Abdelouahed El Khalil (Montréal) Mohammed Ouanan (Fez)

ON THE PRINCIPAL EIGENCURVE OF THE *p*-LAPLACIAN RELATED TO THE SOBOLEV TRACE EMBEDDING

Abstract. We prove that for any $\lambda \in \mathbb{R}$, there is an increasing sequence of eigenvalues $\mu_n(\lambda)$ for the nonlinear boundary value problem

$$\begin{cases} \Delta_p u = |u|^{p-2}u & \text{in } \Omega, \\ |\nabla u|^{p-2} \partial u / \partial \nu = \lambda \varrho(x) |u|^{p-2}u + \mu |u|^{p-2}u & \text{on } \partial \Omega, \end{cases}$$

and we show that the first one $\mu_1(\lambda)$ is simple and isolated; we also prove some results about variations of the density ρ and the continuity with respect to the parameter λ .

1. Introduction and notations. Let Ω be a smooth bounded domain in \mathbb{R}^N ; $N \ge 1$; $1 and <math>\varrho \in L^{\infty}(\partial \Omega)$ with $\varrho \not\equiv 0$ which can change the sign; $\lambda, \mu \in \mathbb{R}$. We consider the following nonlinear boundary value problem:

(1.1)
$$\Delta_p u = |u|^{p-2} u \quad \text{in } \Omega,$$

(1.2)
$$|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda \varrho(x) |u|^{p-2} u + \mu |u|^{p-2} u \quad \text{on } \partial \Omega.$$

The *p*-Laplacian $\Delta_p u = \nabla \cdot (|\nabla u|^{p-2} \nabla u)$ occurs in many mathematical models of physical topics including glaciology, nonlinear diffusion and filtration problem (see [4, 17]), power-low materials [14], non-Newtonian fluids [3]. For a discussion of some physical background, see [10]. The nonlinear boundary condition (1.2) describes a flux through the boundary $\partial \Omega$ which depends on the solution itself. For physical motivation of such conditions see for example [16].

Observe that in the particular case $\mu = 0$ and p = 2, (1.1)–(1.2) becomes linear and it is known as the Steklov problem [7].

²⁰⁰⁰ Mathematics Subject Classification: 35P30, 35J20, 35J60.

Key words and phrases: p-Laplacian operator, principal eigencurve, nonlinear boundary conditions, Sobolev trace embedding.

Classical Dirichlet problems involving the *p*-Laplacian have been extensively studied by various authors in the cases $\lambda = 0$ or $\mu = 0$ (cf. e.g. [1, 2, 5, 10, 13, 18, 19]). For nonlinear boundary conditions such as (1.2), recently the authors of [8] studied the case of $\mu = 0$ and ρ belonging to some $L^{s}(\partial \Omega)$, not necessarily essentially bounded, with a restrictive condition on its sign.

We set

(1.3)
$$\mu_1(\lambda) = \inf \Big\{ \|v\|_{1,p}^p - \lambda \int_{\partial \Omega} \varrho(x) |v|^p \, d\sigma : \\ v \in W^{1,p}(\Omega), \ \int_{\partial \Omega} |u|^p \, d\sigma = 1 \Big\},$$

where $\|\cdot\|_{1,p}$ denotes the $W^{1,p}(\Omega)$ -norm, i.e.,

$$||v||_{1,p} = (||\nabla v||_p^p + ||v||_p^p)^{1/p}$$

and $\|\cdot\|_p$ is the L^p -norm, with σ being the (N-1)-dimensional Lebesgue measure. By the *principal* (or *first*) *eigencurve* of the *p*-Laplacian related to the Sobolev trace embedding, we understand the graph of the map μ_1 : $\lambda \mapsto \mu_1(\lambda)$ from \mathbb{R} into \mathbb{R} . In [12] the simplicity and isolation of the first eigencurve of the Dirichlet *p*-Laplacian was proved by extending a similar result shown by Binding and Huang in [6].

Our purpose is to obtain some results (known for the ordinary Dirichlet *p*-Laplacian) for nonlinear eigenvalue problems where two-parameter eigenvalues appear in the nonlinear boundary condition. We show that $\mu_1(\lambda)$ is simple and isolated for any $\lambda \in \mathbb{R}$. Note that to show the simplicity (uniqueness) result, we use a simple convexity argument by remarking that the energy functional associated to problem (1.1)-(1.2) is convex in u^p for nonnegative u, without using in any way $C^1(\Omega)$ and $L^{\infty}(\Omega)$ regularity of the eigenfunctions associated to (1.1)-(1.2). In this respect our procedure is new.

Observe that $\mu_1(0) = \lambda_1$ is the optimal reciprocal constant of the Sobolev embedding $W^{1,p}(\Omega) \hookrightarrow L^p(\partial\Omega)$. For the particular case $\mu = 0$ and $\varrho \in L^s(\partial\Omega)$ (for a suitable s), the isolation and simplicity of the first eigenvalue of (1.1)–(1.2) were studied in [8]. The main objective of our work is to extend this result to any $\lambda \in \mathbb{R}$, by using new technical methods.

The rest of the paper is organized as follows. In Section 2, we establish some definitions and preliminaries. In Section 3, we use a variational method to prove the existence of a sequence of eigencurves of (1.1)-(1.2). In Section 4, we prove the simplicity and isolation results for each point of the first eigencurve. Finally, in Section 5, we show some results about variations of the weight as a direct application of the simplicity result. **2. Definitions.** In this paper, all solutions are weak ones, i.e., $u \in W^{1,p}(\Omega)$ is a solution of (1.1)–(1.2) if for all $v \in W^{1,p}(\Omega)$,

(2.1)
$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v \, dx + \int_{\Omega} |u|^{p-2} uv \, dx = \int_{\partial \Omega} (\lambda \varrho(x) + \mu) |u|^{p-2} uv \, d\sigma.$$

If $u \in W^{1,p}(\Omega) \setminus \{0\}$, then u is called an eigenfunction of (1.1)–(1.2) associated to the eigenpair (λ, μ) .

Set

(2.2)
$$\mathcal{M} = \Big\{ u \in W^{1,p}(\Omega) : \int_{\partial \Omega} |u|^p \, d\sigma = 1 \Big\}.$$

A principal eigenfunction of (1.1)–(1.2) is any eigenfunction $u \in \mathcal{M}, u \geq 0$ a.e. on $\overline{\Omega}$, associated to the pair $(\lambda, \mu_1(\lambda))$.

