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ON FULLY COUPLED CONTINUOUS TIME
RANDOM WALKS

Abstract. Continuous time random walks with jump sizes equal to the
corresponding waiting times for jumps are considered. Sufficient conditions
for the weak convergence of such processes are established and the limiting
processes are identified. Furthermore one-dimensional distributions of the
limiting processes are given under an additional assumption.

1. Introduction. A continuous time random walk (for short CTRW)
is a random walk in which jumps of random sizes are separated by random
intervals of time. Such a process is generated by a sequence of random vectors
(Yk, Jk) with values in Rd × R+, where the sequence {Yk} represents the
successive jump sizes with values in Rd and the sequence of positive random
variables Jk gives the waiting times between the successive jumps. A CTRW
is called coupled if Yk and Jk are dependent for all k ≥ 1 (see [1]). Let
N(t)

df
= max{k : J1 + · · · + Jk ≤ t} be the number of jumps up to time t.

There are the following two types of CTRW (see [5, 11]):

Z(t)
df
=

N(t)∑
k=1

Yk and Z̃(t)
df
=

N(t)+1∑
k=1

Yk.

Z(t) represents the position of the random walk after the last jump before
time t and Z̃(t) is its position at the first jump after t. The CTRWs have
numerous applications in physics, financial mathematics and many other
fields. For an overview of applications see [9, 4, 8, 6].
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A CTRW in case Yk = Jk, k ≥ 1, is called here fully coupled and in this
case the processes Z and Z̃ are denoted

X(t)
df
=

N(t)∑
k=1

Jk and X̃(t)
df
=

N(t)+1∑
k=1

Jk.

Such processes have various applications, for example in renewal theory and
reliability theory. Namely, consider a situation in which components of a
machine break down at random times and are instantly replaced by new
ones. Then N(t) is the number of failures up to time t, while X(t) is the
time of the last failure before t and X̃(t) is the time of the first failure af-
ter t. Hence γ(t) df= t−X(t) can be interpreted as the age of the component
currently working and γ̃(t) df= X̃(t)− t as the residual life time of the compo-
nent working at time t. Well known results on asymptotic behavior of these
characteristics are gathered in Proposition 2.8 of [4].

The asymptotics at infinity of the processes Z and Z̃ is usually investi-
gated via weak convergence in the Skorokhod J1 topology of sequences of
scaled CTRWs b−1

n Z(n ·) and b−1
n Z̃(n ·), where {bn} with bn → 0 is an appro-

priate scaling sequence (see e.g. [1, 5]). This problem is usually investigated
in a general setting via weak convergence of processes Zn and Z̃n defined by
the rows of the array {(Yn,k, Jn,k), n, k ≥ 1} as follows:

Zn(t)
df
=

Nn(t)∑
k=1

Yn,k and Z̃n(t)
df
=

Nn(t)+1∑
k=1

Yn,k,

where Nn(t) = max{k ≥ 0 : Jn,1 + · · ·+ Jn,k ≤ t}. Recently, nice conditions
for weak convergence of the processes Zn and Z̃n were given by Theorem 3.6
in [11]. It states that if for each n ≥ 1, {(Yn,k, Jn,k), k ≥ 1} is a sequence of
i.i.d. random vectors, and the processes

Tn(t)
df
= Jn,1 + · · ·+ Jn,[nt]

weakly converge to a strictly increasing process D in the Skorokhod J1 topol-
ogy, then the processes Zn, Z̃n, and related processes of age and remaining
lifetime

(1) γn(t) = t−
Nn(t)∑
i=1

Jn,i and γ̃n(t) =
Nn(t)+1∑
i=1

Jn,i − t,

weakly converge in the J1 topology. The proof of this theorem in [11] is based
on a continuous mapping approach in the Skorokhod J1 topology.

The aim of the paper is to strengthen the general results given in [11,
Theorem 3.6] in the case of fully coupled CTRW processes, i.e.

Xn(t)
df
=

Nn(t)∑
k=1

Jn,k and X̃n(t)
df
=

Nn(t)+1∑
k=1

Jn,k,
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by relaxing the assumption that the process D is strictly increasing. We
emphasize that elements of the array {Jn,k, n, k ≥ 1} may be dependent.
In Theorem 1 we show that the processes Xn and X̃n weakly converge in
the J1 topology whenever the processes Tn weakly converge to a nonde-
creasing process D (note that D is always nondecreasing since the processes
Tn are nondecreasing). Lemmas 1 and 2 play a key role in proving The-
orem 1 and are similar to Proposition 2.3 in [11]; they are stronger in a
sense, although less general. Theorem 2 characterizes the one-dimensional
distributions of the limiting processes for the sequences {Xn} and {X̃n}
when D is a Lévy process with strictly increasing sample paths. The for-
mulas given in Theorem 2 may be obtained from Theorem 4.9 in [11] but
we present an alternative proof, more elementary, based on the invariance
principle.

2. Main results. In this paper D[0,∞) denotes the space of càdlàg
functions on [0,∞), i.e. of all right-continuous functions having left limits and
taking real values; Du,↑ denotes the space of all nonnegative, nondecreasing
and unbounded càdlàg functions; x ◦ y denotes composition of functions x
and y defined as x ◦ y(t) = x(y(t)), where x, y ∈ Du,↑[0,∞); y−1 denotes the
inverse function to y defined as y−1(t) = inf{s > 0 : y(s) > t}; and Disc(x)
denotes the set of discontinuity points of x. Furthermore, ξn ⇒ ξ denotes
convergence in distribution of the random elements ξn to ξ, which we also
call weak convergence.

