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HOW POWERFUL ARE DATA DRIVEN
SCORE TESTS FOR UNIFORMITY

Abstract. We construct a new class of data driven tests for uniformity,
which have greater average power than existing ones for finite samples. Using
a simulation study, we show that these tests as well as some “optimal maxi-
mum test” attain an average power close to the optimal Bayes test. Finally,
we prove that, in the middle range of the power function, the loss in av-
erage power of the “optimal maximum test” with respect to the Neyman–
Pearson tests, constructed separately for each alternative, in the Gaussian
shift problem can be measured by the Shannon entropy of a prior distribu-
tion. This explains similar behaviour of the average power of our data driven
tests.

1. Introduction. Nonparametric tests play an important role in statis-
tical inference. Usually the main difficulty in constructing good nonparamet-
ric tests is connected with the infinite-dimensionality of the set of alterna-
tives. It is well known that, for a fixed sample size, increasing the dimension
of a ball of alternatives results in a low power of any test outside some sub-
space (see e.g. Janssen, 2000). In recent years the very promising idea of
data driven score tests has been developed by Bickel and Ritov (1992), Eu-
bank and LaRiccia (1992), Ledwina (1994), Kallenberg and Ledwina (1995),
Fan (1996), Kallenberg and Ledwina (1997), Kallenberg and Ledwina (1999),
Janic-Wróblewska and Ledwina (2000), Inglot and Janic-Wróblewska (2003),
Claeskens and Hjort (2004), Fromont and Laurent (2006), Langovoy (2008)
and Wyłupek (2008), to mention only some of the articles published. Data
driven tests are two-step constructions. In the first step a model (from a
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given list) is chosen by some selection rule and in the second step a (good)
testing procedure is applied using the model selected. The most popular se-
lection rules are Schwarz’s BIC and Akaike’s AIC. Some indications for the
choice of BIC and AIC in such problems are discussed in Inglot and Led-
wina (2006a). Focusing on the problem of testing uniformity and BIC type
selection rules, starting with the paper of Ledwina (1994), through Inglot
and Ledwina (1996), Inglot, Kallenberg and Ledwina (1998) up to Inglot
and Ledwina (2001), several asymptotic optimality properties of data driven
tests have been shown. However, it is still unclear how much improvement
in power is possible for finite samples.

For simplicity, in this article we restrict ourselves to the problem of testing
uniformity. Our aim is threefold.

The first (and main) aim is to propose a new class of data driven tests
which are more flexible and have greater average power for finite samples
than existing ones. The idea of our construction comes from a paper of Inglot
and Ledwina (2006a) and generalizes the approach given there. In that paper
a selection rule was built from BIC and AIC type rules by some thresholding
procedure which led to a clear improvement in power. The advantages of
this construction were confirmed for other testing problems such as testing
in regression models (Inglot and Ledwina, 2006b) or testing in the k-sample
problem (Wyłupek, 2008). The threshold was based on the magnitude of the
maximal empirical Fourier coefficient. For “mixed” alternatives, which do not
have one dominating Fourier coefficient, such a solution is unsatisfactory. Our
new solution resolves this problem by deriving thresholds which are sensitive
for both “simple” (“pure”) and “mixed” alternatives.

The second aim is to show using simulations that, for a finite set of or-
thogonal alternatives, the tests proposed have average power almost as great
as the optimal Bayes test. The empirical average powers of these new tests
are also compared with those of the Neyman–Pearson tests against single
alternatives which correspond to priors degenerating to one-point distribu-
tions. It can be observed that the maximal loss in average power of our tests
with respect to the Neyman–Pearson test is close to the Shannon entropy of
the prior distribution.

Finally, to explain this phenomenon, we consider in the Appendix an
optimal maximum test based on weighted empirical Fourier coefficients with
weights chosen for a given prior distribution. We prove that, in the middle
range of the power function, with a finite set of orthogonal alternatives the
loss in average power for this optimal maximum test in the two-sided Gaus-
sian shift problem is measured by the Shannon entropy of the prior distribu-
tion. The connection between the average empirical power and the entropy of
the prior distribution for moderate and large sample sizes can be explained
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by the facts that the optimal Bayes test and our data driven tests both attain
average power close to the optimal maximum test and the empirical Fourier
coefficients have an approximately normal distribution, leading in this way
to the limiting Gaussian shift problem.

The paper is organized as follows. In Section 2 we construct selection
rules and corresponding test statistics. Moreover, we state Proposition 1
and Theorem 2, which establish the consistency of the new selection rules
and asymptotic null distribution of the test statistics. In Section 3 we report
the results of some simulation experiments. Section 4 contains the proof of
Proposition 1. In the Appendix we define the optimal Bayes test (imple-
mented in Section 3) and study the power behaviour of the above mentioned
optimal maximum test in the two-sided Gaussian shift problem.

2. Selection rules and test statistics. Let X = (X1, . . . , Xn) be a
sample from an absolutely continuous distribution P on the interval [0, 1]
with density p. The null hypothesis H0 asserts that p = p0, where p0(x) = 1
for all x ∈ [0, 1]. Throughout this section, P0 will denote the uniform distri-
bution over [0, 1], and E0 the expectation with respect to P0.

Let b1, b2, . . . be an orthonormal system of bounded functions in L2[0, 1]
such that E0bj(X1) = 0. Embed p0 into a k-dimensional exponential family
Pk of densities given by

(1) pk(x, θ) = p0(x)ck(θ) exp
{ k∑
j=1

θjbj(x)
}
,

where θ = (θ1, . . . , θk) ∈ Rk and ck(θ) is a normalizing factor. Testing H0

within Pk is equivalent to testing that θ = 0. The score statistic for this
reduced problem takes the form

(2) Nk =
k∑
j=1

nb̂2j , where b̂j =
1
n

n∑
i=1

bj(Xi), j = 1, . . . , k.