Define the following energy functionals on $W^{1,p}(\Omega)$:

$$\begin{split} \Phi_{\lambda}(u) &= \frac{1}{p} \|u\|_{1,p}^{p} - \frac{\lambda}{p} \int_{\partial \Omega} \varrho(x) |u|^{p} \, d\sigma = \frac{1}{p} \|u\|_{1,p}^{p} + \Phi(u), \quad \lambda \in \mathbb{R}, \\ \Psi(u) &= \frac{1}{p} \int_{\partial \Omega} |u|^{p} \, d\sigma. \end{split}$$

It is clear that for any $\lambda \in \mathbb{R}$, the solutions of (1.1)-(1.2) are the critical points of Φ_{λ} restricted to \mathcal{M} . We shall deal with operators T acting from $W^{1,p}(\Omega)$ into $(W^{1,p}(\Omega))'$. T is said to belong to the class (S_+) if for any sequence v_n weakly convergent to v in $W^{1,p}(\Omega)$ with $\limsup_{n\to\infty} \langle Tv_n, v_n - v \rangle$ ≤ 0 , it follows that $v_n \to v$ strongly in $W^{1,p}(\Omega)$, where $(W^{1,p}(\Omega))'$ is the dual of $W^{1,p}(\Omega)$ with respect to the pairing $\langle \cdot, \cdot \rangle$.

3. Existence results. We will use Lyusternik–Schnirelmann theory on C^1 -manifolds (see [19]). It is clear that for any $\lambda \in \mathbb{R}$, the functional Φ_{λ} is even and bounded from below on \mathcal{M} . Indeed, if $u \in \mathcal{M}$, then

$$\Phi_{\lambda}(u) \geq \frac{1}{p} \left(\left\| u \right\|_{1,p}^{p} - \left| \lambda \right| \left\| \varrho \right\|_{\infty,\partial\Omega} \right).$$

So

(3.1)
$$\Phi_{\lambda}(u) \ge \frac{1}{p} \left(\lambda_1 - |\lambda| \|\varrho\|_{\infty,\partial\Omega}\right) > -\infty,$$

where $\lambda_1 = \mu_1(0)$ is the reciprocal of the optimal constant in the Sobolev trace embedding $W^{1,p}(\Omega) \hookrightarrow L^p(\partial\Omega)$.

By employing the Sobolev trace embedding, we deduce that:

- Ψ and Φ are weakly continuous,
- $\bullet \ensuremath{\,\Psi'}$ and $\ensuremath{\,\Phi'}$ are compact.

The following lemma is the key to showing the existence.

LEMMA 3.1. For any $\lambda \in \mathbb{R}$, we have:

- (i) $(\Phi_{\lambda})'$ maps bounded sets to bounded sets;
- (ii) if $u_n \rightharpoonup u$ (weakly) in $W^{1,p}(\Omega)$ and $(\Phi_{\lambda})'(u_n)$ converges strongly in $(W^{1,p}(\Omega))'$, then $u_n \rightarrow u$ (strongly) in $W^{1,p}(\Omega)$;
- (iii) the functional Φ_{λ} satisfies the Palais–Smale condition on \mathcal{M} , i.e., for $(u_n)_n \subset \mathcal{M}$, if $\Phi_{\lambda}(u_n)$ is bounded and

(3.2)
$$(\Phi_{\lambda})'(u_n) - c_n \Psi'(u_n) \to 0$$

with $c_n = \langle (\Phi_{\lambda})'(u_n), u_n \rangle / \langle \Psi'(u_n), u_n \rangle$, then $(u_n)_n$ has a subsequence convergent in $W^{1,p}(\Omega)$.

Proof. (i) Let $u, v \in W^{1,p}(\Omega)$. Then

$$\langle (\Phi_{\lambda})'(u), v \rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v \, dx + \int_{\Omega} |u|^{p-2} uv \, dx + \int_{\partial \Omega} \varrho(x) |u|^{p-2} uv \, d\sigma.$$

By Hölder's inequality, we obtain

$$\begin{aligned} |\langle (\varPhi_{\lambda})'(u), v \rangle| &\leq \left(\int_{\Omega} |\nabla u|^{(p-1)p'} dx \right)^{1/p'} \|\nabla v\|_{p} + \left(\int_{\Omega} |u|^{(p-1)p'} dx \right)^{1/p'} \|v\|_{p} \\ &+ |\lambda| \|\varrho\|_{\infty,\partial\Omega} \Big(\int_{\partial\Omega} |u|^{(p-1)p'} d\sigma \Big)^{1/p'} \|v\|_{p,\partial\Omega} \\ &= \|\nabla u\|_{p}^{p-1} \|\nabla v\|_{p} + \|u\|_{p}^{p-1} \|v\|_{p} + |\lambda| \|\varrho\|_{\infty,\partial\Omega} \|u\|_{p,\partial\Omega}^{p-1} \|v\|_{p,\partial\Omega}. \end{aligned}$$

Now, the Sobolev trace embedding $W^{1,p}(\Omega) \hookrightarrow L^p(\partial \Omega)$ ensures the existence of a constant c > 0 such that

 $||w||_{p,\partial\Omega} \le c||w||_{1,p}$ for any $w \in W^{1,p}(\Omega)$.

Hence we deduce that

 $|\langle (\varPhi_{\lambda})'(u), v \rangle| \leq \|\nabla u\|_{p}^{p-1} \|\nabla v\|_{p} + \|u\|_{p}^{p-1} \|v\|_{p} + c^{p} |\lambda| \|\varrho\|_{\infty,\partial\Omega} \|u\|_{1,p}^{p-1} \|v\|_{1,p}.$ It is clear that

$$\|\nabla u\|_{p}^{p-1}\|\nabla v\|_{p} + \|u\|_{p}^{p-1}\|v\|_{p} \le \|u\|_{1,p}^{p-1}\|v\|_{1,p}.$$

Combining the above inequalities, we conclude that

$$|\langle (\Phi_{\lambda})'(u), v| \le (1 + c^{p} |\lambda| \|\varrho\|_{\infty,\partial\Omega}) \|u\|_{1,p}^{p-1} \|v\|_{1,p}$$

for any $u, v \in W^{1,p}(\Omega)$. It follows that

$$\|(\Phi_{\lambda})'(u)\| \le (1+c^p|\lambda| \|\varrho\|_{\infty,\partial\Omega}) \|u\|_{1,p}^{p-1},$$

where $\|\cdot\|$ denotes the norm of $(W^{1,p}(\Omega))'$. This implies (i).

(ii) We use condition (S_+) as follows. $(\Phi_{\lambda})'(u_n)$ being strongly convergent to some $f \in (W^{1,p}(\Omega))'$, by a calculation we have

(3.3)
$$\langle Au_n, v \rangle = \langle -\Delta_p u_n, v \rangle + \int_{\Omega} |u_n|^{p-2} u_n v \, dx + \int_{\partial\Omega} |\nabla u_n|^{p-2} \nabla u_n \nu v \, d\sigma$$

for any $v \in W^{1,p}(\Omega)$, where A is the operator from $W^{1,p}(\Omega)$ into $(W^{1,p}(\Omega))'$ defined by

$$\langle Au, v \rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v \, dx + \int_{\Omega} |u|^{p-2} uv \, dx.$$

This operator satisfies condition (S_+) because $-\Delta_p$ does (cf. [12]).