Define the inverse of the process Tn as T−1
n (t)

df
= inf{s : Tn(s) > t},

t ≥ 0. Then T−1
n (t) = Nn(t)/n + 1/n. Hence X̃n(t) = Tn(T−1

n (t)) and
Xn(t) = Tn(T−1

n (t) − 1/n). Trajectories of the above processes are in Du,↑.
Auxiliary results formulated below in Lemmas 1–3 are the basis for our
main results stated in Theorem 1 and dealing with weak convergence of Xn

and X̃n.

Lemma 1. Let xn, n ≥ 1, be elements of Du,↑[0,∞) converging in the J1

topology to x ∈ Du,↑[0,∞). Then xn ◦ x−1
n → x ◦ x−1 in Du,↑[0,∞) in the J1

topology.

Lemma 2. Let xn, n ≥ 1, be elements of Du,↑[0,∞) converging in the J1

topology to x ∈ Du,↑[0,∞). Then (xn ◦ x−1
n )−1 → (x ◦ x−1)−1 in Du,↑[0,∞)

in the J1 topology.

Lemma 3. Let xn, n ≥ 1, be elements of Du,↑[0,∞) starting from zero
with Disc(xn) = {i/n : i ∈ N} and such that each xn is constant on the
intervals [i/n, (i+ 1)/n), i = 0, 1, . . . . Then

xn ◦ (x−1
n − 1/n) = (xn ◦ x−1

n )−1.
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Theorem 1. If Tn ⇒ D in Du,↑[0,∞) in the J1 topology, then X̃n ⇒
D ◦D−1 and Xn ⇒ (D ◦D−1)−1 in Du,↑[0,∞) in the J1 topology.

Let f− denote the left-continuous version of the right-continuous function
f , i.e. f−(t) = limh↓0 f(t−h), and let g+ denote the right-continuous version
of the left-continuous function g, i.e. g+(t) = limh↓0 g(t+ h).

Remark 1. Using formula (18) and the right-continuity of the trajecto-
ries of D it is easy to check that

(D ◦D−1)−1 = (D− ◦ (D−1)−)+.

This agrees with the general form of the limiting process for the sequence
{Zn} given in Theorem 3.6 of [11] (see also Remark 3.3 of [5]).

The following theorem gives the one-dimensional distributions of the pro-
cesses M and M̃ defined by M(t) = (D ◦D−1)−1(t) and M̃(t) = D ◦D−1(t),
t ≥ 0, where D is a Lévy process with strictly increasing sample paths.

Theorem 2. Let D be a Lévy process with Lévy measure νD such that
νD(0,∞) =∞, i.e. D has strictly increasing sample paths. Then

(2) P (M(t) < x) =
x�

0

∞�

0

νD(t− u,∞)P (D(s) ∈ du) ds for x < t,

and

(3) P (M̃(t)− t ≥ x) =
t�

0

∞�

0

νD(x+ t− u,∞)P (D(s) ∈ du) ds for x > 0.

Remark 2. If Tn, n ≥ 1, converge weakly to a strictly increasing Lévy
process D, then by Theorem 1 we have Xn ⇒ M and X̃n ⇒ M̃ and the
distributions of the limiting processes are given by (2) and (3). Notice that
mutual independence of elements in the array {Jn,k, n, k ≥ 1} is not neces-
sary. Sufficient conditions for weak convergence of processes of partial sums of
dependent random variables to a Lévy process are given in [3] (see also [12]).

Using the relation (1) we get the following illustration of Theorems 1–2
in terms of age and remaining life time processes.

Corollary 1. Let {Jn,k, n, k ≥ 1} be an array such that Tn converges
weakly to an α-stable subordinator D with 0 < α < 1. Then the following
convergences hold:

P (γn(t) ≤ x)→
sin(πα)

π

1�

1−x/t

(1− u)−αuα−1 du for all x ≤ t,(4)

P (γ̃n(t) ≤ x)→
sin(πα)

π

1+x/t�

1

(v − 1)−αv−1 dv for all x ≥ 0.(5)
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Remark 3. Convergence (4) generalizes the result of Kotulski [7, p. 790].
All necessary calculations needed to prove (4) and (5) are given in Ex-
ample 5.2 in [5], so we omit the proof of the above corollary.

3. Proofs of the results

Proof of Lemma 1. The first part of the proof gives an explicit formula
for the function y ◦y−1 and characterizes its discontinuity points, i.e. the set
Disc(y ◦ y−1) for any y ∈ Du,↑[0,∞). This is used in the second part of the
proof to show that xn ◦ x−1

n → x ◦ x−1 if xn → x in the J1 topology.
Observe that for any y ∈ Du,↑[0,∞) the composition y ◦ y−1 is also an

element of Du,↑[0,∞) and is of the form

(y ◦ y−1)(t) = y(y−1(t)) = y(inf{s > 0 : y(s) > t})(6)
= inf{y(s) : y(s) > t}.