The choice of the dimension k of the family Pk is crucial for the behaviour
of the goodness of fit test based on Nk. So, data based selection of a proper
dimension is desirable. Two selection rules: simplified AIC and simplified BIC
are often applied. In our testing problem they can be defined as follows. Let
d(n) ≥ 1 be the maximal dimension of the model we allow. Then simplified
AIC is given by

A1 = min{1 ≤ k ≤ d(n) : Nk − 2k ≥ Nj − 2j, j = 1, . . . , d(n)}

and simplified BIC by

S1 = min{1 ≤ k ≤ d(n) : Nk − k log n ≥ Nj − j log n, j = 1, . . . , d(n)}.
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Recall that the original AIC (Akaike, 1974) and BIC (Schwarz, 1978) are
based on maximized loglikelihood for (1) and under local alternatives are
asymptotically equivalent to A1 and S1, respectively. The resulting tests
based on NA1 and NS1 are examples of data driven score tests. Both tests
have nice optimality properties e.g. in the sense of asymptotically vanish-
ing shortcoming (Inglot and Ledwina, 2001, Kallenberg, 2002). However,
their behaviour for small and moderate sample sizes is often quite differ-
ent. This is a consequence of different penalties applied in both selection
rules. In particular, small Akaike penalty results in inconsistency of the cri-
terion and in large pertaining critical values (see Table 1 in Section 3). In
contrast, Schwarz penalty leads to a consistent selection rule. As a conse-
quence, for small sample sizes, the corresponding critical values are rela-
tively small, and the powers for alternatives well described by few terms
of the Fourier expansion in the system {bj} are relatively high. On the
other hand, large Schwarz penalty causes oversmoothing under small sample
sizes. Hence, if one tries to detect distributions with sharp peaks or high
frequency oscillations, the power of NS1 is often much smaller than that
of NA1 (cf. discussion in Inglot and Ledwina, 2006a, and further references
therein).

To combine the advantages of both selection rules described above, In-
glot and Ledwina (2006a) proposed a new selection rule (T1 in their paper)
which balances between A1 and S1, assigning Akaike’s penalty when the
greatest squared empirical Fourier coefficient is too large, and Schwarz’s
penalty otherwise. As a result, the data driven test based on the statistic
NT1 attains, roughly speaking, the power close to the maximum of the pow-
ers of two competing tests based on NA1 and NS1. The idea of constructing
T1 is developed below to obtain more flexible and sensitive selection rules L.
Namely, instead of considering only the greatest empirical Fourier coefficient
we shall take into account a few largest squared empirical Fourier coefficients
to decide which penalty to apply.

To this end, for each sample size n choose a natural number D = Dn

with 1 ≤ Dn � d(n). For each j = 1, . . . , Dn let Yj,n be the number of those
squared and normalized empirical Fourier coefficients nb̂21, . . . , nb̂2d(n) which
are greater than some threshold c2j,n. Consider the event

(3) Wn =
Dn⋃
j=1

{Yj,n ≥ j}.

Next, take a small positive mass δ = δn, with δn → 0 as n→∞, and choose
c21,n > c22,n > · · · > c2Dn,n

in such a way that P0(Wn) = δn. Let 1B be the
indicator of the event B and Bc the complement of B, and consider the
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balanced penalty

(4) π(j, n) = j log n · 1W c
n

+ 2j · 1Wn .

Now, the corresponding selection rule is defined by

L = min{1 ≤ k ≤ d(n) : Nk − π(k, n) ≥ Nj − π(j, n), j = 1, . . . , d(n)}.
Finally, the new data driven test statistic (in fact, a class of statistics de-
pending on the choice of D and δ) is set to be NL.

Obviously, S1 ≤ L ≤ A1 a.s. for n ≥ 8, and consequently NS1 ≤ NL

≤ NA1 a.s. Hence, NL preserves all asymptotic optimality properties
possessed by both NA1 and NS1. It is intuitively clear that enlarging Dn

we obtain tests which are more sensitive for alternatives having several
meaningful Fourier coefficients in the expansion with respect to the sys-
tem {bj}.

To make the construction work in practice it is enough to ensure the
relation P0(Wn) = δn up to some approximation. To do this observe that
for large n’s the random vector

√
n b̂ = (

√
n b̂1, . . . ,

√
n b̂d(n)) has, under P0,

a distribution close to that for the standard normal vector (Z1, . . . , Zd(n)).
Consequently, for each j, Yj,n has, under P0, approximately binomial dis-
tribution with parameters d(n) and P(|Z1| ≥ cj,n) = 2[1 − Φ(cj,n)], where
Φ denotes the standard normal distribution function. Using this approxima-
tion, we can write

P0(Yj,n ≥ j) ' P0(Yj,n = j) '
(
d(n)
j

)
[2(1− Φ(cj,n))]j .

We have omitted the factor [2Φ(cj,n)−1]d(n)−j because Φ(cj,n) is so close to 1
that the condition P0(Wn) = δn could be satisfied. Now, using (3) and taking
P0(Yj,n ≥ j) ' δnD

−1
n leads to

(
d(n)
j

)
[2(1 − Φ(cj,n))]j ' δnD

−1
n . Finally, we

propose to take thresholds c2j,n given by the last formula, i.e. satisfying the
equality

(5) 1− Φ(cj,n) =
1
2

(
δnD

−1
n

[(
d(n)
j

)]−1)1/j

, j = 1, . . . , Dn.

With d(n), Dn and δn chosen as described above, and c2j,n calculated from
(5), formulas (3) and (4) define a penalty π(k, n) for our selection rule L.

The selection rule T1 of Inglot and Ledwina (2006a) is a special case of
the above construction. It corresponds toDn = 1, d(n) = 12 and δn ' 0.0106
for n = 100. Then c1,n ' 3.245 and the relation c21,n = c log n leads to c = 2.4,
as was proposed in Inglot and Ledwina (2006a).

To preserve sufficient stability of NL under P0 it is desirable that the
selection rule L should be consistent. Below we give conditions under which
this holds. Define max1≤j≤k supx |bj(x)| = Bk. Then we have the following
proposition.
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Proposition 1. Suppose 1 ≤ Dn < d(n) < n and 0 < δn < 1 are such
that

(6) δn → 0, lim sup
n→∞

Dn log[
√
Dn log(d(n)/δn)]

log(1/δn)
< 1

and

(7) B2
d(n)Dn log(1/δn) = O(nγ)

for some γ < 1. Then for c2j,n’s given by (5) we have P0(Wn)→ 0 as n→∞.
Consequently , P0(L = S1)→ 1 as n→∞.