If we take $v = u_n - u$ in (3.3) we obtain

$$\langle Au_n, u_n - v \rangle = \langle -\Delta_p u_n, u_n - v \rangle + \int_{\Omega} |u_n|^{p-2} u_n (u_n - u) \, dx$$

$$+ \int_{\partial \Omega} |\nabla u_n|^{p-2} \nabla u_n \nu (u_n - u) \, d\sigma.$$

Introducing $(\Phi_{\lambda})'(u_n)$, we deduce that

$$\langle Au_n, u_n - u \rangle = \langle (\Phi_\lambda)'(u_n) - f, u_n - u \rangle + \langle f, u_n - u \rangle - \langle (\Phi_\lambda)'(u_n), u_n - u \rangle.$$

Using the compactness of Φ' , we find that as $n \to \infty$,

$$\limsup_{n \to \infty} \langle Au_n, u_n - u \rangle \ge 0.$$

Hence $u_n \to u$ strongly in $W^{1,p}(\Omega)$, by condition (S_+) .

(iii) From (3.1) we deduce that $(u_n)_n$ is bounded in $W^{1,p}(\Omega)$. Thus, without loss of generality, we can assume that $u_n \rightharpoonup u$ (weakly) in $W^{1,p}(\Omega)$ for some $u \in W^{1,p}(\Omega)$. It follows that $\Psi'(u_n) \rightarrow \Psi'(u)$ in $(W^{1,p}(\Omega))'$ and $p\Psi(u) = 1$, because $p\Psi(u_n) = 1$ for all $n \in \mathbb{N}^*$. Hence $u \in \mathcal{M}$. Since $(u_n)_n$ is bounded, (i) ensures that $\{(\Phi_\lambda)'(u_n)\}$ is bounded. By a calculation we deduce via (3.2) that $\{(\Phi_\lambda)'(u_n)\}$ converges strongly in $(W^{1,p}(\Omega))'$. Consequently, from (ii) we conclude that $u_n \rightarrow u$ (strongly) in $W^{1,p}(\Omega)$.

Set $\Gamma_k = \{K \subset \mathcal{M} : K \text{ symmetric, compact and } \gamma(K) = k\}$, where $\gamma(K) = k$ is the genus of K, i.e., the smallest integer k such that there is an odd continuous map from K to $\mathbb{R}^k \setminus \{0\}$.

Next, we establish our existence result.

THEOREM 3.1. For any $\lambda \in \mathbb{R}$ and any integer $k \in \mathbb{N}^*$,

$$\mu_k(\lambda) := \inf_{K \in \Gamma_k} \max_{u \in K} \Phi_\lambda(u)$$

is a critical value of Φ_{λ} restricted to \mathcal{M} . More precisely, there exists $u_k(\lambda) \in \mathcal{M}$ such that

$$\mu_k(\lambda) = p\Phi_\lambda(u_k(\lambda)) = \max_{u \in K} p\Phi_\lambda(u)$$

and $(u_k(\lambda), \mu_k(\lambda))$ is a solution of (1.1)–(1.2). Moreover,

$$\mu_k(\lambda) \to \infty$$
 as $k \to \infty$.

Proof. In view of [19], we need only prove that $\Gamma_k \neq \emptyset$ for any $k \in \mathbb{N}^*$, and the last assertion.

Indeed, since $W^{1,p}(\Omega)$ is separable, there exist $(e_i)_{i\geq 1}$ linearly dense in $W^{1,p}(\Omega)$ such that $\operatorname{supp} e_i \cap \operatorname{supp} e_j = \emptyset$ if $i \neq j$, where $\operatorname{supp} e_i$ denotes the support of e_i . We can suppose that $e_i \in \mathcal{M}$ (if not we take $e'_i = e_i/p\Psi(e_i)$). For $k \in \mathbb{N}^*$, define $\mathcal{F}_k = \operatorname{span}\{e_1, \ldots, e_k\}$. Then \mathcal{F}_k is a vector subspace and $\dim \mathcal{F}_k = k$. If $v \in \mathcal{F}_k$, then there exist $\alpha_1, \ldots, \alpha_k$ in \mathbb{R} such that $v = \sum_{i=1}^k \alpha_i e_i$. Thus $\Psi(v) = \sum_{i=1}^k |\alpha_i|^p \Psi(e_i) = p^{-1} \sum_{i=1}^k |\alpha_i|^p$, because $\Psi(e_i) = 1$ for $i = 1, \ldots, k$. It follows that the map $v \mapsto (p\Psi(v))^{1/p}$ is a norm on \mathcal{F}_k . Hence, there is a constant c > 0 so that

$$c\|v\|_{1,p} \le (p\Psi(v))^{1/p} \le \frac{1}{c} \|v\|_{1,p}, \quad \forall v \in \mathcal{F}_k.$$

That is,

$$c\|v\|_{1,p} \le \left(\int_{\partial\Omega} |v|^p \, d\sigma\right)^{1/p} \le \frac{1}{c} \, \|v\|_{1,p}, \quad \forall v \in \mathcal{F}_k.$$

This implies that the set

$$\mathcal{V} = \mathcal{F}_k \cap \{ v \in W^{1,p}(\Omega) : \|v\|_{p,\partial\Omega} \le 1 \}$$

is bounded, because $\mathcal{V} \subset B(0, 1/c) = \{v \in W^{1,p} : ||v||_{1,p} \leq 1/c\}$. Moreover \mathcal{V} is a symmetric bounded neighborhood of the origin 0. Consequently, from Proposition 2.3 of [19], we deduce that $\gamma(\mathcal{F}_k \cap \mathcal{M}) = k$. Then $\mathcal{F}_k \cap \mathcal{M} \in \Gamma_k$ (because $\mathcal{F}_k \cap \mathcal{M}$ is compact, since it equals the boundary of \mathcal{V}).

To complete the proof, it suffices to show that for any $\lambda \in \mathbb{R}$, $\mu_k(\lambda) \to \infty$ as $k \to \infty$. Indeed, let $(e_n, e_j^*)_{n,j}$ be a biorthogonal system such that $e_n \in W^{1,p}(\Omega)$, $e_j^* \in (W^{1,p}(\Omega))'$, the $(e_n)_n$ are linearly dense in $W^{1,p}(\Omega)$, and the $(e_j^*)_j$ are total in $(W^{1,p}(\Omega))'$. For any $k \in \mathbb{N}^*$ set

$$\mathcal{F}_{k-1}^{\perp} = \overline{\operatorname{span}(e_{k+1}, e_{k+2}, \ldots)}.$$

Observe that $K \cap \mathcal{F}_{k-1}^{\perp} \neq \emptyset$ for any $K \in \Gamma_k$ (by Proposition 2.3(g) of [19]). Now, we claim that

$$t_k := \inf_{K \in \Gamma_k} \sup_{K \cap \mathcal{F}_{k-1}^{\perp}} p \Phi_{\lambda}(u) \to \infty \quad \text{as } k \to \infty.$$