Functions in Du,↑[0,∞) have countably many discontinuity points and
are continuous at 0. For technical reasons, to avoid considering too many
cases in the proof, we add 0 to Disc(y) and put y(0−) = 0. Furthermore we
allow Disc(y) to be dense in [0,∞). The domain of y ◦ y−1 can be written as
B1 ∪B2 where

B1 =
⋃

τy∈Disc(y)

[y(τy−), y(τy)) and B2 = R+ \B1.

Let t ∈ [y(τ∗y−), y(τ∗y )) for some τ∗y ∈ Disc(y). Then y−1(t) = inf{s > 0 :
y(s) > t} = τ∗y , so

(7) (y ◦ y−1)(t) = y(τ∗y ) for t ∈ [y(τ∗y−), y(τ∗y )) ⊂ B1.

Let t ∈ B2. Then there exists s such that t = y(s). Because y is right-
continuous and nondecreasing we have

y−1(t) = inf{s > 0 : y(s) > t} = sup{s : t = y(s)} = s0.

We show that y(s0) = t. This is obvious if there is only a single s > 0 such
that y(s) = t. If y(s) = t for more than one s, then y(s0−) = t. Since t ∈ B2,
the equality y(s0) = t must also hold. Indeed, if y(s0) > t, then s0 ∈ Disc(y)
and it would mean that t ∈ [y(s0−), y(s0)), so t ∈ B1, which contradicts the
assumption that t ∈ B2. Hence

(8) (y ◦ y−1)(t) = y(sup{s : t = y(s)}) = t for t ∈ B2.

Define

(9) τy(t) := sup{τy ∈ Disc(y) : t ≥ y(τy−)}.
Observe that if t ∈ B1, then there exists τ∗y ∈ Disc(y) such that τ∗y = τy(t).

Observe also that the following equivalences hold:

(10) t < y(τy(t)) ⇔ ∃τ∗y ∈ Disc(y) : t ∈ [y(τ∗y−), y(τ∗y )) ⇔ t ∈ B1.
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To show ⇒ notice that by the definition of τy(t) there exists a sequence
{τy,n} of discontinuity points of y such that τy,n ↑ τy(t) and t ≥ y(τy,n−).
Since y has limits from the left we get t ≥ limn y(τy,n−) = y(τy(t)−). This
and the assumption t < y(τy(t)) imply that y(τy(t)−) ≤ t < y(τy(t)). Hence
τy(t) ∈ Disc(y), which proves the first implication. The other implications
are obvious.

Combining (7), (8) and (10) we get

(y ◦ y−1)(t) = max{t, y(τy(t))}.(11)

Now we characterize Disc(y◦y−1). Notice that by (7) for any τ∗ ∈ Disc(y)
we have

(y ◦ y−1)(y(τ∗−)) = y(τ∗).

Moreover, by (11) we get

(y ◦ y−1)(y(τ∗−)−) = lim
h↘0

(y ◦ y−1)(y(τ∗−)− h)

= lim
h↘0

max{y(τ∗−)− h, y(sup{τy ∈ Disc(y) : y(τ∗−)− h ≥ y(τy−)})}

= max{y(τ∗−), y(sup{τy ∈ Disc(y) : y(τ∗−) > y(τy−)})} = y(τ∗−).

Hence

(y ◦ y−1)(y(τ∗−))− (y ◦ y−1)(y(τ∗−)−) = y(τ∗)− y(τ∗−) > 0

and y(τ∗−) ∈ Disc(y ◦ y−1). By (11) it follows that the only discontinuity
points of y ◦ y−1 are y(τy−), τy ∈ Disc(y). Therefore

Disc(y ◦ y−1) = {y(τy−) : τy ∈ Disc(y)}.

Since for all τy ∈ Disc(y) we have (y ◦ y−1)(y(τy−)−) = y(τy−) and (y ◦
y−1)(y(τy−)) = y(τy) it follows that the sets of values y and y ◦ y−1 are the
same, i.e. {y(t) : t ≥ 0} = {y ◦ y−1(t) : t ≥ 0} and the corresponding jump
sizes of y and y ◦ y−1 are the same.

Now we prove that if x, xn ∈ Du,↑[0,∞) and xn → x in the J1 topology,
then xn ◦ x−1

n → x ◦ x−1 in Du,↑[0,∞) with the J1 topology. It is sufficient
to show that xn ◦ x−1

n → x ◦ x−1 in Du,↑[0, T ] in the J1 topology for any
0 < T < ∞ which is a continuity point of x ◦ x−1. Choose S such that
x(S) = T and S /∈ Disc(x). For the remaining part of the proof, xn ◦ x−1

n

and x ◦ x−1 denote the functions restricted to [0, T ] and xn, x denote the
functions restricted to [0, S].

Let ε > 0 be an arbitrarily small number. Then x has finitely many,
say Kε, jumps greater than or equal to ε. Let

G(ε) := {τ ∈ Disc(x) : x(τ)− x(τ−) ≥ ε} = {τ (1) < · · · < τ (Kε)}.

Arguing as in [13, p. 79], for each n one can choose a set Gn(ε) =
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{τ (1)
n < · · · < τ

(Kε)
n } such that

max
i≤Kε

|τ (i)
n − τ (i)| → 0,

max
i≤Kε

|xn(τ (i)
n )− x(τ (i))| → 0,

max
i≤Kε

|xn(τ (i)
n −)− x(τ (i)−)| → 0.