Condition (6) is mild. For example, if δn = C1n
−τ with positive C1

and τ then (6) holds for any d(n) and Dn ≤ C2(log n)/log log n with
C2 < 2τ/3.

Now, using a condition guaranteeing consistency of S1 (cf. Theorem 3.2
in Kallenberg and Ledwina, 1995, and the assumption in Theorem 7.9 in
Inglot and Ledwina, 1996) we can establish the asymptotic distribution
of NL.

Theorem 2. Suppose that , in addition to (6) and (7), we have B2
d(n)d

2(n)
= o(n/log n). Then P0(S1 > 1) → 0. Consequently , P0(L > 1) → 0 and
NL

D→ χ2
1 under P0, where χ2

1 denotes the central chi-square statistic with
one degree of freedom.

Of course, the critical values of the tests based on NL lie between those
of the tests based on NA1 and NS1 (cf. Table 1 in Section 3). Proposition 1
shows that adjusting d(n), δn and Dn appropriately, we keep the critical
values rather close to those for the test based on NS1. Recall that for moder-
ate sample sizes the critical values for the test based on NS1 are essentially
larger than the asymptotic ones. Moreover, these values slowly approach the
asymptotic ones. Obviously, the same facts remain true for the new tests
based on NL.

3. Simulation study. To make our notation more precise we shall write
in this section NL(D, δ) rather than NL, omitting simultaneously the sub-
script n. Obviously, for fixed sample size n the choice of δ essentially in-
fluences the performance of NL(D, δ), both under the null and alternative
hypotheses. The empirical critical values of NL(D, δ) for n = 100 change
smoothly as δ increases, from 5.586 of NS1 which corresponds to δ = 0
(i.e. NS1 = NL(D, 0)) to 15.684 of NA1 which corresponds to δ = 1
(and practically to δ ≥ 0.5, i.e. NA1 ' NL(D, 0.5)). For illustration see
Table 1, where influence of increasing D on critical values of NL(D, δ) is also
shown.
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Table 1. The behaviour of simulated critical values of
NL(D, δ) according to switching parameters D and δ. The
Legendre basis, n = 100, d(n) = 12, α = 0.05, 30000 MC.

D δ = 0 δ = .01 δ = .03 δ = .05 δ = .09 δ = .5

1 5.586 5.993 6.836 7.908 10.667 14.962
2 5.586 5.993 6.850 7.731 10.634 14.985
3 5.586 5.972 6.747 7.650 10.311 14.911
6 5.586 5.957 6.511 7.187 9.026 14.725

It can be observed that the simulated critical values slightly decrease with
an increase of D. Our simulation experience reported in Tables 3–7 prompts
us to recommend, for moderate sample sizes and α = 0.05, the choice δ =
0.03 to 0.05 and D = 2 or D = 3. For such choices, the corresponding critical
values for some selected sample sizes are presented in Table 2.

Table 2. Simulated critical values of NL(D, δ) for different
sample sizes and switching parameters δ = 0.03, 0.05 and
D= 2, 3. The Legendre basis, d(n) = 12, α = 0.05, 30000 MC.

δ D n = 25 n = 50 n = 100 n = 200 n = 400

0.03 2 8.151 7.201 6.850 6.421 5.902
3 8.181 7.174 6.747 6.361 5.873

0.05 2 9.097 8.265 7.731 7.360 6.631
3 9.016 8.244 7.650 7.107 6.609

For other significance levels α a reasonable choice for δ seems to be between
α/2 and α.

Our primary goal in this section is to compare, in terms of average power,
the performance of the new tests NL(D, δ) with the two-sided optimal Bayes
test described in the Appendix and given by the formula (A.2). We restrict
ourselves to the case n = 100, α = 0, 05 and take d(n) = K = 12. We
consider the Legendre basis. Some more simulations not presented here yield
the same picture for the cosine basis.

Now, for j = 1, . . . , 12 consider the alternatives p12(x,±0.25ej), where
e1, . . . , e12 is the standard basis in Euclidean space R12 and pk(x, θ) de-
notes the density from the exponential family given by (1). Let T ∗n = T ∗ be
the two-sided optimal Bayes test given as in (A.2) in the Appendix defined
by the above 24 densities under the uniform prior distribution. We want
to compare the power behaviour of NL(D, δ) and T ∗ for the alternatives
p12(x,±0.25ej), j = 1, . . . , 12. To show the whole picture we also include
the one-sided Neyman–Pearson test denoted by NP (constructed for each
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alternative separately), the maximum test M = max1≤j≤12{nb̂2j} and Ney-
man smooth test N12 =

∑12
j=1 nb̂

2
j , where b̂j ’s denote the empirical Fourier

coefficients (cf. (2)) with respect to the Legendre basis (bj). The results are
shown in Table 3.

Table 3. Comparison of powers and average powers 1− β (in %) of NL(D, δ), T ∗, NP ,
M and N12. The Legendre basis, n = 100, α = 0.05, d(n) = 12, 10000 MC, alternatives
p12(x, θj), uniform prior.

NL(1, δ)

θj NP T ? M NS1 (NT1) (NA1) NL(2, δ) NL(3, δ) NL(6, δ) N12

(δ = 0) .01 .05 0.5 .03 .05 .03 .05 .05 .09

.25e1 80 38 36 57 53 37 18 46 40 47 40 44 33 28

.25e2 81 48 46 68 66 53 32 61 56 62 56 59 49 42

.25e3 80 39 37 38 38 42 25 40 41 41 42 41 41 30

.25e4 80 46 44 30 34 47 37 40 45 39 43 39 43 39

.25e5 82 40 38 14 26 40 32 32 37 30 34 29 34 30

.25e6 82 45 44 13 31 45 43 39 44 37 41 37 42 39

.25e7 80 40 38 07 26 36 37 31 35 29 33 29 34 30

.25e8 83 45 43 08 30 40 45 36 40 35 38 35 39 38

.25e9 81 40 37 06 24 30 35 28 31 27 30 27 30 30
.25e10 83 45 43 07 27 34 38 33 35 32 34 32 35 37
.25e11 79 39 37 06 21 25 27 25 26 24 26 25 26 30
.25e12 82 46 42 06 24 28 29 28 29 28 29 28 30 37

