u)) ®s v)
= sup{o : (vj(u) =) @ v) [tro <0, 0¥ = 0}
< (U1 + Ixy)" (2, (Vp(w) = v (w)) @5 v)
<1 (w, (vj(w) = vp(w) @5 v)

for ds-a.e. x € S and all u € BD({2). Since j; > ji* we obtain (3.9). =

ASSUMPTION 6. The inclusion {o € E} | tro < 0, 0P = 0} C K(x)
holds for every x € 2.

DEFINITION 2. Let
(311)  j(z,w) = j"(z,w) = sup{w : W — j*(z,w") | w* € E}

for p-a.e. z € E7, where j* is defined by Definition 1, Assumptions 3 and 4.
Among the functions j and K defined by Definition 1, Assumptions 2, 3, 4
and 6 there are also functions which satisfy

(3.12) ja.w) = {

for ds-a.e. © € S and every w € E?, and K(z) = {o € E! | tro < 0,
ol =0} for every z € S.

oo if trw <0,

0  otherwise,
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The above defined multifunction K and potential j describe the elastic-
plastic body with fissure (or fissures) S. Moreover, K and j satisfy Defini-
tion 1, Assumption 2, 3, 4, 6 and expression (3.1), for y-a.e. x € 2. We have
K(z)={o € E" |tro <0, 0P = 0} for every = € S.

Since j* is a normal integrand, j is a convex normal integrand (cf. (3.11)
and [11]). The dual potential j* satisfies

(3.13) j (z,w*) =sup{w: w* — j(z,w) | w e E]}
for p-a.e. x € £2. Define the recession function js : 2 x E? — RU {oo} by
(3.14) Joo(z, W) = sup{w : w* — Ix(z,w") | w* € E_}

for x € 2 and w € E”.

Let ¢ € My(£2,E?). We recall that || is the total variation measure
associated with ¢, and the density of ¢ with respect to || will be denoted by
d¢/d|¢|. Let ¢ = {,(z) dx + ¢, be the Lebesgue decomposition of ¢ into the
absolutely continuous and singular parts with respect to dz. If a bounded
measure ¢ € M (2, E?) is absolutely continuous with respect to dz, then we
write ¢ € LY(£2, ED).

Let f € L™(2,R™) and g € L*°([7,R™). In this paper we consider the
functional

(3.15) BD(£2) 3 uw Py (u) = AF(u) + Gj(e(u)),

where

(3.16) AF(u)=—AL(u)+Ig,(u), L(u) = |f-ude+ [g-vp(u)ds,
(0] In

and C, = {u € BD(f2) | yg(u) = 0 on Ip}. The functional G; : M,(£2, EY)
— R U {oo} is given by
| i@, Q)dz+\j(x,Q)ds if{q_g€ L' (2~ S,E
o8 ° d ¢g € L'(S,ED)
an , ,
(3.17) G;(¢) = 19 s
oo if ¢ is not absolutely continuous with
respect to dx in 2 or to ds in S,
(cf. (3.3)).
The formula (3.15) describes the total elastic-perfectly plastic energy of
a body occupying the given subset 2 of R™. This body is subjected to the
volume forces f € L"(f2,R") and boundary forces g € L*>(I7,R"). The

constant A > 0, A < oo is the load multiplier (see [15]). The body is clamped
on I'p. Moreover, in {2 there is a fissure (or fissures) S.

ASSUMPTION 7. There exists a9 € C(§2,E") such that Oolint 2 €
Wn(£2,div), Bg(og) = Ag on I and og(z) € K(z) for p-a.e. z € (2.
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By Assumption 7, the boundary force g € L>°(I,R") is a regular func-
tion. B B
We consider the spaces Y!(£2) and Cg;, (2, E?) given by

(3.18) YY) ={M € My(22,E?) | 3u; € BD(12,),
e(u)jg =M, uy o g5 =0},

(3.19) Caiv(2,E}) = {0 € C(2,E}) | oo € W"(£2,div)}.
These are topological vector spaces in duality deﬁned by the bilinear pairing
(3.20) (M, 0)yixc=o: M= Z Voij i

2 ,j=1 0

(cf. [5, Remark 2]). We say that a net {Mk}keK C Y!(£2) converges to My
in the topology o (Y!(£2), Caiv (2, E?)) if (Mg —My), o) y1xc — 0 for every
o € Cyy (2, ED).

