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SUPERCONVERGENCE BY STEKLOV AVERAGING

IN THE FINITE ELEMENT METHOD

Abstract. The Steklov postprocessing operator for the linear finite el-
ement method is studied. Superconvergence of order O(h2) is proved for
a class of second order differential equations with zero Dirichlet boundary
conditions for arbitrary space dimensions. Relations to other postprocessing
and averaging schemes are discussed.

1. Introduction. Most finite element postprocessing schemes for sec-
ond order problems discretized on simplicial partitions of domains appear in
the form of gradient postprocessing, i.e., an improved approximation of the
gradient of the true solution is obtained, but the resulting vector function
is not a potential field.

Steklov averaging based postprocessing proposed by Oganesyan and
Rukhovets in [6] does not suffer from this disadvantage.

The monograph [6] (pp. 94–101, 189) presents the Steklov operator Sh

(which will be defined in Section 2) as a tool for postprocessing of finite
element solutions of second order elliptic boundary value problems. Fixing
a subdomain Ω0 with Ω0 ⊂ Ω, and taking the finite element approximate
solution uh of the Poisson problem −∆u = f with zero Dirichlet boundary
condition, Oganesyan and Rukhovets proved the error bound

(1) ‖u − Shuh‖1,Ω0
= O(h3/2)

for 2-dimensional uniform meshes consisting of right isosceles triangles,
whereas the piecewise linear finite element solution uh approximates the
exact solution u with order

‖u − uh‖1,Ω = O(h).
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Numerical experiments, however, suggest that bound (1) is not optimal, i.e.,
it may be improved.

In this paper we show that, in fact, for u ∈ H3(Ω) and uniform meshes
we have

‖u − Shuh‖1,Ω0
≤ Ch2‖u‖3,Ω

for some C > 0.

2. Steklov averaging operator. Let Ω0 with Ω0 ⊂ Ω ⊂ R
d, d ≥ 1, be

a subdomain of a bounded domain Ω. The d-dimensional Steklov averaging

operator acting on a function v ∈ L1(Ω) is defined by

(2) (Shv)(x) =
1

(2h)d

\
Πh

v(x + y) dy,

where Πh = {y = (y1, . . . , yd) ∈ R
d | |yi| ≤ h, i = 1, . . . , d}, x ∈ Ω0, and h

is small enough so that x + Πh ⊂ Ω.

Lemma 2.1. For each integer l ≥ 0 and a fixed subdomain Ω0 with

Ω0 ⊂ Ω there exist constants C > 0 and h0 > 0 such that for all h ∈ (0, h0),

(3) ‖Shv‖l,Ω0
≤ C‖v‖l,Ω ∀v ∈ H l(Ω)

and

(4) ‖v − Shv‖1,Ω0
≤ Ch2‖v‖3,Ω ∀v ∈ H3(Ω).

Proof. Oganesyan and Rukhovets’ monograph [6] contains an elementary
proof of (3) and the bound

(5) ‖v − Shv‖0,Ω0
≤ Ch2‖v‖2,Ω

for d = 2 (pp. 94–96). Bramble and Schatz’s paper [1] includes the bounds
(3) and (5) in Lemmas 5.2 and 5.3 for arbitrary space dimensions (take
Shv = K2t

h,l ∗ v with t = 1 and l = 1).

If we make use of the equality Sh∇v = ∇Shv proved in Lemma 2.2 below,
where the Steklov operator for vector functions is naturally defined by

(Sh∇v)i = Sh
∂

∂xi
v, i = 1, . . . , d,

inequality (5) immediately implies (4).

Lemma 2.2. If v ∈ H1(Ω), then

(6) Sh∇v = ∇Shv

in Ω0 and

(7) Shv ∈ C1(Ω0).
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Proof. For a function ϕ ∈ C∞
0 (Ω0), by the Fubini theorem and the

definition of the distributional derivative we have

(Sh∂iv, ϕ)Ω0
=

1

(2h)d

\
Ω0

( \
Πh

∂iv(x + y) dy
)

ϕ(x) dx

=
1

(2h)d

\
Πh

( \
Ω0

∂iv(x + y)ϕ(x) dx
)

dy

= −
1

(2h)d

\
Πh

( \
Ω0

v(x + y)∂iϕ(x) dx
)

dy

= −
1

(2h)d

\
Ω0

( \
Πh

v(x + y) dy
)

∂iϕ(x) dx = −(Shv, ∂iϕ)Ω0

and the distributional derivative (∂/∂xi)Shv is, therefore, a function from
L2(Ω0) and equals Sh(∂/∂xi)v.