−.25e1 80 39 36 57 53 38 18 46 40 47 40 44 32 28
−.25e2 79 28 27 54 51 32 10 43 35 44 35 40 26 14
−.25e3 79 39 37 38 38 41 24 39 40 40 41 40 40 29
−.25e4 79 30 29 15 20 31 19 24 28 22 25 21 25 19
−.25e5 80 39 37 14 26 40 31 32 37 30 34 30 34 31
−.25e6 79 32 31 07 20 32 26 24 29 22 26 22 26 21
−.25e7 81 39 38 07 26 37 37 31 35 29 33 29 33 29
−.25e8 78 33 32 06 20 27 29 24 26 22 25 22 25 22
−.25e9 80 40 38 06 24 31 36 29 31 28 31 28 31 30
−.25e10 79 34 33 05 18 22 23 21 22 20 22 20 22 23
−.25e11 81 40 38 06 22 26 27 25 26 25 26 25 26 31
−.25e12 79 35 33 06 15 17 17 17 18 17 18 17 17 25

1− β 80.3 39.1 37.2 20.0 30.5 34.6 29.0 33.1 34.4 32.4 33.4 31.8 32.2 29.7

Note that δ = 0 corresponds to the test NS1, δ = 0.5 practically to the
test NA1, while δ ' 0.01, D = 1 to the test NT1 considered by Inglot and
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Ledwina (2006a). The power of the NP test is almost constant but both
T ∗ and M have some fluctuations around the average power depending on
whether an “odd” or “even” alternative occurs. It can be observed that the loss
in average power for T ∗ andM with respect to the case when full information
about the alternative is available equals ca. 41% and 43%, respectively. This
agrees quite well with the approximation derived in Theorem A.2 of the
Appendix (in our case the entropy of the prior distribution is log2 12 plus 1 bit
for two-sided test, ρ = 2.5 and consequently (1 + log2 12)0.221/ρ ' 40.5%).
On the other hand, the loss in average power for NL(D, δ) with respect to
T ∗ in the middle range of the power function is about 5% and does not
change significantly for reasonable choices of D and δ. The extreme tests
NS1 and NA1 are perceptibly weaker. Moreover, NA1 is a little worse than
the nonadaptive Neyman smooth test N12. For reasonable choices of D and δ
the test based on NL(D, δ) preserves super sensitivity for the first two axes,
which is an interesting and welcome smoothing property of the test based
on NS1.

We have also compared our test with a recently proposed new test by
Fromont and Laurent (2006). It turns out that for an analogous set of 24
alternatives built on the cosine basis their test attains average power 27.5%
while the test NL(D, δ) based on the cosine basis with D = 1, δ = 0.05
and D = 3, δ = 0.03 gives average powers 34.2% and 31.1%, respectively.
Complete results are shown in Table 4.

Table 4. Comparison of powers and average powers 1 − β (in %) of Fromont and
Laurent test (FL), N∗

L = NL(1, 0.05) and N∗∗
L = NL(3, 0.03). Alternatives p12(x, θj),

θj = ±0.25ej , built on the cosine basis, uniform prior. n = 100, d(n) = 12, α = 0.05,
10000 MC.

j

test 1 2 3 4 5 6 7 8 9 10 11 12 1− β

FL +.25ej 36 53 30 39 25 31 21 25 18 21 13 18
−.25ej 35 54 31 38 25 32 20 25 17 21 14 17 27.5

N∗
L +.25ej 43 49 41 40 39 38 34 33 28 26 22 21

−.25ej 42 48 41 38 38 37 35 31 29 25 23 19 34.2
N∗∗

L +.25ej 51 56 40 30 28 28 28 27 25 24 21 21
−.25ej 49 55 40 27 28 27 28 26 25 23 22 18 31.1

To show how our tests perform for different sample sizes we compare
three cases n = 25, n = 100 and n = 400, modifying appropriately the dis-
tance of the same alternatives from the null distribution. Table 5 shows
that for smaller n the power of NL is closer (in average) to the power
of T ∗.



384 T. Inglot and A. Janic

Table 5. Comparison of powers and average powers 1−β (in %) of N∗∗
L = NL(3, 0.03),

T ∗, M and N12 for different sample sizes. The Legendre basis, α = 0.05, 10000 MC,
alternatives p12(x, θj), uniform prior. n = 25, 100, 400. d(25) = 9, d(100) = d(400) = 12.

n = 25 n = 100 n = 400

θj T ? M N∗∗
L N9 θj T ? M N∗∗

L N12 θj T ? M N∗∗
L N12

.5e1 41 39 37 31 .25e1 38 36 47 28 .125e1 38 38 54 31

.5e2 59 56 62 54 .25e2 48 46 62 42 .125e2 43 42 57 38

.5e3 41 42 50 35 .25e3 39 37 41 30 .125e3 38 38 29 31

.5e4 56 55 58 51 .25e4 46 44 39 39 .125e4 43 41 32 36

.5e5 43 43 36 36 .25e5 40 38 30 30 .125e5 39 39 28 32

.5e6 55 54 47 50 .25e6 45 44 37 39 .125e6 42 41 30 36

.5e7 44 44 33 37 .25e7 40 38 29 30 .125e7 39 38 27 31

.5e8 56 54 44 50 .25e8 45 43 35 38 .125e8 42 41 30 35

.5e9 46 44 30 38 .25e9 40 37 27 30 .125e9 40 38 26 31
.5e10 .25e10 45 43 32 37 .125e10 42 40 27 35
.5e11 .25e11 39 37 24 30 .125e11 40 39 23 32
.5e12 .25e12 46 42 28 37 .125e12 42 40 24 34

−.5e1 41 40 48 32 −.25e1 39 36 47 28 −.125e1 38 38 54 31
−.5e2 21 21 22 10 −.25e2 28 27 44 14 −.125e2 34 33 50 23
−.5e3 43 42 49 35 −.25e3 39 37 40 29 −.125e3 39 38 29 31
−.5e4 27 28 25 17 −.25e4 30 29 22 19 −.125e4 36 34 23 26
−.5e5 43 44 37 37 −.25e5 39 37 30 31 −.125e5 39 37 27 31
−.5e6 30 30 19 19 −.25e6 32 31 22 21 −.125e6 35 34 23 26
−.5e7 45 44 34 37 −.25e7 39 38 29 29 −.125e7 39 38 27 31
−.5e8 32 32 19 22 −.25e8 33 32 22 22 −.125e8 35 35 23 27
−.5e9 47 45 31 38 −.25e9 40 38 28 30 −.125e9 39 39 26 32
−.5e10 −.25e10 34 33 20 23 −.125e10 36 35 21 27
−.5e11 −.25e11 40 38 25 31 −.125e11 39 37 23 31
−.5e12 −.25e12 35 33 17 25 −.125e12 36 36 19 29