The functional IP’& : YY(2) — R U {oo} of the original elastic-plastic
energy is defined by

(321) Pi(e(w) ) =~ o0: (Vp(w) ®sv)ds+ | j(z,e(n))de

I 2-5
+ S](xv E(u)) ds + S I{’)’IB(u)®SV:O}(7[B(u) ®s V) ds
S Io
if e(u)o_g € LY(2 — S E") and g, 5 =0, where Bg(0g) = Ag on I7,
and P{\(e(u)m) = oo otherwise. In IP’j)‘\ the work of the volume forces is

omitted. The expression IP’{\ is obtained from P) ; by means of the formula
§p, Bploo) - vp(w)ds = {. oo : (v5(u) ®s v)ds (which holds for every
u € BD(£2), cf. (3.15) and [5, (3.16)]).

We assume that there exists it € BD(£21) with e(),o_g € L' (22— 5,E?)

and P (e(11)) < oo.

4. Lower semicontinuous regularization. In this section the ls.c.
regularization of the functional P} is found, where the space Y'({2) is en-
dowed with the topology o(Y!(2), C’dlv(ﬁ E?)). Unfortunately, the explicit
formula for the bipolar functional (]P’] )** is not found directly. Therefore a
modification P of P} is defined below, and only (B})** is found explicitly.
In Theorem 11 it is shown that (IP’] )= (IPJ )**. The reasoning given below
is a modification of the method of [5]. Only those fragments of the proofs
which are different from those in [5] are given. In the functionals IP’{\ and IF)&
the work of the volume forces is omitted (cf. [5, Section 5]).

Because of the duality between Y!(£2) and Cg;, (£2, E?), we define a func-
tional (P&)* : Caiv(£2, E?) — R U {oo} by
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(41)  (P))*(0) = sup{(e(w), g, 0)y1xc — PA(e(w) ) | w € BD(2),

s(u)m,g S Ll(\Q -5, E?) and ulgl_ﬁ = 0}
We say that (]P’f\)* is the dual functional to IP’f\ with respect to the duality
between Y1(2) and Cg;, (£2,E?) (see [11, pp. 16-18]). The bidual functional
(P})** : Y'(£2) — R U {oco} is defined by
(42) (P (e(w)q)

= sup{{e(u);5, O)y1xc — (F})"(0) | o € Caiv (2, EY)}.
The space Y'(£2)p (; is isomorphic to {—yp(u) @, v € L' (Fr2,E})

|
u € BD(2)} (cf. (3.3)). It follows that the bilinear form between M, (2, EY)
X Yl(!_2)|FrQ and Cgi, (12, E?) is given by
(4.3) (%, —vp(0) ®sv),0)1 = oW+ | o (—v5(w) @, v)ds

2 Fr 2

for w € My(2,EZ), —v5(u)ds @, v € Y (2)p, o and o € Caiy(2,EZ).
Therefore a net {os}sep C Caiv(£2,E?) converges to oy € Cg;y (12, E?) in
the topology
(4.4) o(Caiv (2, E), L,(2,E3) x Y () )
if (W, —vL(u)®sv),00—0s)1 — 0 for every Wio_g € L'(2—S,EY), every
h € L(S,R") where w|s = h®;s v, and every —~h(u)ds @, v e Yl(ﬁ)mg.
The extension @& of IP’&' onto the space My(£2, E?) x Y!(£2)p, ; is given by

(4.5)  B{(w, (v5(w) = vp()) @5 v, —yp(u)ds €, v)
=— S o0 : (vg(u) ®s v)ds + S j(z,w)dx

Iy 2-S
+ (@, (vh () — 75 () @ v) ds + | Iy, wyea—o} (Yp(0) ®5 v) ds
S I

if we LY(2 — S,E?) and u € BD(2), where B5(0y) = Ag on I}, and
Pl (w, (v5(u) —v5(0)) ®s v, —yp(u)ds ®; V) = 0o otherwise.

By duality between My (2, EZ) x Y!(2)|r p and Cqiv (2, EZ), we define
the dual functional (ﬁ’g\)* : Caqiv (2, E?) — RU {00} (cf. (4.3)). It is given by

(4.6) (I?”f\)*(a) = sup{ S o:wdr+ SO’ (V5 (u) —vz(0) ®s v)ds
-5 S

— | Bulo) () ds — B (w, (3(m) ~ 75(0) @ v, ~ys(w)ds 0, )|
Fr

weLl(2—S,E), ue BD(Q)}.
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The bidual functional (]ﬁ’&)** : YY) - RU {oo} is defined by
(A7) (B (e(w)jo-s. (Y5 (W) = ¥p(w) @s v, ~vh(u) ds @, v)
= (B)* (e(w) ) = sup { Jor : (s (w) — () @, ) ds
S

+ | oieosdr— | Bp(o) AW ds—(F) (o) | o € Can(2.BD)
-5 Fr 2

for e(u),5 = (e(w)|o—s, (V5(1) = V(W) ®sv, —v5(u) ds®sv) € Y (£2) (cf.
(3.3) and [5, (3.16)]).