For a function v ∈ L2(Ω) we get Shv ∈ C(Ω0), since

(Shv)(x) − (Shv)(y) =
1

(2h)d

\
Υh(x,y)

v(ξ) dξ ≤
1

(2h)d
‖1‖L2(Υh(x,y))‖v‖L2(Ω),

where the set Υh(x, y) is defined by

Υh(x, y) = ((x + Πh) ∪ (y + Πh)
)

\
(

(x + Πh) ∩ (y + Πh))

(see Figure 1) and apparently

lim
x→y

‖1‖L2(Υh(x,y)) = 0

for a fixed h.

y

x

Fig. 1. Υh(x, y) for d = 2 (shaded area)

Applying the above continuity property to Sh∇u, we get Shu∈C1(Ω0).

Remark 2.3. Clearly, (2) can be rewritten as

Shv =
1

(2h)d
v ∗ χh,

where χh is the characteristic function of the set Πh and we extend the
function v in some way to L1(Rd).
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Example 2.4. For v(x) = sin(πx), x ∈ R
1, we obtain

(Shv)(x) =
1

2h

x+h\
x−h

sinπy dy =
sinπh

πh
sinπx

and

(Shv)(n)(x) = (Shv(n))(x) =
1

2h

x+h\
x−h

sin(n) πy dy =
sinπh

πh
sin(n) πx

for the nth derivative.

3. Steklov averaging in FEM. We shall consider second order elliptic
boundary value problems of the type

−div(A(x)∇u(x)) = f(x) in Ω,(8)

u(x) = 0 on ∂Ω,

where the matrix A(x) is uniformly positive definite and has a bounded total
derivative, and the right-hand side f(x) and Ω are such that the conditions
of the so-called supercloseness (see [2] and Section 3.1 below) of the piece-
wise linear finite element solution uh to the piecewise linear nodal Lagrange
interpolant Lhu are satisfied.

3.1. Uniform simplicial partitions. In the following we suppose that the
finite element solution uh is computed on a d-simplicial partition Th = {τh,i}i

of Ω (which is a bounded polytopic domain). We further assume that the
partition is constructed by translation of a partition of the d-hypercube Kd

h
with edge size h into d! d-simplices,

Sσ,h = {x = (x1, . . . , xd) ∈ R
d | 0 ≤ xσ(1) ≤ · · · ≤ xσ(d) ≤ h},

where σ denotes a permutation of 1, . . . , d and σ(j) its jth component.

The details of the construction and properties of the partition are pre-
sented in [2]. The partition constructed has internal vertices and midpoints
of internal edges of the d-simplices as symmetry points (see Theorem 2.5 in
[2]). We call a partition uniform if for each internal edge the union of sim-
plices sharing the edge is a point-symmetric set with respect to the midpoint
of the edge.

An important property of the Galerkin solution uh computed on parti-
tions of this type is its so-called supercloseness to Lhu. It is described by
the bound

(9) ‖Lhu − uh‖1,Ω ≤ Ch2‖u‖3,Ω

(see [2]). Here Lhu is the piecewise linear Lagrange interpolation of u at the
vertices of the simplices of the partition.
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3.2. Superconvergence bound. The main goal of this paper is to prove
the following theorem.

Theorem 3.1. Let Ω0 with Ω0 ⊂ Ω ⊂ R
d, d ≥ 1, be a subdomain of a

bounded domain Ω. Suppose that a regular family of uniform partitions is

used in the discretization and that u ∈ H3(Ω). Then there exists a constant

C > 0 such that

(10) ‖u − Shuh‖1,Ω0
≤ Ch2‖u‖3,Ω

for h small enough.

In the following paragraphs we will be working with the nodal linear
Lagrange interpolant Lhu of the true solution. To guarantee that Lhu is
well defined we shall suppose that u ∈ Hs(Ω) with s = 3 when d ≤ 5 and
s > d/2 when d ≥ 6. This assumption is not an obstacle to proving the
superconvergence property for u ∈ H3(Ω), which is obtained by a density
argument.

By the triangle inequality

‖u − Shuh‖1,Ω0
≤ ‖u − ShLhu‖1,Ω0

+ ‖Sh(Lhu − uh)‖1,Ω0
(11)

≤ ‖u − Shu‖1,Ω0
+ ‖Sh(u − Lhu)‖1,Ω0

+ ‖Sh(Lhu − uh)‖1,Ω0
.

We can use (4) to bound the first term on the right-hand side of (11),

(12) ‖u − Shu‖1,Ω0
≤ Ch2‖u‖3,Ω.

Using the supercloseness property (9) of the finite element solution uh and
boundedness (3) of Sh, we get

(13) ‖Sh(Lhu − uh)‖1,Ω0
≤ Ch2‖u‖3,Ω.