1− β 42.8 42.1 37.2 34.9 39.1 37.2 32.4 29.7 38.9 38.0 30.5 31.1

Table 3 presents an artificial situation. So, we also want to show the
behaviour of NL(D, δ) in more realistic situations, when alternatives have
two or more meaningful Fourier coefficients. Although estimates obtained in
the Appendix do not cover such cases, we include in Table 6 powers of the
corresponding optimal Bayes test for comparison. First, we consider equal
Fourier coefficients on two axes such that the L2-distance of each alternative
density from p0 is approximately the same as before. We restrict ourselves
to alternatives with two positive coefficients on the first six axes, resulting
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in 15 different alternatives. By T ∗∗ we denote the two-sided optimal Bayes
test given by (A.2) constructed for the set of these 15 alternatives plus 45
alternatives obtained by changing signs and under the uniform prior. We
also add the NP test and N12 for better comparison. The results are shown
in Table 6.

Table 6. Comparison of powers and average powers (in %) of NL(D, δ), T ∗∗,
NP and N12. The Legendre basis, n = 100, α = 0.05, d(n) = 12, 10000 MC,
alternatives p6(x, θ), uniform prior.

NL(D, 0.05)

θ NP T ∗∗ NS1 NT1 D NA1 N12

1 2 3

.167 .167 0 0 0 0 80 39 58 56 45 48 48 29 39

.167 0 .167 0 0 0 77 32 38 36 29 33 33 23 29

.167 0 0 .167 0 0 77 37 33 32 30 32 32 28 33

.167 0 0 0 .167 0 76 33 29 30 27 29 28 25 28

.167 0 0 0 0 .167 77 33 29 31 28 30 30 29 31
0 .167 .167 0 0 0 81 37 51 50 44 46 47 32 38
0 .167 0 .167 0 0 84 57 54 53 50 53 53 46 50
0 .167 0 0 .167 0 81 49 41 42 39 41 41 36 39
0 .167 0 0 0 .167 82 50 42 44 43 45 45 42 45
0 0 .167 .167 0 0 80 39 32 33 37 38 38 34 37
0 0 .167 0 .167 0 79 37 23 25 30 32 32 31 32
0 0 .167 0 0 .167 81 47 26 30 37 39 39 38 38
0 0 0 .167 .167 0 79 35 20 24 34 35 35 37 36
0 0 0 .167 0 .167 82 52 24 31 43 45 44 49 48
0 0 0 0 .167 .167 80 35 14 22 34 35 34 38 35

average power 79.7 40.8 34.3 35.9 36.7 38.7 38.6 34.5 37.2

Nice behaviour of NL(2, 0.05) for the alternatives from Table 6 is not
surprising since we have just disturbed P0 exactly on two axes. However,
other statistics NL(D, δ) provide tests only slightly worse.

Table 7 shows the performance of NL(D, δ) when there are three mean-
ingful Fourier coefficients.

As could be expected, the test based on NL(3, 0.05) attains the best
average power for alternatives from Table 7. Still, other choices of D and δ
give only slightly weaker tests.

Finally, we compare in Table 8 the average powers attained by four of
our tests with typical choices of D and δ with the average powers of the
optimal Bayes test under some particular prior distributions.
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Table 7. Comparison of powers and average powers (in %) of NL(D, δ)
and N12. The Legendre basis, n = 100, α = 0.05, d(n) = 12, 10000 MC,
alternatives p6(x, θ), uniform prior.

NL(D, 0.05)

θ NS1 NT1 D NA1 N12

1 2 3

.165 .11 .11 0 0 0 52 50 42 44 45 33 40
.11 .165 .11 0 0 0 55 54 46 48 49 35 42
.11 .11 .165 0 0 0 47 46 42 44 45 34 40
0 0 0 .165 .11 .11 23 27 37 39 39 44 44
0 0 0 .11 .165 .11 20 25 35 37 37 43 41
0 0 0 .11 .11 .165 20 26 36 38 38 45 43

.165 0 .11 .11 0 0 39 37 32 35 36 32 36

.165 0 0 .11 .11 0 34 33 30 33 33 32 35

.165 0 0 0 .11 .11 32 33 29 32 33 32 35
0 .165 .11 .11 0 0 52 52 46 48 49 40 46
0 .165 0 .11 .11 0 47 46 41 44 45 40 44
0 .165 0 0 .11 .11 41 42 38 41 42 39 41
0 0 .165 .11 .11 0 30 31 36 37 38 37 39
0 0 .165 0 .11 .11 27 29 35 37 38 39 39
0 0 .165 .11 0 .11 31 33 38 40 41 40 42
.11 .11 0 .165 0 0 42 41 40 42 43 38 43
.11 .11 0 0 .165 0 33 34 33 35 35 33 35
.11 .11 0 0 0 .165 32 36 36 38 38 36 39

average power 36.5 37.5 37.3 39.6 40.2 37.3 40.2

Table 8. Comparison of average powers (in %) of NS1, NT1, N∗
L = NL(1, 0.05),

N∗∗
L = NL(3, 0.03) and the optimal Bayes test T . The Legendre basis, n = 100,

α = 0.05, d(n) = 12, 10000 MC, alternatives p6(x,+0.25ej).

prior distribution average power
wj NS1 NT1 N∗

L N∗∗
L T

0.250 0.250 0.250 0.250 0 0 48.1 47.9 44.8 47.3 55.2
0.500 0.250 0.125 0.125 0 0 54.0 52.0 42.6 49.0 56.7
0.1667 0.1667 0.1667 0.1667 0.1666 0.1666 36.7 41.3 44.0 42.7 51.0
0.500 0.250 0.125 0.065 0.030 0.030 53.0 47.7 42.6 48.7 55.0
0.250 0.250 0.200 0.150 0.100 0.050 45.4 46.6 44.2 46.1 52.1
0 0.3334 0 0.3333 0 0.3333 37.0 43.7 48.0 52.7 61.5

From Table 8 it is seen that the test NS1 behaves very well if a prior
distribution is concentrated on the first 2–4 axes. Otherwise, NL performs
better.
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Let us finish this section by some practical recommendations for an im-
plementation of the tests based on NL(D, δ) for n = 100 and α = 0.05. For a
given prior distributionW on orthogonal directions bj , order them according
to decreasing values of wj . If W is practically concentrated on at most four
axes then use NL with δ = 0, i.e. NS1. Otherwise, use NL with D = 2 or 3
and with δ between 0.01–0.05 depending on how much mass W distributes
on the first few axes. For other sample sizes and significance levels these
recommendations should be appropriately modified.