Hence we can take mε so large that for all n > mε the expressions on the
left-hand sides above are smaller than ε, Gn(ε) ⊂ Disc(xn) and

sup{|xn(τ)− xn(τ−)| : τ ∈ Disc(xn) \Gn(ε)} < ε.

Let λn, n ≥ 1, be continuous, strictly increasing mappings of [0, T ] onto
[0, T ] such that

(12) λn(x(τ (i)−)) = xn(τ (i)
n −), λn(x(τ (i))) = xn(τ (i)

n ),

for τ (i)
n ∈ Gn(ε), τ (i) ∈ G(ε), 1 ≤ i ≤ Kε, and suppose they are linear

between the points

{(x(τ (i)−), xn(τ (i)
n −)), (x(τ (i)), xn(τ (i)

n )) : 1 ≤ i ≤ Kε}.
Then for all n > mε we have

‖λn − e‖ = max
i≤Kε

{|λn(x(τ (i)−))− x(τ (i)−)| ∨ |λn(x(τ (i)))− x(τ (i))|}

= max
i≤Kε

{|xn(τ (i)
n −)− x(τ (i)−)| ∨ |xn(τ (i)

n )− x(τ (i))|} < ε,

where a∨ b = max{a, b}. Moreover ‖λ−1
n − e‖ = ‖λn− e‖ < ε for all n > mε.

Now, using (11), we will estimate

‖xn ◦ x−1
n ◦ λn − x ◦ x−1‖ = sup

t∈[0,T ]
Rn(t)

for arbitrary n > mε, where

Rn(t)
df
= |max{λn(t), xn(τxn(λn(t)))} −max{t, x(τx(t))}|.

Assuming first that max{λn(t), xn(τxn(λn(t)))} ≤ max{t, x(τx(t))} we get

Rn(t) = max{t, x(τx(t))} −max{λn(t), xn(τxn(λn(t)))}.
Of course we have either (1◦) t ≥ x(τx(t)) or (2◦) t < x(τx(t)).

In case (1◦) we have

Rn(t) = t−max{λn(t), xn(τxn(λn(t)))} ≤ t− λn(t) ≤ ‖λn − e‖ < ε.

In case (2◦), we use (10) to find that t ∈ [x(τ∗x−), x(τ∗x)) for some τ∗x ∈
Disc(x) and τx(t) = τ∗x . Then we have two further possibilities.

(i): τ∗x is a jump time of x with jump size greater than ε, i.e. τ∗x = τ (i0) ∈
G(ε) for some i0 ≤ Kε. Then t ∈ [x(τ (i0)−), x(τ (i0))) and using (12) we get

λn(t) ∈ [λn(x(τ (i0)−)), λn(x(τ (i0)))) = [xn(τ (i0)
n −), xn(τ (i0)

n )).
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Notice that by (9) we have τxn(λn(t)) = τ
(i0)
n and xn(τxn(λn(t))) = xn(τ

(i0)
n ),

which gives

Rn(t) = x(τ (i0))−max{λn(t), xn(τ (i0)
n )} ≤ x(τ (i0))− xn(τ (i0)

n ) ≤ ε.

(ii): τ∗x is a jump time of x with jump size smaller than ε, i.e. τ∗x /∈ G(ε).
Then t ∈ [x(τ∗x−), x(τ∗x)) ⊂ [x(τ∗x) − ε, x(τ∗x)) and λn(t) ∈ [λn(x(τ∗x) − ε),
λn(x(τ∗x))). Hence

Rn(t) = x(τx(t))−max{λn(t), xn(τxn(λn(t)))} ≤ x(τx(t))− λn(t)
≤ x(τ∗x)− λn(x(τ∗x)− ε)
= x(τ∗x)− (x(τ∗x)− ε) + (x(τ∗x)− ε)− λn(x(τ∗x)− ε)
≤ ε− (λn(x(τ∗x)− ε) + (x(τ∗x)− ε)) ≤ ‖λn − e‖+ ε < 2ε.

Now assuming that max{λn(t), xn(τxn(λn(t)))} > max
{
t, x(τx(t))} we get

Rn(t) = max{λn(t), xn(τxn(λn(t)))} −max{t, x(τx(t))}.

Again we have either (1◦) λn(t)≥ xn(τxn(λn(t))) or (2◦) λn(t)<xn(τxn(λn(t))).
In case (1◦) we have

Rn(t) = λn(t)−max{t, x(τx(t))} ≤ λn(t)− t ≤ ‖λn − e‖ < ε.

In case (2◦) we use (10) to find that λn(t) ∈ [xn(τ∗xn
−), xn(τ∗xn

)) for some
τ∗xn
∈ Disc(xn) and τxn(λn(t)) = τ∗xn

. Then we need to consider two further
possibilities.