Indeed, to obtain a contradiction, assume that for k large enough there is $u_k \in \mathcal{F}_{k-1}^{\perp}$ with $\int_{\partial \Omega} |u_k|^p d\sigma = 1$ such that

$$t_k \le p \Phi_\lambda(u_k) \le M$$

for some M > 0 independent of k. Then

$$||u_k||_{1,p}^p - \lambda \int_{\partial \Omega} \varrho(x) |u_k|^p \, d\sigma \le M.$$

Hence

$$\|u_k\|_{1,p}^p \le M + \lambda \|\varrho\|_{\infty,\partial\Omega} < \infty.$$

This implies that $(u_k)_k$ is bounded in $W^{1,p}(\Omega)$. Taking a subsequence if necessary, we can suppose that (u_k) converges weakly in $W^{1,p}(\Omega)$ and strongly in $L^p(\partial\Omega)$. By our choice of $\mathcal{F}_{k-1}^{\perp}$, we have $u_k \rightharpoonup 0$ in $W^{1,p}(\Omega)$ because $\langle e_n^*, e_k \rangle = 0$ for all $k \ge n$. This contradicts the fact that $\int_{\partial\Omega} |u_k|^p d\sigma = 1$ for all k, and the claim is proved.

Finally, since $\mu_k(\lambda) \ge t_k$ we conclude that $\mu_k(\lambda) \to \infty$ as $k \to \infty$, and the proof is complete.

4. Simplicity and isolation of $\mu_1(\lambda)$

4.1. Simplicity. First, observe that solutions of (1.1)–(1.2), by the well-known advanced regularity, belong to $C^{1,\alpha}(\overline{\Omega})$ (see [20]).

LEMMA 4.1. Eigenfunctions u associated to $\mu_1(\lambda)$ are either positive or negative in Ω . Moreover if $u \in C^{1,\alpha}(\Omega)$ then $u \neq 0$ in $\overline{\Omega}$.

Proof. Let u be an eigenfunction associated to $\mu_1(\lambda)$. Since $\Phi_{\lambda}(|u|) \leq \Phi_{\lambda}(u)$ and $\Psi(|u|) = \Psi(u)$, it follows from (1.3) that |u| is also an eigenfunction associated to $\mu_1(\lambda)$. Using Harnack's inequality (cf. [14]), we deduce that |u| > 0 in Ω . By regularity u is defined in the whole of $\overline{\Omega}$. In fact |u| > 0 in $\overline{\Omega}$ because $(\partial u/\partial \nu)(x_0) < 0$ for any $x_0 \in \partial \Omega$ with $u(x_0) = 0$, by Hopf's Lemma (see [21]).

THEOREM 4.1 (Uniqueness). For any $\lambda \in \mathbb{R}$, $\mu_1(\lambda)$ defined by (1.3) is a simple eigenvalue, i.e., the set of eigenfunctions associated to $(\lambda, \mu_1(\lambda))$ is $\{tu_1(\lambda) : t \in \mathbb{R}\}$, where $u_1(\lambda)$ denotes the principal eigenfunction associated to $(\lambda, \mu_1(\lambda))$.

Proof. By Theorem 3.1 it is clear that $\mu_1(\lambda)$ is an eigenvalue of the problem (1.1)–(1.2) for any $\lambda \in \mathbb{R}$. Let u and v be two eigenfunctions associated to $(\lambda, \mu_1(\lambda))$ such that $u, v \in \mathcal{M}$. Thus in virtue of Lemma 4.1 we can assume that u and v are positive.

Note that the mappings $W^{1,p}(\Omega) \ni w \mapsto \|\nabla w\|_p^p, w \mapsto \int_{\partial \Omega} |w|^p \, d\sigma$ and $w \mapsto \int_{\partial \Omega} \varrho(x) |w|^p \, d\sigma$ are linear functionals in w^p , for $w^p \ge 0$. Hence if we consider

$$w = \left(\frac{u^p + v^p}{2}\right)^{1/p},$$

then it belongs to $W^{1,p}(\Omega)$ and $\int_{\partial\Omega} |w|^p d\sigma = 1$. Consequently, w is admissible in the definition of $\mu_1(\lambda)$. On the other hand, by the convexity of $\chi \mapsto |\chi|^p$ we have the inequalities

(4.1)
$$\int_{\Omega} |\nabla w|^p \, dx = \frac{1}{2} \int_{\Omega} (|u^{p-1} \nabla u + v^{p-1} \nabla v|^p (u^p + v^p)^{1-p}) \, dx$$
$$= \frac{1}{2} \int_{\Omega} \left| \frac{u^p}{u^p + v^p} \frac{\nabla u}{u} + \frac{v^p}{v^p + u^p} \frac{\nabla v}{v} \right|^p (u^p + v^p)^{1-p} \, dx$$

A. El Khalil and M. Ouanan

$$\leq \frac{1}{2} \int_{\Omega} \left(\frac{u^p}{u^p + v^p} \left| \frac{\nabla u}{u} \right|^p + \frac{v^p}{v^p + u^p} \left| \frac{\nabla v}{v} \right|^p \right) dx$$

$$\leq \frac{1}{2} \int_{\Omega} (|\nabla u|^p + |\nabla v|^p) dx.$$

By the choice of u and v, we deduce that

(4.2)
$$\left| t \frac{\nabla u}{u} + (1-t) \frac{\nabla v}{v} \right|^p = t \left| \frac{\nabla u}{u} \right|^p + (1-t) \left| \frac{\nabla v}{v} \right|^p$$

with $t = u^p/(u^p + v^p)$.

Now, we claim that u = v a.e. on $\overline{\Omega}$. Indeed, consider the auxiliary function

$$F(\chi_1, \chi_2) = |t\chi_1 + (1-t)\chi_2|^p - t|\chi_1|^p + (1-t)|\chi_2|^p.$$

Since $t \neq 0$, the critical points of F are the solutions of the system

(4.3)
$$\frac{\partial F(\chi_1,\chi_2)}{\partial \chi_1} = pt(|t\chi_1 + (1-t)\chi_2|^{p-2}(t\chi_1 - |\chi_1|^{p-2}\chi_1) = 0,$$

(4.4)
$$\frac{\partial F(\chi_1,\chi_2)}{\partial \chi_2} = p(t-1)(|t\chi_1 + (1-t)\chi_2|^{p-2}(t\chi_1 - |\chi_2|^{p-2}\chi_2)) = 0.$$

Thus (4.2)–(4.4) imply that $(\chi_1 = \nabla u/u, \chi_2 = \nabla v/v)$ is a solution of the above system. Therefore

$$\left|\frac{\nabla u}{u}\right|^{p-2} \frac{\nabla u}{u} = \left|\frac{\nabla v}{v}\right|^{p-2} \frac{\nabla v}{v}$$

Hence

$$\frac{\nabla u}{u} = \frac{\nabla v}{v} \quad \text{a.e. in } \overline{\Omega}.$$

This implies easily that u = cv for some positive constant c. By normalization we conclude that c = 1.