4. Proof of Proposition 1. From (5) it follows that, for each n, cj,n’s
decrease when j increases and 1 − Φ(cj,n) ≤ δ

1/Dn
n for every j ≤ Dn. Since

(6) implies Dn/log(1/δn)→ 0, we infer that cj,n →∞ for all j’s. Moreover,
applying the inequality 1 − Φ(x) ≤ exp{−x2/2} for x ≥ 1 we deduce from
(5) for all j’s and n sufficiently large that

(8)
c2j,n
2
≤
c21,n
2
≤ log

2Dnd(n)
δn

.

On the other hand, the inequality

1− Φ(x) ≥ exp
{
−x

2

2
− 1

2
log

x2

2
− 1

2
log 8π

}
for x ≥ 2

together with (5) gives

(9) j

(
c2j,n
2

+
1
2

log
c2j,n
2

+
1
2

log 2π
)

≥ log
1
δn

+ logDn + log
(
d(n)
j

)
≥ log

1
δn

+ log
(
d(n)
j

)
for all j’s and n sufficiently large.

Now, for each j = 1, . . . , Dn, let Aj denote the family of all subsets of
{1, . . . , d(n)} of size j. Then from (3) and the definition of Yj,n we can write

(10) P0(Wn) ≤
Dn∑
j=1

P0(Yj,n ≥ j) ≤
Dn∑
j=1

∑
A∈Aj

P0(|
√
n b̂|2A ≥ jc2j,n),

where for A ⊂ {1, . . . , d(n)} and v ∈ Rd(n) we have set |v|2A =
∑

i∈A v
2
i . By

the orthonormality of the system {bj} it follows that, under P0, the random
vector

√
n b̂ has mean 0 and unit covariance matrix. This and the uniform

boundedness of the functions bj allow us to apply Prokhorov’s inequality
(Prokhorov, 1973) to estimate the right-hand side of (10). So, for sufficiently
large n’s we have

(11) P0(Wn) ≤
Dn∑
j=1

C

Γ (j/2)
exp{−∆jn},
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where

(12) ∆jn =
jc2j,n

2
(1− ηj,n)−

j − 1
2

log
jc2j,n

2
− log

(
d(n)
j

)
with η2

j,n ≤ B2
d(n)jc

2
j,nn

−1 ≤ 2B2
d(n)Dnn

−1 log(2Dnd(n)/δn) = η2
n, C is an

absolute constant and Γ (·) is the Euler gamma function. Observe that by
(7) it follows that ηn → 0, which justifies the application of Prokhorov’s
inequality. We estimate the exponent (12) as follows:

(13) ∆jn ≥
[
jc2j,n

2
+
j

2
log

c2j,n
2

+
j

2
log 2π − log

(
d(n)
j

)]
(1− ηn)

−Dn log
c2j,n
2
− Dn

2
log 2πDn − ηnDn log d(n).

Observe that the last term in (13) is o(log(1/δn)). Indeed, by the form of ηn
we can write

(14) η2
nD

2
n log2 d(n) =

2B2
d(n)Dn log(1/δn)

nγ
log2 d(n) log(2Dnd(n)/δn)

n1−γ log(1/δn)
D2
n.

Now, by (7) the first factor in (14) is bounded, the second tends to zero
(since γ < 1, Dn < d(n) < n and δn → 0) while D2

n is o(log2(1/δn)) by
the assumption (6). Applying (8) and (9) and omitting expressions of order
o(log(1/δn)) in the middle terms of (13) we obtain

(15) ∆jn ≥ log(1/δn)
(

1− Dn log[
√
Dn log(d(n)/δn)]

log(1/δn)
+ o(1)

)
.

By (6) it follows that the right-hand side of (15) tends to infinity as n→∞.
As
∑∞

j=1(Γ (j/2))−1 <∞, the assertion of Proposition 1 follows from (11).

Appendix. In this section we collect some auxiliary considerations.
First, we define the optimal Bayes test for a finite set of alternatives which is
implemented in Section 3. We also show its relation to the limiting Gaussian
shift problem. Finally, we study an optimal maximum test for the two-sided
Gaussian shift problem and estimate its power. This estimate displays the
connection of the loss in average power for this maximum test (with respect
to the Neyman–Pearson test) with the entropy of a prior distribution. In
this indirect way we explain a phenomenon observed in our simulations in
Section 3.

Optimal Bayes tests. Let X = (X1, . . . , Xn) be a sample from distribu-
tion P on a space X . Suppose we want to test the hypothesis H0 : P = P0,
where P0 has density p0 with respect to some σ-finite measure µ on X . Let
P = {Pϑ, ϑ ∈ Θ} be a family of possible alternatives (Pϑ 6= P0 for every
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ϑ ∈ Θ), where for each ϑ ∈ Θ the distribution Pϑ has density pϑ. Let W be
a prior distribution on Θ (endowed with some σ-field). Denote by pn,ϑ(x) and
pn,0(x) the likelihood functions corresponding to Pϑ and P0, respectively. It
is well known (see e.g. Clarke and Barron, 1990, p. 460, or Janssen, 2003,
Sec. 2.4) that the optimal Bayes test (i.e. ensuring the smallest average prob-
ability of the second kind error β) of H0 against H1 : P ∈ P is given by the
statistic

(A.1)
�

Θ

pn,ϑ(X)
pn,0(X)

W (dϑ).