The boundedness of Sh and approximation theory (see [3]) imply the L2-
bound

‖Sh(u − Lhu)‖0,Ω0
≤ Ch2‖u‖3,Ω,

and therefore, it remains to estimate the term

|Sh(u − Lhu)|1,Ω0
.

3.3. One-dimensional case. In the one-dimensional case, we have

|Sh(u − Lhu)|1,Ω0
= ‖(Sh(u − Lhu))′‖0,Ω0

= ‖Sh(u′ − (Lhu)′)‖0,Ω0
.

For any node Ni of a given uniform partition of the interval Ω we obtain

(Shu′)(Ni) =
1

2h

Ni+1\
Ni−1

u′(x) dx =
u(Ni+1) − u(Ni−1)

2h
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(the central difference derivative approximation at Ni) and

(Sh(Lhu)′)(Ni) =
1

2h
[u(Ni+1) − u(Ni) + u(Ni) − u(Ni−1)]

=
u(Ni+1) − u(Ni−1)

2h
.

Since Sh(Lhu)′ is piecewise linear (on the same partition of Ω), we get

Sh(Lhu)′ = LhShu′,

and consequently,

|Sh(u − Lhu)|1,Ω0
= ‖(I − Lh)Shu′‖0,Ω0

≤ Ch2‖Shu′‖2,Ω0
≤ Ch2‖u‖3,Ω,

which is the required bound.

3.4. Properties of ShLhu and Sh∇Lhu. The situation for d > 1 is more
complicated. We define

V k
h (Ω) = {v ∈ C(Ω) | v|τh

∈ P k(τh) ∀τh ∈ Th},

where P k(τh) is the space of polynomials of degree k on a d-simplex τh.

Lemma 3.2. If vh ∈ V 1
h (Ω), then

Sh∇vh ∈ (V d
h (Ω0))

d,(14)

Shvh ∈ V 1+d
h (Ω0).(15)

Proof. The function ∂vh/∂xi is constant on each τh ∈ Th for i = 1, . . . , d.
From the structure of the simplicial mesh defined in Section 3.1 (see the
definition of Sσ,h in Section 3.1 and the definition of Πh in Section 2),
we clearly see that for a fixed simplex τh, the function fτh

(x) =
meas((x + Πh) ∩ τh) is a piecewise polynomial function in V d

h (Ω0). The
inclusion (14) is thus proved. Inclusion (15) then follows from the equality
Sh∇vh = ∇Shvh.

For d = 1 the smoothed function ShLhu is thus piecewise quadratic
(Sh∇Lhu is piecewise linear).

For d = 2 the smoothed function ShLhu is piecewise cubic (Sh∇Lhu is
piecewise quadratic).

For d = 3 the smoothed function ShLhu is piecewise quartic (Sh∇Lhu is
piecewise cubic).

3.5. Quadratic polynomial gradient recovery at symmetry points. For
N ∈ Ω0 define

Fi,N (u) = Sh
∂

∂xi
(u − Lhu)(N) =

1

(2h)d

\
Πh

∂

∂xi
(u − Lhu)(N + y) dy.

Let us now take N to be a local symmetry point of the partition, by
which we mean that for any continuous function veven that is even with
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respect to N , the linear interpolation Lhveven is even on N + Πh (e.g., N
being a vertex or a midpoint of an edge of the uniform partition considered).

We now prove that for a quadratic polynomial q we have Fi,N (q) = 0 for
i = 1, . . . , d. Decompose

q(x) = qeven(x) + qodd(x)

into even and odd (with respect to the point N) polynomial parts; clearly
qodd is linear, thus qodd = Lhqodd and Fi,N (qodd) = 0. The local symmetry
condition implies that Lhqeven is an even function. Then both (∂/∂xi)qeven

and (∂/∂xi)Lhqeven are odd functions and have zero mean over N + Πh (a
set that is point-symmetric with respect to N). Therefore, Fi,N (q) = 0 for
all quadratic functions and i = 1, . . . , d (for all d ≥ 1).

3.6. Dimension d = 2. For d = 2 the postprocessed function Sh∇Lhu
is piecewise quadratic (see Lemma 3.2). Since Sh∇q = ∇q is linear for a
quadratic polynomial q (Sh∇q being the average of a linear function over an
area symmetric with respect to its center of gravity) and Sh∇q = Sh∇Lhq
at the vertices and midpoints of edges of triangles, we have

(16) ∇q = Sh∇q = Sh∇Lhq.

We shall now follow a Bramble–Hilbert lemma like sequence of argu-
ments. From (16) we see that

‖Sh(∇u −∇Lhu)‖0,τh
= ‖Sh(∇(u − q) −∇Lh(u − q))‖0,τh

≤ C‖∇(u − q) −∇Lh(u − q)‖0,τh+Πh

≤ C ′h|u − q|2,τh+Πh
.