REMARK 4.1. Various proofs of the uniqueness result were given in the Dirichlet *p*-Laplacian case by using $C^{1,\alpha}$ -regularity and L^{∞} -estimation of the first eigenfunctions and by applying either Picone's identity (cf. [1]) or Díaz–Saá's inequality (cf. [2, 9, 11]) or an abstract inequality (cf. [15]).

4.2. Isolation

PROPOSITION 4.1. For any $\lambda \in \mathbb{R}$, $\mu_1(\lambda)$ is the unique eigenvalue associated to λ , having an eigenfunction not changing its sign on the boundary $\partial \Omega$.

Proof. Fix $\lambda \in \mathbb{R}$ and let $u_1(\lambda)$ be the principal eigenfunction associated to $(\lambda, \mu_1(\lambda))$. Suppose that there exists an eigenfunction v corresponding to a pair (λ, μ) with $v \geq 0$ on $\partial \Omega$ and $v \in \mathcal{M}$. By the Maximum Principle,

v > 0 on $\overline{\Omega}$. To simplify the notation, set $u = u_1(\lambda)$. For $\varepsilon > 0$ small enough, write

(4.5)
$$u_{\varepsilon} = u + \varepsilon, \quad v_{\varepsilon} = v + \varepsilon,$$

(4.6)
$$\phi(u_{\varepsilon}, v_{\varepsilon}) = \frac{u_{\varepsilon}^{\varepsilon} - v_{\varepsilon}^{\varepsilon}}{u_{\varepsilon}^{p-1}}$$

It is clear that $\phi(u_{\varepsilon}, v_{\varepsilon}) \in W^{1,p}(\Omega)$ and it is an admissible test function in (1.1)–(1.2). Thus we obtain

(4.7)
$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \phi(u_{\varepsilon}, v_{\varepsilon}) \, dx + \int_{\Omega} u^{p-1} \phi(u_{\varepsilon}, v_{\varepsilon}) \, dx$$
$$= \int_{\partial \Omega} (\lambda \varrho(x) + \mu_1(\lambda)) u^{p-1} \phi(u_{\varepsilon}, v_{\varepsilon}) \, d\sigma$$

and

(4.8)
$$\int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla \phi(u_{\varepsilon}, v_{\varepsilon}) \, dx + \int_{\Omega} v^{p-1} \phi(u_{\varepsilon}, v_{\varepsilon}) \, dx$$
$$= \int_{\partial \Omega} (\lambda \varrho(x) + \mu)) v^{p-1} \phi(u_{\varepsilon}, v_{\varepsilon}) \, d\sigma.$$

From (4.7) and (4.8), we deduce by calculation that

(4.9)
$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \phi(u_{\varepsilon}, v_{\varepsilon}) \, dx + \int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla \phi(u_{\varepsilon}, v_{\varepsilon}) \, dx + \int_{\Omega} |v|^{p-2} v \phi(u_{\varepsilon}, v_{\varepsilon}) \, dx$$

$$= \int_{\partial\Omega} \lambda \varrho(x) \left(\left(\frac{u}{u_{\varepsilon}} \right)^{p-1} - \left(\frac{v}{v_{\varepsilon}} \right)^{p-1} \right) (u_{\varepsilon}^{p} - v_{\varepsilon}^{p}) d\sigma + \mu_{1}(\lambda) \int_{\partial\Omega} u^{p-1} \left[u_{\varepsilon} - \left(\frac{v_{\varepsilon}}{u_{\varepsilon}} \right)^{p-1} v_{\varepsilon} \right] d\sigma + \mu \int_{\partial\Omega} u^{p-1} \left[v_{\varepsilon} - \left(\frac{u_{\varepsilon}}{v_{\varepsilon}} \right)^{p-1} u_{\varepsilon} \right] d\sigma.$$

On the other hand, by a long calculation again, we obtain

(4.10)
$$\nabla \phi(u_{\varepsilon}, v_{\varepsilon}) = \left\{ 1 + (p-1) \left(\frac{v_{\varepsilon}}{u_{\varepsilon}} \right)^p \right\} \nabla u_{\varepsilon} - p \left(\frac{v_{\varepsilon}}{u_{\varepsilon}} \right)^{p-1} \nabla v_{\varepsilon}$$

and

(4.11)
$$\int_{\Omega} [u^{p-1}\phi(u_{\varepsilon}, v_{\varepsilon}) + v^{p-1}\phi(u_{\varepsilon}, v_{\varepsilon})] dx$$
$$= \int_{\Omega} \left[\left(\frac{u}{u_{\varepsilon}}\right)^{p-1} - \left(\frac{v}{v_{\varepsilon}}\right)^{p-1} \right] (u^{p}_{\varepsilon} - v^{p}_{\varepsilon}) dx.$$

Therefore (4.9), (4.10) and (4.11) yield

$$(4.12) \qquad \int_{\Omega} \left[\left\{ 1 + (p-1) \left(\frac{v_{\varepsilon}}{u_{\varepsilon}} \right)^p \right\} |\nabla u_{\varepsilon}|^p + \left\{ 1 + (p-1) \left(\frac{u_{\varepsilon}}{v_{\varepsilon}} \right)^p \right\} |\nabla v_{\varepsilon}|^p \right] dx \\ + \int_{\Omega} \left[-p \left(\frac{v_{\varepsilon}}{u_{\varepsilon}} \right)^{p-1} |\nabla v_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \nabla v_{\varepsilon} + p \left(\frac{u_{\varepsilon}}{v_{\varepsilon}} \right)^{p-1} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \nabla v_{\varepsilon} \right] dx \\ = J_{\varepsilon} + K_{\varepsilon} - I_{\varepsilon}$$

with

(4.13)
$$I_{\varepsilon} = \int_{\Omega} \left(\left(\frac{u}{u_{\varepsilon}} \right)^{p-1} - \left(\frac{v}{v_{\varepsilon}} \right)^{p-1} \right) (u_{\varepsilon}^p - v_{\varepsilon}^p) \, dx,$$

(4.14)
$$J_{\varepsilon} = \lambda \int_{\partial \Omega} \rho(x) \left(\left(\frac{u}{u+\varepsilon} \right)^{p-1} - \left(\frac{v}{v+\varepsilon} \right)^{p-1} \right) (u_{\varepsilon}^p - v_{\varepsilon}^p) \, d\sigma,$$

(4.15)
$$K_{\varepsilon} = \mu_{1}(\lambda) \int_{\partial \Omega} u^{p-1} \left[u_{\varepsilon} - \left(\frac{v_{\varepsilon}}{u_{\varepsilon}}\right)^{p-1} v_{\varepsilon} \right] d\sigma$$
$$+ \mu \int_{\partial \Omega} u^{p-1} \left[v_{\varepsilon} - \left(\frac{u_{\varepsilon}}{v_{\varepsilon}}\right)^{p-1} u_{\varepsilon} \right] d\sigma.$$

It is clear that $I_{\varepsilon} \geq 0$. Now, thanks to the inequalities of Lindqvist [15], we can distinguish two cases according to the value of p.