Now, let P = {P1, . . . , PK} be a finite family of alternatives and let
W = (w1, . . . , wK) be a prior distribution on P. Then the test statistic in
(A.1) takes the form

(A.2) T ∗n =
K∑
j=1

wj
pn,j(X)
pn,0(X)

.

Here we have set pj = dPj/dµ, j = 1, . . . ,K, and pn,j(X) =
∏n
i=1 pj(Xi).

Suppose the alternatives Pj = P
(n)
j approach P0 at the rate n−1/2 under

fixed K. Namely, assume that for some ρ > 0 and every j = 0, 1, . . . ,K,

(A.3) EPj log
p
(n)
r (X1)
p0(X1)

= − ρ
2

2n
+ δjr

ρ2

n
+ o

(
1
n

)
, r = 1, . . . ,K,

and

(A.4) CovPj

(
log

p
(n)
1 (X1)
p0(X1)

, . . . , log
p
(n)
K (X1)
p0(X1)

)
=
ρ2

n
I + o

(
1
n

)
,

where I is the identity matrix and δjr is the Kronecker delta. For example,
conditions (A.3) and (A.4) hold when p(n)

j = p0(1+ ρn−1/2bj) with bounded
functions bj satisfying

	
p0bj dµ = 0 and

	
p0bjbr dµ = δjr. A straightforward

application of the central limit theorem leads to the following proposition.

Proposition A.1. Assume (A.3) and (A.4). Then for T ∗n given by (A.2)
and for any prior distribution W we have

T ∗n
D→

K∑
j=1

wj exp{ρZj − ρ2/2} under P0

and

T ∗n
D→

K∑
j 6=r

wj exp{ρZj − ρ2/2}+ wr exp{ρZr + ρ2/2} under P (n)
r ,

where Z1, . . . , ZK are i.i.d. standard normal random variables.
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Hence, for alternatives satisfying (A.3) and (A.4) the optimal Bayes test
based on T ∗n is asymptotically equivalent to the optimal Bayes test in the
Gaussian shift problem. In this last problem, P0 is the standard normal
distribution in RK , P (n)

j has normal distribution N(ρn−1/2ej , I), where ej
denotes the unit vector on the jth axis, and P = {P (n)

1 , . . . , P
(n)
K } is a fixed

set of alternatives for given n. Below, we describe a two-sided version of
this limiting testing problem which corresponds to comparisons made in
Section 3.

Optimal Bayes test for the two-sided Gaussian shift problem. As before,
let P0 be the standard normal distribution in RK , K ≥ 1, and P

(n)
j± , j =

1, . . . ,K, be normal N(±ρn−1/2ej , I) distributions in RK with ρ > 0 fixed
and known and ej as above. We want to test

(A.5) H0 : P = P0 against P ∈ P = {P (n)
1+ , P

(n)
1− , . . . , P

(n)
K+, P

(n)
K−}.

If W = (w1+, w1−, . . . , wK+, wK−) is a prior distribution with wj+ = wj−
= 1

2wj on the actual set of alternatives P then the statistic of the optimal
Bayes test takes by (A.2) the form

(A.6) T ∗n =
K∑
j=1

wj exp{−ρ2/2}cosh(ρ
√
n |Xj |),

where X = (X1, . . . , XK) is a vector of sample means. Since, under P0,√
nXj = Zj , j = 1, . . . ,K, are independent standard normal random vari-

ables, the critical value tα of this test satisfies the relation

P
( K∑
j=1

wj exp{−ρ2/2}cosh(ρZj) ≥ tα
)

= α.

Optimal maximum test for the two-sided Gaussian shift problem. Con-
sider again the testing problem as in (A.5). First observe that for testing
H0 against two equiprobable alternatives P (n)

j+ , P
(n)
j− the statistic of the op-

timal Bayes test (two-sided Neyman–Pearson test) has the form
√
n |Xj |

(cf. (A.6)). We shall reject H0 in (A.5) if at least one of the “partial” tests√
n |Xj | ≥ cj , j = 1, . . . ,K, will reject it. We shall use different “partial” crit-

ical values c1, . . . , cK according to different prior probabilities w1, . . . , wK .
We have to choose them so as to maintain a given significance level α. Since,
under P0,

√
nXj = Zj , j = 1, . . . ,K, are independent standard normal ran-

dom variables this leads to the relation

(A.7)
K∏
j=1

(2Φ(cj)− 1) = 1− α.
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By (A.7) the probability of the second kind error under the alternatives
P

(n)
j+ , P

(n)
j− can be written as

βj =
∏
r 6=j

(2Φ(cr)−1)(Φ(cj−ρ)−Φ(−cj−ρ)) = (1−α)
Φ(cj − ρ)− Φ(−cj − ρ)

2Φ(cj)− 1
.

We want to choose cj ’s in an optimal way to minimize the average second
kind error

(A.8) β =
K∑
j=1

βjwj = (1− α)
K∑
j=1

wj
Φ(cj − ρ)− Φ(−cj − ρ)

2Φ(cj)− 1

under a given prior distribution W and under the constraint (A.7). Differ-
entiating the expression β − λ(

∏K
j=1(2Φ(cj) − 1) − 1 + α) with respect to

consecutive cj ’s and equating them to 0 we get

(A.9)
φ(cj − ρ) + φ(cj + ρ)

2φ(cj)
− Φ(cj − ρ)− Φ(−cj − ρ)

2Φ(cj)− 1
=

λ

wj
,

j = 1, . . . ,K,

where φ denotes the density of the standard normal distribution. As
2Φ(cj)− 1 is close to 1 while φ(cj) is close to 0, the second term in (A.9)
is small in comparison to the first one. So, omitting it as well as the term
φ(cj + ρ), which is much smaller than φ(cj − ρ), we obtain

cj ' C +
1
ρ

ln
1
wj
, j = 1, . . . ,K,

for some constant C.
Finally, for our testing problem (A.5) we consider the test statistic

(A.10) Mn = max
1≤j≤K

√
n |Xj |
cj

,

where cj = C + 1
ρ ln 1

wj
, i.e. the cj are close to the optimal choice with the

constant C, depending on α, ρ and W , uniquely determined by (A.7). The
test rejects H0 when Mn ≥ 1. So, the average second kind error has the
form (A.8) with the above cj ’s.