(i): τ∗xn
is a jump time of xn with jump size greater than ε, i.e. τ∗xn

=
τ

(i0)
n ∈ Gn(ε) for some i0 ≤ Kε. Then

λn(t) ∈ [xn(τ (i0)
n −), xn(τ (i0)

n )) = [λn(x(τ (i0)−)), λn(x(τ (i0)))),

which gives t ∈ [x(τ (i0)−), x(τ (i0))). Hence τx(t) = τ (i0) and x(τx(t)) =
x(τ (i0)) and we have

Rn(t) = xn(τxn(λn(t)))−max{t, x(τx(t))}
= xn(τ (i0)

n )−max{t, x(τ (i0))} ≤ xn(τ (i0)
n )− x(τ (i0)) ≤ ε.

(ii): τ∗xn
is a jump time of xn with jump size smaller than ε, i.e. τ∗xn

/∈
Gn(ε). Then λn(t) ∈ [xn(τ∗xn

−), xn(τ∗xn
)) ⊂ [xn(τ∗xn

) − ε, xn(τ∗xn
)) and t ∈

[λ−1
n (xn(τ∗xn

)− ε), λ−1
n (xn(τ∗xn

))). Hence

Rn(t) = xn(τxn(λn(t)))−max{t, x(τx(t))}
= xn(τ∗xn

)−max{t, x(τx(t)} ≤ xn(τ∗xn
)− t ≤ xn(τ∗xn

)− λ−1
n (xn(τ∗xn

)− ε)
= xn(τ∗xn

)− (xn(τ∗xn
)− ε) + (xn(τ∗xn

)− ε)− λ−1
n (xn(τ∗xn

)− ε)
≤ ε− λ−1

n (xn(τ∗xn
)− ε) + (xn(τ∗xn

)− ε))
≤ ‖λ−1

n − e‖+ ε = ‖λn − e‖+ ε < 2ε.
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Summarizing, we get ‖xn ◦ x−1
n ◦ λn − x ◦ x−1‖ = supt∈[0,T ]Rn(t) < 2ε for

any n > mε.
This implies that for arbitrary ε there exists mε such that for all n > mε

we have

dJ1(xn ◦ x−1
n , x ◦ x−1) ≤ max{‖λn − e‖, ‖xn ◦ x−1

n ◦ λn − x ◦ x−1‖} < 2ε,

which completes the proof of the lemma.

Proof of Lemma 2. First we give an explicit formula for (y ◦ y−1)−1(t).
For that choose an arbitrary t ≥ 0 and consider the case when t ∈ B1. Then
there exists τ∗y ∈ Disc(y) such that t ∈ [y(τ∗y−), y(τ∗y )). Observe that

y(τ∗y ) = inf{y(v) : y(v) > y(τ∗y−)}
= inf{y(v) : y(v) > s} if s ∈ [y(τ∗y−), y(τ∗y )).

Using this and formula (6) we get

(13) (y ◦ y−1)−1(t)

= inf{s > 0 : (y ◦ y−1)(s) > t} = inf{s > 0 : inf{y(v) : y(v) > s} > t}
= inf{s > 0 : inf{y(v) : y(v) > s} > y(τ∗y−)}
= inf{s ∈ [y(τ∗y−), y(τ∗y )) : inf{y(v) : y(v) > s} > y(τ∗y−)} = y(τ∗y−).

Now fix t ∈ B2. Then there exists s > 0 such that y(s) = t. Let s0 =
sup{s : y(s) = t}. We will show that y(s0) = t. This is obvious if there is
only a single s > 0 such that y(s) = t. If y(s) = t for more than one s then
y(s0−) = t and from t ∈ B2 it also follows that y(s0) = t. Now we will show
that

(14) (y ◦ y−1)−1(t) = t for t ∈ B2.

First notice that by the right continuity of y it follows that for every {sn}
such that sn ↘ s0 we also have y(sn)↘ y(s0) = t. Fix such a sequence {sn}.
Since

(y ◦ y−1)−1(t) = inf{z > 0 : (y ◦ y−1)(z) > t}(15)
= inf{z : inf{y(v) : y(v) > z} > t},

it is sufficient to find zn ↘ t such that inf{y(v) : y(v) > zn} > t. The
sequence {zn = y(sn)} is one we are looking for. Indeed, zn ↘ t and inf{y(v) :
y(v) > zn} ≥ zn = y(sn) > y(s0) = t, which proves (14). Now define

(16) ηy(t) := inf{τy ∈ Disc(y) : t ≤ y(τy)}.

Notice that if t ∈ B1, then ηy(t) ∈ Disc(y). Observe also that the following
equivalence holds:

(17) t > y(ηy(t)−) ⇔ ηy(t) ∈ Disc(y) and t ∈ (y(ηy(t)−), y(ηy(t))].
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To prove ⇒ notice that by the definition of ηy(t), there exist ηy,n ∈
Disc(y), n ≥ 1, such that ηy,n ↓ ηy(t) and y(ηy,n) ≥ t. Then by right con-
tinuity of y we have t ≤ y(ηy,n) ↓ y(ηy(t)), so t ≤ y(ηy(t)). Moreover,
if t > y(ηy(t)−), we get y(ηy(t)−) < t ≤ y(ηy(t)), which implies that
ηy(t) ∈ Disc(y), so ⇒ holds. Notice that ⇐ is obvious.