CASE 1: $p \ge 2$. From (4.12) we have

(4.16)
$$J_{\varepsilon} + K_{\varepsilon} \ge \frac{1}{2^{p-2} - 1} \int_{\Omega} \left(\frac{1}{(u+1)^p} + \frac{1}{(v+1)^p} \right) |u\nabla v - v\nabla u|^p \, dx \ge 0.$$

CASE 2: 1 . Then

(4.17)
$$J_{\varepsilon} + K_{\varepsilon} \ge c(p) \int_{\Omega} \frac{uv(u^p + v^p)}{(v|\nabla u| + u|\nabla v| + 1)^{2-p}} |u\nabla v - v\nabla u|^2 dx \ge 0,$$

where the constant c(p) > 0 is independent of u, v, λ and $\mu_1(\lambda)$.

The Dominated Convergence Theorem implies that

$$\lim_{\varepsilon \to 0^+} J_{\varepsilon} = \lim_{\varepsilon \to 0^+} K_{\varepsilon} = (\mu_1(\lambda) - \mu) \int_{\partial \Omega} (u^p - v^p) \, d\sigma = 0,$$

because

(4.18)
$$\int_{\partial\Omega} u^p d\sigma = \int_{\partial\Omega} v^p d\sigma = 1.$$

Now, letting $\varepsilon \to 0^+$ in (4.16) and (4.17), we arrive at

$$u\nabla v = v\nabla u$$
 a.e. on Ω .

Thus

$$\nabla\left(\frac{u}{v}\right) = 0$$
 a.e. on Ω .

Hence, there exists t > 0 such that u = tv a.e. on Ω . By continuity u = v a.e. in $\overline{\Omega}$; and by the normalization (4.18) we deduce that t = 1 and u = v a.e. on $\partial \Omega$. This implies that u = v a.e. on $\overline{\Omega}$. Finally, we conclude that $\mu = \mu_1(\lambda)$.

REMARK 4.2. We can also show Proposition 4.1 by using Picone's identity. A similar result was given in [8] in the particular case $\lambda = 0$.

COROLLARY 4.1. For any $\lambda \in \mathbb{R}$, if u is an eigenfunction associated to a pair (λ, μ) with $\mu \neq \mu_1(\lambda)$, then u changes its sign on the boundary $\partial \Omega$. Moreover,

(4.19)
$$\min(|\partial \Omega^{-}|, |\partial \Omega^{+}|) \ge c_{p^{*}}^{-N}(|\lambda| \|\varrho\|_{\infty,\partial\Omega} + |\mu|)^{-\eta},$$

where $\eta = N/p$ if $1 and <math>\eta = 2$ if p > N, c_{p^*} is the best constant in the Sobolev trace embedding $W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\partial\Omega)$, and $|\partial\Omega^{\pm}|$ denotes the (N-1)-dimensional measure of $\partial\Omega^{\pm}$. Here $p^* = p(N-1)/(N-p)$ is the critical Sobolev exponent and $\partial\Omega^{\pm} = \{x \in \overline{\Omega} : u(x) \geq 0\}$.

Proof. Set $u^+ = \max(u, 0)$ and $u^- = \max(-u, 0)$. It follows from (2.1), where we put $v = u^-$, that

$$\int_{\Omega} |\nabla u^{-}|^{p} dx + \int_{\Omega} |u^{-}|^{p} dx = \int_{\partial \Omega} (\lambda \varrho(x) + \mu) |u^{-}|^{p} d\sigma.$$

Thus

$$\begin{split} \|u^{-}\|_{1,p} &\leq \left(|\lambda| \, \|\varrho\|_{\infty,\partial\Omega} + |\mu|\right) \int_{\partial\Omega^{-}} |u^{-}|^{p} \, d\sigma \\ &\leq \left(|\lambda| \, \|\varrho\|_{\infty,\partial\Omega} + |\mu|\right) |\partial\Omega^{-}|^{p/N} \Big(\int_{\partial\Omega} |u^{-}|^{p^{*}}\Big)^{p/p^{*}} \end{split}$$

By the Sobolev embedding $W^{1,p}(\partial \Omega) \hookrightarrow L^{p^*}(\partial \Omega)$, we deduce that

$$|\partial \Omega^{-}| \geq c_{p^*}^{-N}(|\lambda| \, \|\varrho\|_{\infty,\partial\Omega} + |\mu|)^{-\eta}.$$

The same holds for $\partial \Omega^+$ by taking $v = u^+$ in (2.1). Hence the estimate (4.19) follows.

- REMARKS 4.1. (i) The right-hand side of (4.19) is positive because $\rho \neq 0$ and if $\lambda = 0$ then μ is an eigenvalue of the *p*-Laplacian related to the trace embedding, so $\mu - \lambda_1 > 0$, where λ_1 is the first eigenvalue of (1.1)–(1.2) in the case $\lambda = 0$.
- (ii) An easy consequence of Corollary 4.1 is that the number of nodal components of each eigenfunction of (1.1)-(1.2) is finite.

Using Proposition 4.1 and Corollary 4.1, we can state the following important result.

THEOREM 4.2. For any $\lambda \in \mathbb{R}$, $\mu_1(\lambda)$ is isolated.

5. Variations of the weight. Let $\mu_1(\lambda) = \mu_1(\varrho)$ and $u_1(\lambda) = u_1(\varrho)$ (to indicate the dependence on the weight ϱ).

THEOREM 5.1. For any $\lambda \in \mathbb{R}$, if $(\varrho_k)_k$ is a sequence in $L^{\infty}(\partial \Omega)$ such that ϱ_k converges to ϱ in $L^{\infty}(\partial \Omega)$ with $\varrho \neq 0$, then

(5.1)
$$\lim_{k \to \infty} \mu_1(\varrho_k) = \mu_1(\varrho),$$

(5.2)
$$\lim_{k \to \infty} \|u_1(\varrho_k) - u_1(\varrho)\|_{1,p}^p = 0.$$

Proof. If $\lambda = 0$, the result is evident because $\mu_1(\varrho_k) = \mu_1(\varrho)$ for all $k \in \mathbb{N}^*$. If $\lambda \neq 0$, then for $v \in \mathcal{M}$,

$$\left|\lambda \int_{\partial\Omega} (\varrho_k - \varrho) |v|^p \, d\sigma\right| \le |\lambda| \, \|\varrho_k - \varrho\|_{\infty,\partial\Omega}.$$

By the convergence of ρ_k to ρ in $L^{\infty}(\partial \Omega)$, for every $\varepsilon > 0$ there exists $k_{\varepsilon} \in \mathbb{N}$ such that for all $k \geq k_{\varepsilon}$,

$$\left|\lambda \int\limits_{\partial\Omega} (\varrho_k - \varrho) |v|^p \, d\sigma\right| \le |\lambda| \, \frac{\varepsilon}{|\lambda|} = \varepsilon.$$

This implies that

(5.3)
$$\lambda \int_{\partial \Omega} \varrho |v|^p \, d\sigma \le \varepsilon + \lambda \int_{\partial \Omega} \varrho_k |v|^p \, d\sigma,$$

(5.4)
$$\lambda \int_{\partial \Omega} \varrho_k |v|^p \, d\sigma \le \varepsilon + \lambda \int_{\partial \Omega} \varrho |v|^p \, d\sigma,$$

for any $v \in \mathcal{M}$, $\varepsilon > 0$ and $k \ge k_{\varepsilon}$.