In the theorem below we need to apply a linear approximation of the
function Φ(x). The maximal slope of Φ(x) equals (2π)−1/2. However, the
points cj − ρ in (A.8) oscillate in some interval arround 0. So, a kind of
“average” slope would be more adequate for linear approximation of Φ(x).
Let us take s0 = 4/(5

√
2π) as the “average” slope and consider the two

tangent lines of Φ(x) corresponding to this slope. Then we get the following
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estimates:

(A.11)

4
5
√

2π
x+A ≤ Φ(x), x ≤ x0,

Φ(x) ≤ 4
5
√

2π
x+ 1−A, x ≥ −x0,

where

A = Φ

(
−
√

ln
25
16

)
+

4
5
√

2π

√
ln

25
16

and the positive number x0 is the unique solution of the equation Φ(x0) =
4

5
√

2π
x0 +A. Note that x0 ' 1.44 with x0 > 1.44. The difference between the

two sides of (A.11) is quite small and equals 1− 2A ' 0.07. Using (A.11) we
can now estimate the average second kind error β.

Theorem A.2. Assume the significance level satisfies α ≤ 0.1 and ρ, α
are chosen so that

(A.12) 0 ≤ ρ− Φ−1

(
1− α

2

)
≤ x0.

Moreover , suppose a prior distribution W is sufficiently regular , i.e.

(A.13)

∑
j :x0<cj−ρ≤2

wj = a1 ≤ 0.2,
∑

j : cj−ρ>2

wj = a2 ≤ 0.02,

min
1≤j≤K

wj ≥ 0.0001.

Then the average second kind error β, given by (A.8), of the optimal maxi-
mum test based on the statisticMn satisfies

(A.14) β ≤ 4 ln 2
5
√

2π ρ
H(W ) +

4(C − ρ)
5
√

2π
+ 1−A

and

(A.15) β ≥ (1− α)
[

4 ln 2
5
√

2πρ
H(W ) + 0.98

4(C − ρ)
5
√

2π
+A−B

]
,

where H(W ) = −
∑K

j=1wj log2wj is the Shannon entropy of W and B =
B′ +B′′ with B′, B′′ defined in (A.17) and (A.18), respectively.

Proof. From (A.7) it follows that cj ≥ Φ−1(1 − α/2) for every j. Hence
from (A.12) we have cj−ρ ≥ −x0. So, applying the upper estimate in (A.11)
to (A.8) and using again (A.7) we get

β ≤
K∑
j=1

wjΦ(cj − ρ) ≤
4 ln 2

5
√

2πρ
H(W ) +

4(C − ρ)
5
√

2π
+ 1−A,

which is exactly (A.14).
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For the proof of (A.15) we have from (A.8)

(A.16) β ≥ (1− α)
K∑
j=1

wjΦ(cj − ρ)− (1− α)
K∑
j=1

wjΦ(−cj − ρ).

The inequalities cj ≥ Φ−1(1 − α/2) (cf. (A.7)) and ρ ≥ Φ−1(1 − α/2)
(cf. (A.12)) together prove that Φ(−cj − ρ) can be bounded by

(A.17) Φ(−2Φ−1(1− α/2)) ≤ Φ(−2Φ−1(0.95)) = B′

due to the assumption α ≤ 0.1. By the lower estimate in (A.11) the first
term in (A.16) is greater than or equal to

(1− α)
[

4 ln 2
5
√

2πρ
H(W ) +

4(C − ρ)
5
√

2π
+A−R

]
,

where

R =
∑

j : cj−ρ>x0

wj

[
4

5
√

2π
(cj − ρ) +A− Φ(cj − ρ)

]
.

Using the definition of cj ’s, the inequality ρ ≥ Φ−1(1−α/2) (cf. (A.12)) and
the assumption wj ≥ 0.0001 (cf. (A.13)) we get

R ≤
∑

x0<cj−ρ≤2

wj

[
8

5
√

2π
+A− Φ(x0)

]
(A.18)

+
∑

j : cj−ρ>2

wj

[
16 ln 10
5
√

2πρ
+

4(C − ρ)
5
√

2π
+A− Φ(2)

]

≤ a1

[
8

5
√

2π
+A− Φ(x0)

]
+ a2

[
16 ln 10

5
√

2π Φ−1(0.95)
+

4(C − ρ)
5
√

2π
+A− Φ(2)

]
≤ a2

4(C − ρ)
5
√

2π
+B′′.

Inserting (A.17) and (A.18) into (A.16) we obtain (A.15), thus finishing the
proof.

Inequalities (A.14) and (A.15) can be interpreted to say that for prior
distributions satisfying (A.13) the loss of power for one bit of entropy of W
is approximately 4(ln 2)/(5

√
2πρ) ≈ 0.221/ρ. Such a phenomenon can be

observed in Table 3 and holds true approximately also for the optimal Bayes
test and the tests NL(D, δ) (see our comment on Table 3 in Section 3).

Remark A.3. Observe that, under the assumption of Theorem A.2,
the estimates (A.14) and (A.15) are sharp. This follows since C ≤ cj ,
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j = 1, . . . ,K, and by (A.7) and (A.12) we have C − ρ ≤ Φ−1(1−α/(2K))−
Φ−1(1 − α/2), which for typical K and α is not much greater than 1 while
B ' 0.062 and 1− 2A+B + α(A− B) ' 0.17.

Remark A.4. The assumption (A.12) means that the power of the two-
sided Neyman–Pearson test of H0 against P (n)

j± is approximately in the inter-
val [0.5, 0.925] while (A.13) is a kind of restriction on the magnitude of the
entropy of the prior distribution W . Assumption (A.13) cannot be omitted
and for a “wild” prior distribution W inequality (A.15) may not be true.
To see this, consider ρ = 2.5, α = 0.05, K = 5001 and w1 = 0.5 while
w2 = · · · = w5001 = 0.0001. Then C ' 1.686 and β ' 0.622 from (A.8).
However, (A.15) gives β ≥ 0.742, which is not true. On the other hand,
(A.13) is not too restrictive. For example, if α = 0.05, ρ = 2 and under
the uniform prior distribution, (A.13) holds for relatively large K ≤ 88. The
regularity assumption (A.13) can be replaced by another one. Our choice
is, certainly, subjective and indicates rather what kind of restrictions are
needed to get estimates similar to (A.14) and (A.15).
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