LEMMA 3 (see [5] and [4]). For every o € Cy;y (2, E?) we have (ﬁ)‘;)*(d)
> (IP’]) (o). Moreover, (IP”)**(M) < (IP’&)**(M) for every M € Y1(£2).

PROPOSITION 4. The functional (IF’&)** is given by the expression

(48) (P (e(w)p) = — | o0 : (Vp() ®, v)ds

I
S]oo 7, —p() @ v)ds + | j(z, (V5 (0) — vp(w) @, v) ds
S
+ | i ea)de+ | jos(w, de(u)s/dle(u)s]) dle(u)s|
2-S -5

for e(u) z € Y'(£2), where Bg(o0) = Mg on I and e(u) = e(u)adz +e(u)s
is the Lebesgue decomposition of e(u) into absolutely continuous and singular
parts with respect to dzx.

Proof. By [14, Theorem 3A and Proposition 2M| we obtain (]?’g\)* From
8, Theorem 1] we get (4.8) (see also [5, Proposition 7]). We note that in the
functional (]P’]) the normal integrand over S is given by the expression

sup { [ &+ (v (w) = (W) @, v) ds — (. (V5 (w) — Yp(w) @, ) ds |
S S
ue BD(Q)} = |14 (o)) ds
S
(cf. (3.5), (3.6), (3.8) and (3.9)). =
LEMMA 5. For every u € BD({2;) such that e(u)o-s ENLl(Q - S, E?),
Wo, 5 = 0 and vj;(a)p, = 0, we have (P&)**(s(u)‘ﬁ) = (Pf\)**(s(u)‘ﬁ) =
P&(E(u)@)-
Proof. By Lemma 3, we have (P{)**(M) < (P})™(M) < P{(M) for
every M € Y!(§2). Therefore, by (4.8), we get the assertion. m



Regularization of constraints in Hencky plasticity 337

LEMMA 6 (see [5, Lemma 9]). For every o € Cuiy(2,EY) and every

S

o5 € Caiv(2,E?) such that divos = 0, we have (P})* (o) = (P})*(0 + o).

We say that a net {0} }rex C Caiv(2, E?) converges to & € Cqiy (2, E?)
in the topology
(4.9)  o(Caiy(2,E}), L1 (22 — S,E}) x (L'(S,R") ®; v)
x{p €Y (D) mn | or, =0})
if
(410) | (ox—3):wdz + |(o) — 7): (p' ®sv)ds
-5 S
+ \(or—3): (p®@sv)ds — 0
I
for every w € LY(2,E?), p! € L'(S,R") and p € L' (I, R").

LEMMA 7. Let f: Caiv(2,E?) — R be a linear functional, continuous
in the topology (4.9), such that f(as) = 0 for every o5 € Cqiy(2,E") with
dives = 0 in §2. Then there exists u € BD(S2) such that for every o €
Cdiv(ﬁv E?)a

(411)  Jlo)= | o:e@dr+ (o (Vh(E) - 75(@) @, v)ds
2-S S

- S o: (yp(u) ®s v)ds,
Fr 2
vp(@) =0 on Iy and e(0)|g_g € L' (2 — S, E?).

Proof. Since fis continuous in the topology (4.9), by Theorem V.3.9 of
[10] there exist m € L'(2 — S,E?), m; € L'(S,R") and U € BD(2) such
that v5(1) = 0 on Iy and f(o) = S g0 mdz+{ o (m ®,v)dr —
(o 00 (vp(0) ®sv) ds for all o € Cyiy (2, EZ). Next, we proceed similarly
to the proof of Lemma 10 in [5]. =

Let Q : Cgiy (2, E?) — RU {oc} be defined by

(4.12)  Q(o) = nf{(P))*(o + 03) | o5 € C(2,E?) and div o, = 0}.
PROPOSITION 8. For every o € Cg;, (2, E?) we have

(4.13) (P)"(0) = cliag) Qo)

where cli4 9y ) denotes the largest minorant of Q which is l.s.c. in the topology
(4.9) (i.e. cly.g) Q is the Ls.c. reqularization of Q in (4.9)).