On the other hand, we have $\rho \neq 0$. We take k_{ε} large enough so that $\rho_k \neq 0$. Thus

$$\mu_1(\varrho_k) \le \|v\|_{1,p}^p - \lambda \int_{\partial\Omega} \varrho_k |v|^p \, d\sigma.$$

Combining with (5.3) and (5.4), we obtain

$$\mu_1(\varrho_k) \le \|v\|_{1,p}^p - \lambda \int_{\partial\Omega} \varrho |v|^p \, d\sigma + \varepsilon.$$

Passing to the infimum over $v \in \mathcal{M}$, we find

$$\mu_1(\varrho_k) \le \mu_1(\varrho) + \varepsilon, \quad \mu_1(\varrho) \le \mu_1(\varrho_k) + \varepsilon, \quad \forall \varepsilon > 0 \; \forall k > k_{\varepsilon}.$$

Hence, we obtain the convergence (5.1).

For the strong convergence (5.2) we argue as follows. For k large enough, we have $\rho_k \neq 0$ and

(5.5)
$$\mu_1(\varrho_k) = \|u_1(\varrho_k)\|_{1,p}^p - \lambda \int_{\partial\Omega} \varrho_k(u_1(\varrho_k))^p \, d\sigma.$$

Thus

$$\|u_1(\varrho_k)\|_{1,p}^p \le |\mu_1(\varrho_k)| + |\lambda| \|\varrho_k\|_{\infty,\partial\Omega}.$$

From (5.1) and the convergence of ϱ_k to ϱ in $L^{\infty}(\partial\Omega)$, we deduce that $(u_1(\varrho_k))_k$ is a bounded sequence in $W^{1,p}(\Omega)$. Since $W^{1,p}(\Omega)$ is reflexive and compactly embedded in $L^p(\partial\Omega)$ we can extract a subsequence of $(u_1(\varrho_k))_k$, again labelled by k, such that $u_1(\varrho_k) \to u$ (weakly) in $W^{1,p}(\Omega)$ and $u_1(\varrho_k) \to u$ (strongly) in $L^p(\partial\Omega)$ as $k \to \infty$. We can also suppose that $u_1(\varrho_k) \to u$ in $L^p(\Omega)$. Passing to a subsequence if necessary, we can assume that $u_1(\varrho_k) \to u$ a.e. in $\overline{\Omega}$. Thus $u \ge 0$ a.e. in $\overline{\Omega}$. We will prove that $u \equiv u_1(\varrho)$. To do this, using the Dominated Convergence Theorem in $\partial\Omega$, we deduce that

$$\int_{\partial\Omega} \varrho_k(u_1(\varrho_k))^p d\sigma \to \int_{\partial\Omega} \varrho u^p \, d\sigma$$

as $k \to \infty$. By (5.5), (5.1) and the lower weak semicontinuity of the norm we obtain

(5.6) $\|u\|_{1,p}^p \le \mu_1(\varrho) + \lambda \int_{\partial\Omega} \varrho u^p \, d\sigma.$

The normalization $\int_{\partial \Omega} u^p d\sigma = 1$ is proved. Moreover, $u \ge 0$ a.e. in $\overline{\Omega}$, because $u_1(\varrho_k) > 0$ in $\overline{\Omega}$. Thus u is an admissible function in the variational definition of $\mu_1(\lambda)$. So

$$\mu_1(\lambda) \le \|u\|_{1,p}^p - \lambda \int_{\partial\Omega} \varrho u^p d\sigma.$$

This and (5.6) yield (5.7)

(5.7)
$$\mu_1(\varrho) = \|u\|_{1,p}^p - \lambda \int_{\partial\Omega} \varrho u^p d\sigma$$

By the uniqueness of the principal eigenfunction associated to $\mu_1(\lambda)$, we must have $u \equiv u_1(\varrho)$. Consequently, the limit function $u_1(\varrho)$ is independent of the choice of the (sub)sequence. Hence, $u_1(\varrho_k)$ converges to $u_1(\varrho)$ at least in $L^p(\partial \Omega)$ and in $L^p(\Omega)$. To complete the proof of (5.2), it suffices to use Clarkson's inequalities related to uniform convexity of $W^{1,p}(\Omega)$. For this we distinguish two cases.

CASE 1:
$$p \ge 2$$
. We have

$$\int_{\Omega} \left| \frac{\nabla u_1(\varrho_k) - \nabla u_1(\varrho)}{2} \right|^p dx + \int_{\Omega} \left| \frac{\nabla u_1(\varrho_k) + \nabla u_1(\varrho)}{2} \right|^p dx$$

$$\le \frac{1}{2} \int_{\Omega} |\nabla u_1(\varrho_k)|^p dx + \frac{1}{2} \int_{\Omega} |\nabla u_1(\varrho)|^p dx$$

and

$$\mu_1(\varrho_k) \int_{\partial\Omega} \left(\frac{u_1(\varrho_k) + u_1(\varrho)}{2} \right)^p d\sigma \le \int_{\Omega} \left| \frac{\nabla u_1(\varrho_k) + \nabla u_1(\varrho)}{2} \right|^p dx -\lambda \int_{\partial\Omega} \varrho_k \left(\frac{u_1(\varrho_k) + u_1(\varrho)}{2} \right)^p d\sigma.$$

$$\frac{\int_{\Omega} \left| \frac{u_1(\varrho_k) - u_1(\varrho)}{2} \right|^p dx}{2} \leq \int_{\Omega} \left| \frac{u_1(\varrho_k) + u_1(\varrho)}{2} \right|^p dx + \frac{1}{2} \left\| u_1(\varrho_k) \right\|_p^p + \frac{1}{2} \left\| u_1(\varrho) \right\|_p^p.$$