Combining (13), (15) and (17) we get

(18) (y ◦ y−1)−1(t) = min{t, y(ηy(t)−)}.
Fix τ∗y ∈ Disc(y). Using the same argument as in the proof of (13) we

show that

(y ◦ y−1)−1(y(τ∗y )−) = inf{s > 0 : (y ◦ y−1)(s) > y(τ∗y )−}
= lim

h↘0
inf{s > 0 : inf{y(v) : y(v) > s} > y(τ∗y )− h}

= inf{s > 0 : inf{y(v) : y(v) > s} > y(τ∗y−)}
= inf{s ∈ [y(τ∗y−), y(τ∗y )) : inf{y(v) : y(v) > s} > y(τ∗y−)} = y(τ∗y−).

Moreover

(y ◦ y−1)−1(y(τ∗y )) = inf{s > 0 : inf{y(v) : y(v) > s} > y(τ∗y )} ≥ y(τ∗y ).

Hence y(τ∗y ) ∈ Disc((y ◦ y−1)−1). By (18) and (17) we easily check that

Disc((y ◦ y−1)−1) = {y(τy) : τy ∈ Disc(y)}.
Now we show that (xn ◦ x−1

n )−1 → (x ◦ x−1)−1 in Du,↑[0,∞) in the J1

topology. We use the same method as in the proof of Lemma 1. Let T > 0
be an arbitrary continuity point of (x ◦ x−1)−1 and consider the restrictions
of (xn ◦ x−1

n )−1 and (x ◦ x−1)−1 to [0, T ]. Choose S /∈ Disc(x) such that
x(S) = T and restrict xn and x to [0, S]. Then choose an arbitrarily small
ε > 0 and take sets Gn(ε), G(ε), numbers Kε and mε and functions λn as
in the proof of Lemma 1.

Now, using (18), we estimate

‖(xn ◦ x−1
n )−1 ◦ λn − (x ◦ x−1)−1‖ = sup

t∈[0,T ]
Rn(t)

for n > mε, where

Rn(t) := |min{λn(t), xn(ηxn(λn(t))−)} −min{t, x(ηx(t)−)}|.
Assuming first that min{λn(t), xn(ηxn(λn(t))−)} ≥ min{t, x(ηx(t)−)} we
get

Rn(t) = min{λn(t), xn(ηxn(λn(t))−)} −min{t, x(ηx(t)−)}.
Of course we have either (1◦) t ≤ x(ηx(t)−) or (2◦) t > x(ηx(t)−).

In case (1◦) we have

Rn(t) = min{λn(t), xn(ηxn(λn(t))−)} − t ≤ λn(t)− t ≤ ‖λn − e‖ < ε.
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In case (2◦) we use (17) to get ηx(t) = τ∗x for some τ∗x ∈ Disc(x) and t ∈
(x(τ∗x−), x(τ∗x)]. In this case we need to consider two further possibilities.

(i): τ∗x is a jump time of x with jump size greater than ε, i.e. τ∗x = τ (i0) ∈
G(ε) for some i0 ≤ Kε. Then t ∈ (x(τ (i0)−), x(τ (i0))] and

λn(t) ∈ (λn(x(τ (i0)−)), λn(x(τ (i0)))] = (xn(τ (i0)
n −), xn(τ (i0)

n )].

Observe that ηxn(λn(t)) = inf{τxn ∈ Disc(xn) : λn(t) ≤ xn(τxn)} = τ
(i0)
n .

Hence xn(ηxn(λn(t))−) = xn(τ
(i0)
n −) and

Rn(t) = min{λn(t), xn(ηxn(λn(t))−)} − x(ηx(t)−)

= min{λn(t), xn(τ i0n −)} − x(τ i0−) ≤ xn(τ (i0)
n −)− x(τ (i0)−) ≤ ε.

(ii): τ∗x is a jump time of x with jump size smaller than ε, i.e. τ∗x /∈ G(ε).
Then t ∈ (x(τ∗x−), x(τ∗x)] ⊂ (x(τ∗x−), x(τ∗x−) + ε] and λn(t) ∈ (λn(x(τ∗x−)),
λn(x(τ∗x−) + ε)]. Hence

Rn(t) = min{λn(t), xn(ηxn(λn(t))−)} − x(ηx(t)−) ≤ λn(t)− x(τ∗x−)

≤ λn(x(τ∗x−) + ε)− x(τ∗x−)

= λn(x(τ∗x−) + ε)− (x(τ∗x−) + ε) + (x(τ∗x−) + ε)− x(τ∗x−)

≤ λn(x(τ∗x−) + ε)− (x(τ∗x−) + ε) + ε ≤ ‖λn − e‖+ ε < 2ε.

To estimateRn(t) in case min{λn(t), xn(ηxn(λn(t))−)}<min{t, x(τx(t)−)}
we interchange the roles of x and xn, i.e. we consider the cases λn(t) ≤
xn(ηxn(λn(t))−) and λn(t) > xn(ηxn(λn(t))−) instead of the cases t ≤
x(ηx(t)−) and t > x(ηx(t)−), respectively, as in the proof of Lemma 1. Hence
for all n > mε we have ‖(xn ◦ x−1

n )−1 ◦ λn − (x ◦ x−1)−1‖ = supt∈[0,T ]Rn(t)
< 2ε.

Thus we have shown that for every ε there exists mε such that for all
n > mε we have

dJ1((xn ◦ x−1
n )−1, (x ◦ x−1)−1)

≤ max{‖λn − e‖, ‖(xn ◦ x−1
n )−1 ◦ λn − (x ◦ x−1)−1‖} < 2ε,

which completes the proof.