Proof. We proceed similarly to Steps 1-5 of the proof of Proposition 11
in [5]. We say that a net {ok}rex C Caiw(£2,EY) is convergent to o €
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Cyqiv(£2, E?) in the topology
(414)  o(Ca(@,ED), {9 € Y(D) | 3ue BD(1), e(u) = o,

e(u)o-s € LY(2 - S,EY), u, =0, ~v5(u) = 0 on I}})
if
415) | (on—3):e(u)dz + \(ok — 5) : (75 (1) — v5(1)) @ v) ds

-5 S
— | (ox =) : (vp(w) @5 v)ds — 0
Fr 2

for every u € BD(£2) such that e(u),_g € L'(2 — S,E!) and yg(u) = 0
on Ip. The Ls.c. regularization of (@g\)* in the topology (4.14) (denoted by
clc(ﬁ”i)*) is given by
(4.16) clc(ﬁ’g\)*(a) = sup{ S o:e(u)dr — S o (v5(u) ®sv)ds

n-s Fr 2

+ Jo s (v (w) = () @, w) ds — (B (e(w) ) |

S
u€ BD(2)), e(w)g_s € L2~ S.E2), w5 =0, v5(u) =0 on FO}

= sup{ S o:e(u)dr + SO’ L ((v5(u) —vz(n) ®sv)ds
-5 S

= [ o (vh(w) @, ) ds - B(e(w)5) | u e BD(®),
Fr 2

e(Wjo s € LN(2— S.BY), wg, 5 =0, ¥h(u) = 0 on Iy | = (B)"(o)

for o0 € Cg;y (2, E?) (cf. Lemma 5). Similarly to the proof of Proposition 11
in [5], we obtain a contradiction. m

LEMMA 9. For every 7" > 0, the topology (4.9) is stronger than the topo-
logy 0(Caiv (2, E%), Y1 (£2)) over the set {o € Cqi, (2, ED) | ||div | » <7}

Proof. By [5, Lemma 12| the topology (4.12) defined in [5] is stronger
than o(Cg;y (2, E?), Y1(£2)) over the set {o € Cqi, (2, E?) | ||dive||zn < 7).
Moreover, the topology (4.9) is stronger than the topology (4.12) from [5]. m

PROPOSITION 10. Let Ay = {o € Caiv(2,ED) | ||divel/zn < k}. For
every o € Caiv(2,E?) and every k > ||dive||fn,
(4.17) (P))*(8) = cla, Q(5),
where cla, Q(-) is the l.s.c. reqularization of the function o — Q(o)+14, (o)
in the topology (4.9) and I4, () is the indicator function of Ay.
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Proof. Step 1. Suppose there exist o1 € C"div(ﬁ, E?) and constants o >0,
k > 0 such that k > | divey||z» and (P})*(o1) + 0o < cla,Q(o1). On
account of Lemmas 3 and 6, it suffices to show that this assumption leads
to a contradiction. B
For every e(u) 5 € Y(0) let
18) (B (e(u), ) = sup{(e(u) g, o)y — (B (0) | o € A,
19) (P4, (0) = (B)*(0) + Ia(0) Vo € Can(2,E])
cf. [5, Proof of Proposition 13]). For every o € Cy;y (2, E?) let
4.20)  clo(B))f 4, (@) = sup{(e(), g, o)y1xc — (B) ™ (e(w) ) |
u e BD(1), e(u)jo-g € L'(2 = S,E}), u 5=0,7v5(u)=0on Iy},

(4
(4
(
(

where cl. is the ls.c. regularization (of the functional considered) in the
topology (4.14). Then for every k > 0 such that ||dive;||» < k we have

(4.21) cle(B)ja (1) = (B)"(on)
(cf. (4.16)). Indeed,
(422)  supl{e(w) 5 1)y e — B (e(w)n) |u e BD(2y),
e(u)p_g € LY(2 - S,EY), u, =0, ~5(u) =0 on I}

— sup{{e() 1)y ine — ()" (e(w) ) | w € BD(),
€<u)\9—5 S Ll<Q -5, E?), u|917§ =0, ’)’IB(U) =0on Fo}

if k& > ||diveoy]|zn, since (@] )*¥ is the supremum over all affine mappings
YY) > E(u)@ — (s(u)m, O)vyixc + const which are less than (IP’J), and
o e A

Step 2. Similarly to the proof of [5, Proposition 11|, for every k > 0,
there exists a linear functional f; : Cg;y (2, E?) — R given by

(4.23) fr(o) = Sa ce(uy)dr — S : (vp(ug) ®s v)ds,
Q Fr 2

where yp(u;) = 0 on Iy and e(uy)o_g € L'(2 — S, EZ) for every k > 0
(see Lemma 7). Moreover (by the proof of [5, Proposition 11]) for all £ > 0
there exists ¢, € R such that

(4.24)  (P))*(o1) + o < fu(o1) +cx and  fx(&) + ¢, < cla, Q(T)

for every o € Cy;y (2, E?). From (4.20), (4.21), (4.23) and (4.24) we obtain
a contradiction. m

THEOREM 11. For every ¢ € Y'(£2) we have (P})**(¢) = (P})**(¢)-
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Proof. We prove this result similarly to that in [5, Theorem 14]. m

REMARK 1. If we assume that the functional considered is globally co-

ercive then we easily obtain the existence theorem.
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