Hence

Moreover

$$\begin{aligned} \|u_{1}(\varrho_{k}) - u_{1}(\varrho)\|_{1,p}^{p} \\ &\leq -\mu_{1}(\varrho_{k}) \int_{\partial\Omega} \left(\frac{u_{1}(\varrho_{k}) + u_{1}(\varrho)}{2}\right)^{p} d\sigma - \lambda \int_{\partial\Omega} \varrho_{k} \left(\frac{u_{1}(\varrho_{k}) + u_{1}(\varrho)}{2}\right)^{p} d\sigma \\ &+ \frac{1}{2} \left(\mu_{1}(\varrho_{k}) - \lambda \int_{\partial\Omega} \varrho_{k}(x)u_{1}(\varrho_{k}) d\sigma\right) + \frac{1}{2} \left(\mu_{1}(\varrho) - \lambda \int_{\partial\Omega} \varrho u_{1}^{p} d\sigma\right). \end{aligned}$$

Then, by using the Dominated Convergence Theorem we deduce that

$$\limsup_{k \to \infty} \|u_1(\varrho_k) - u_1(\varrho)\|_{1,p}^p = 0$$

CASE 2: 1 . In this case, we have

$$\begin{split} \left\{ \int_{\Omega} \left| \frac{\nabla u_1(\varrho_k) - \nabla u_1(\varrho)}{2} \right|^p dx \right\}^{1/(p-1)} + \left\{ \int_{\Omega} \left| \frac{\nabla u_1(\varrho_k) + \nabla u_1(\varrho)}{2} \right|^p dx \right\}^{1/(p-1)} \\ & \leq \left\{ \frac{1}{2} \int_{\Omega} |\nabla u_1(\varrho_k)|^p dx + \frac{1}{2} \int_{\Omega} |\nabla u_1(\varrho)|^p dx \right\}^{1/(p-1)} \end{split}$$

and

$$\begin{split} \mu_1(\varrho_k) & \int_{\partial\Omega} \left(\frac{u_1(\varrho_k) + u_1(\varrho)}{2} \right)^p d\sigma \leq \int_{\Omega} \left| \frac{\nabla u_1(\varrho_k) + \nabla u_1(\varrho)}{2} \right|^p \\ & -\lambda \int_{\partial\Omega} \varrho_k \left(\frac{u_1(\varrho_k) + u_1(\varrho)}{2} \right)^p d\sigma. \end{split}$$

Hence, by definitions of $\mu_1(\varrho_k)$ and $\mu_1(\varrho)$, and the second Clarkson inequality we obtain the convergence (5.2).

COROLLARY 5.1. For any bounded domain Ω , the function $\lambda \mapsto \mu_1(\lambda)$ is differentiable on \mathbb{R} and the function $\lambda \mapsto u(\lambda)$ is continuous from \mathbb{R} into $W^{1,p}(\Omega)$. More precisely

$$\mu'_1(\lambda_0) = -\int_{\partial\Omega} \varrho(x)(u_1(\lambda_0))^p \, d\sigma, \quad \forall \lambda_0 \in \mathbb{R}.$$

14

Proof. Denote by $\mu_1(\lambda, \varrho)$ the principal eigenvalue associated with λ and the weight ϱ and by $u_1(\lambda, \varrho)$ the corresponding principal eigenfunction. Suppose that $\lambda_k \to \lambda_0$ in \mathbb{R} ; then $h_k = \lambda_k \varrho \to \lambda_0 \varrho = h$ in $L^{\infty}(\partial \Omega)$. From Theorem 5.1 we deduce that

$$\mu_1(\lambda_k) = \mu_1(1, h_k) \to \mu_1(1, h) = \mu_1(\lambda_0)$$

and

$$u_1(\lambda_k) = u_1(1, h_k) \to u_1(1, h) = u_1(\lambda_0)$$
 in $W^{1,p}(\Omega)$.

For the differentiability, it suffices to use the variational characterization of $\mu_1(\lambda)$ and of $\mu_1(\lambda_0)$, so that we have

$$(\lambda - \lambda_0) \int_{\partial \Omega} \varrho(x) (u_1(\lambda))^p \, d\sigma \le \mu_1(\lambda) - \mu_1(\lambda_0) \le (\lambda_0 - \lambda) \int_{\partial \Omega} (u_1(\lambda_0))^p \, d\sigma$$

for any $\lambda, \lambda_0 \in \mathbb{R}$.

References

- W. Allegretto and Y. X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal. 32 (1998), 819–830.
- [2] A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien, C. R. Acad. Sci. Paris 305 (1987), 725–728.
- [3] C. Atkinson and C. R. Champion, Some boundary-value problems for the equation $\nabla \cdot (|\nabla \phi|^N \nabla \phi) = 0$, Quart. J. Mech. Appl. Math. 37 (1984), 401–419.
- [4] C. Atkinson and C. W. Jones, Similarity solutions in some non-linear diffusion problems and in boundary-layer flow of a pseudo-plastic fluid, ibid. 27 (1974), 193– 211.
- G. Barles, Remarks on uniqueness results for the first eigenvalue of the p-Laplacian, Ann. Fac. Sci. Toulouse 9 (1988), 65–75.
- P. A. Binding and Y. X. Huang, The principal eigencurve for p-Laplacian, Differential Integral Equations 8 (1995), 405–415.
- [7] I. Babuška and J. Osborn, Eigenvalue problems, in: Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam, 1991, 641–787.
- [8] J. Fernández Bonder and J. D. Rossi, A nonlinear eigenvalue problem with indefinite weights related to Sobolev trace embedding, Publ. Mat. 46 (2002), 221–235.
- M. Cuesta, Eigenvalue problems for the p-Laplacian with indefinite weights, Electronic J. Differential Equations 2001, No. 33, 9 pp.
- [10] J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. I, Elliptic Equations, Pitman, London, 1985.
- [11] J. I. Díaz et J. E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 521–524.
- [12] A. El Khalil and A. Touzani, On the first eigencurve of the p-Laplacian, in: Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 229, Dekker, 2002, 195–205.
- [13] J. P. García Azorero and I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian, Nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), 1389–1430.

- [14] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.
- [15] P. Lindqvist, On the equation div $(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0$, Proc. Amer. Math. Soc. 109 (1990), 157–164.
- [16] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
- [17] J. R. Philip, *n*-diffusion, Austral. J. Phys. 14 (1961), 1-13.
- [18] N. M. Stavrakakis and N. B. Zographopoulos, Existence results for quasilinear elliptic systems in R^N, Electronic J. Differential Equations 1999, No. 39, 15 pp.
- [19] A. Szulkin, Ljusternik-Schnirelmann theory on C¹-manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119–139.
- P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1983), 126–150.
- J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.

Département de Mathématiques & Génie Industriel	Departement of Mathematics
École Polytechnique, Montréal	Faculty of Sciences Dhar-Mahraz
Montréal (QC) H3C 3A7	P.O. Box 1796
Canada	Atlas, Fez 30000, Morocco
E-mail: abdelouahed.el-khalil@polymtl.ca	E-mail: m_ouanan@hotmail.com

Received on 4.7.2003; revised version on 12.7.2004 (1701)