Proof of Lemma 3. By (11) we have (xn ◦ x−1
n )(t) = xn(i/n) for t ∈

[xn(i/n−), xn(i/n)) = [xn((i−1)/n), xn(i/n)). For any t there exists i0 such
that t ∈ [xn((i0 − 1)/n), xn(i0/n)). For this t we have

(xn ◦ x−1
n )−1(t) = inf{s > 0 : (xn ◦ x−1

n )(s) > t}
= inf{s > 0 : (xn ◦ x−1

n )(s) > xn((i0 − 1)/n)}
= inf{s > 0, s ∈ [xn((i− 1)/n), xn(i/n)) : xn(i/n) > xn((i0 − 1)/n)}
= xn((i0 − 1)/n).
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On the other hand,

x−1
n (t) = inf{s > 0 : xn(s) > t} = inf{i/n : xn(i/n) > t}

= inf{i/n : xn(i/n) > xn((i0 − 1)/n)} = i0/n.

Hence xn(x−1
n (t)−1/n) = xn(i0/n−1/n) = xn((i0 − 1)/n) = (xn◦x−1

n )−1(t),
which completes the proof.

Proof of Theorem 1. By Lemma 3 we have Xn = Tn(T−1
n − 1/n) =

(Tn ◦ T−1
n )−1. Now Theorem 1 immediately follows from Lemmas 1–2 and

Theorem 5.5 of [2].

Proof of Theorem 2. We apply Theorem 1 to a special type of distribution
of Jn,k. Assume that for each n ≥ 1 the random variables Jn,1, Jn,2, . . . are
iid with distribution such that for any nonnegative number x,

P (Jn,1 > x) =
{

1 for x < xn,
νD(x,∞)/νD(xn,∞) for x > xn,

where νD is a Lévy measure with subordinator D satisfying νD(0,∞) =∞,
and {xn} is a sequence of positive numbers such that xn ↓ 0 in such a way
that νD(xn,∞)/n→ 1. Then Jn,1

p→ 0 and nP (Jn,1 > x)→ νD(x,∞) for all
x > 0 and Tn ⇒ D. Using Theorem 1 we get Xn ⇒M and X̃n ⇒ M̃. Since
D is stochastically continuous, we have Xn(t) ⇒ M(t) and X̃n(t) ⇒ M̃(t)
for any t > 0.

Now we show (2) for x < t. Choose a sufficiently small ε > 0. Since
νD(0,∞) = ∞, by using Theorem 3.1 from [9] we find that the integral	∞
0

	t
0 νD(t−u,∞)P (D(s) < x,D(s) ∈ du) ds is finite, so there exists b1 such

that
	∞
b1

	t
0 νD(t− u,∞)P (D(s) < x,D(s) ∈ du) ds ≤ ε.

Note that the weak convergence Tn ⇒ D implies the weak convergence of
the sequence {Nn(t)/n} for any fixed t > 0, so also its tightness. Therefore
for the chosen ε and fixed t > 0 there exists a positive integer b2 such
that P (Nn(t)/n > b2) < ε for all n ≥ 1. Take b = max{b1, b2} and define
Rn

df
= {r = k/n : k ≤ bn}. Notice that

P (Xn(t) < x) = P (Tn(Nn(t)/n) < x, Nn(t)/n > b)(19)
+ P (Tn(Nn(t)/n) < x, Nn(t)/n ≤ b)

≤ ε+
∑
r∈Rn

P (Tn(Nn(t)/n) < x, Nn(t) = nr)

= ε+
∑
r∈Rn

P (Tn(r) < x, Nn(t) = nr).

Observe that

(20) P (Tn(r) < x, Nn(t) = nr)
= P (Tn(r) < x, Nn(t) ≥ nr)− P (Tn(r) < x, Nn(t) ≥ nr + 1)
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= P (Tn(r) < x, Tn(r) ≤ t)− P (Tn(r) < x, Tn(r) + Jn,nr+1 ≤ t)

=
t�

0

(1− P (Jn,1 ≤ t− u))P (Tn(r) < x, Tn(r) ∈ du).

Define
Hn(x)

df
=
∑
r∈Rn

P (Tn(r) < x, Nn(t) = nr).

Since sample paths of Tn are step functions, for any nonnegative integer k
we have

(k+1)/n�

k/n

P (Tn(s) < x, Tn(s) ∈ du) ds =
1
n
P (Tn(k/n) < x, Tn(k/n) ∈ du).

Hence

Hn(x) =
t�

0

nP (Jn,1 > t− u)
b�

0

P (Tn(s) < x, Tn(s) ∈ du) ds

=
t�

0

nP (Jn,1 > t− u)κn(du),

where

κn(G) ≡
b�

0

P (Tn(s) < x, Tn(s) ∈ G) ds, G ∈ B(R+).

Since the Lévy process D is a subordinator with Lévy measure νD(0,∞)
=∞, Theorem 27.4 on p. 175 of [10] shows that D(s) has continuous distri-
bution for all s. By the convergence Tn ⇒ D in Du,↑[0,∞) in the J1 topology
and by continuity of distribution of D(s) for all s ≥ 0 we deduce that for
any Borel set G which is a continuity set of the measure κ the following
convergence holds:

(21) κn(G)→
b�

0

P (D(s) < x, D(s) ∈ G) ds ≡ κ(G).

Notice that
t−xn�

0

nP (Jn,1 > t− u)
b�

0

P (Tn(s) < x, Tn(s) ∈ du) ds

=
n

νD(xn,∞)

t−xn�

0

νD(t− u,∞)
b�

0

P (Tn(s) < x, Tn(s) ∈ du) ds

=
n

νD(xn,∞)

t−xn�

0

νD(t− u,∞)κn(du).
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Define probability measures κ̃ and κ̃n, n ≥ 1, on [0, t] by κ̃(G)
df
=

κ(G)/κ[0, t] and κ̃n(G)
df
= κn(G)/κn[0, t] for Borel sets G in [0, t]. Then

from (21) we get κ̃n ⇒ κ̃. Since κ̃ is a continuous distribution, the set of
discontinuities of the function h(u) = νD(t − u,∞) has zero measure with
respect to κ̃ . Hence by Theorem 5.1 of [2],

t�

0

νD(t− u,∞)κn(du)→
t�

0

νD(t− u,∞)κ(du).

The assumptions xn ↓ 0 and νD(xn,∞)/n→ 1 now give the convergence

n

νD(xn,∞)

t−xn�

0

νD(t− u,∞)
b�

0

P (Tn(s) < x, Tn(s) ∈ du) ds

→
t�

0

νD(t− u,∞)
b�

0

P (D(s) < x, D(s) ∈ du) ds.

Observe that for x < t we get
t�

t−xn

nP (Jn,1 > t− u)
b�

0

P (Tn(s) < x, Tn(s) ∈ du) ds

= n

b�

0

P (Tn(s) < x, Tn(s) ∈ (t− xn, t)) ds = 0,

because (0, x) ∩ (t− xn, t) = ∅ for all sufficiently large n. Finally we get

Hn(x) =
t�

0

nP (Jn,1 > t− u)
b�

0

P (Tn(s) < x, Tn(s) ∈ du) ds(22)

→
t�

0

νD(t− u,∞)
b�

0

P (D(s) < x, D(s) ∈ du) ds.

Using P (Xn(t) < x) → P (M(t) < x), the inequality 0 ≤ P (Xn(t) < x) −
Hn(x) ≤ ε and the convergence (22), we get

P (Xn(t) < x)→
t�

0

νD(t− u,∞)
∞�

0

P (D(s) < x, D(s) ∈ du) ds,

which completes the proof of the equality (2) in the theorem.
The proof of (3) is similar. Here we only consider the main differences.

Now we set B = (x,∞) for any fixed x > 0 and we have

P (X̃n(t)− t ∈ B)

= P (X̃n(t) ∈ B + t, Nn(t)/n > b) +P (X̃n(t) ∈ B + t, Nn(t)/n ≤ b)
≤ ε+ P (X̃n(t) ∈ B + t, Nn(t)/n ≤ b)
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and

P (X̃n(t) ∈ B + t, Nn(t)/n ≤ b) =
∑
r∈Rn

P (X̃n(t) ∈ B + t, Nn(t) = rn)

=
∑
r∈Rn

P (Tn(r + 1/n) ∈ B + t, Nn(t) ≥ rn)

−
∑
r∈Rn

P (Tn(r + 1/n) ∈ B + t, Nn(t) ≥ rn+ 1).

Observe that

P (Tn(r + 1/n) ∈ B + t, Nn(t) ≥ rn)

= P (Tn(r) + Jn,rn+1 ∈ B + t, Tn(r) ≤ t)

=
t�

0

P (Jn,rn+1 ∈ B + t− u)P (Tn(r) ∈ du)

and

P (Tn(r + 1/n) ∈ B + t, Nn(t) ≥ rn+ 1)

= P (Tn(r) + Jn,rn+1 ∈ B + t, Tn(r) + Jn,rn+1 ≤ t) = 0.

Using the above we get

P (Tn(r + 1/n) ∈ B + t, Nn(t) = rn) =
t�

0

P (Jn,1 ∈ B + t− u)P (Tn(r) ∈ du).

Finally we obtain

P (X̃n(t) ∈ B + t)

≤ ε+
∑
r∈Rn

t�

0

P (Jn,1 > x+ t− u)P (Tn(r) ∈ du) = ε+ H̃n(B),

where

H̃n(B) =
t�

0

nP (Jn,1 > x+ t− u)
b�

0

P (Tn(s) ∈ du) ds.

But for sufficiently large n we have

H̃n(B) =
n

νD(xn,∞)

t�

0

νD(x+ t− u,∞)
b�

0

P (Tn(s) ∈ du) ds

→
t�

0

νD(x+ t− u,∞)
b�

0

P (D(s) ∈ du) ds.
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Since 0 ≤ P (X̃n(t)− t > x)− H̃n(B) ≤ ε, and

0 ≤
t�

0

νD(x+ t− u,∞)
∞�

0

P (D(s) ∈ du) ds

−
t�

0

νD(x+ t− u,∞)
b�

0

P (D(s) ∈ du) ds ≤ ε,

where ε > 0 is any small number, we get (3), which completes the proof of
the theorem.
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