Making use of results of approximation theory (see [3]), we get

inf
q
|u − q|2,τh+Πh

≤ Ch|u|3,τh+Πh

and consequently,

‖Sh(∇u −∇Lhu)‖0,τh
≤ Ch2|u|3,τh+Πh

.

Summing over all triangles τh, we get

|Sh(u − Lhu)|1,Ω0
=

√

∑

τh

‖Sh(∇u −∇Lhu)‖2
0,τh

(17)

≤ Ch2

√

∑

τh

|u|23,τh+Πh
≤ C ′h2|u|3,Ω.

Putting (12), (13), and (17) together, we finally prove the bound

(18) ‖u − Shuh‖1,Ω0
≤ Ch2‖u‖3,Ω

for u ∈ H3(Ω).
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3.7. Superconvergence for the diagonal directional derivative
∑d

i=1 ∂/∂xi.

Before we look into the general case of arbitrary space dimension, we shall
take a closer look at the case of the diagonal derivative.

The postprocessed function Sh

(
∑d

i=1
∂

∂xi
Lhu

)

has a simpler structure

than the functions Sh

(

∂
∂xi

Lhu
)

, i = 1, . . . , d, have, allowing a simple proof
of a superconvergence result for the diagonal derivative.

For an edge e of the simplicial partition in the direction (1, . . . , 1)∈R
d,

the patch of simplices sharing this edge is a d-hypercube with e being
its diagonal (see [2]). Furthermore, the derivative along e is constant on

the d-hypercube. Now clearly Sh

(
∑d

i=1
∂

∂xi
Lhu

)

is piecewise linear in each

direction ei ∈ R
d with jth component eij = δij , so it is a piecewise linear

tensor product function (e.g., piecewise bilinear for d = 2).

The bound
∥

∥

∥

∥

Sh

d
∑

i=1

∂

∂xi
(u − Lhu)

∥

∥

∥

∥

0,Ω0

≤ Ch2‖u‖3,Ω

is now apparent, since similarly to (16) we have

d
∑

i=1

∂

∂xi
q = Sh

d
∑

i=1

∂

∂xi
q = Sh

d
∑

i=1

∂

∂xi
Lhq

for any quadratic polynomial q.

3.8. Dimension d ≥ 3. We shall now use the results for d = 2 to prove
the quadratic polynomial gradient recovery property (16) for general d ≥ 3.

For q linear, we clearly have Lhq = q, and therefore, (16) is true.

It remains to prove (16) for quadratic monomials

q(x) = xixj , i, j ∈ {1, . . . , d}.

Fix i, j. For an integer k /∈ {i, j}, the monomial q does not depend on
xk and so ∂q/∂xk is zero. The derivative (∂/∂xk)Lhq is constant on each
d-simplex and is determined by the values of Lhq at the vertices of the edge
in the canonical direction ek. Each d-simplex of the partition considered has
such an edge (see [2]). Therefore,

∂

∂xk
q =

∂

∂xk
Lhq = 0 for k /∈ {i, j},

and thus,

Sh
∂

∂xk
Lhq = 0 for k /∈ {i, j}.

We shall now investigate the case of the ∂/∂xi derivative. Setting Πm
h =

(−h, h)m and taking a permutation σ of 1, . . . , d such that σ(d− 1) = i and
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σ(d) = j, we have

Sh
∂

∂xi
Lhq =

1

(2h)d−2

\
Πd−2

h

(

1

(2h)2

\
Π2

h

∂

∂xi
Lhq dxidxj

)

dxσ(1) · · · dxσ(d−2)

=
1

(2h)2

\
Π2

h

∂

∂xi
Lhq dxi dxj,

since Lhq does not depend on xσ(1), . . . , xσ(d−2).

It now follows from (16) for the two-dimensional case that Sh(∂/∂xi)Lhq
is a linear function (depending on xi and xj only).

Therefore, (16) is proven for d ≥ 3. Following an identical sequence of
arguments as for the two-dimensional case, we come to the bound (10) of
Theorem 3.1.

Having worked so far with functions u ∈ Hs(Ω) (with s = 3 when d ≤ 5
and s > d/2 when d ≥ 6), we shall now complete the proof for functions
u ∈ H3(Ω) by a density argument.

Let u ∈ H3(Ω) and ε > 0 be given. By density of Hs(Ω) in H3(Ω) there
exists a function w ∈ Hs(Ω) such that ‖u − w‖3,Ω ≤ ε. By the triangle
inequality

‖u − Shuh‖1,Ω0
≤ ‖(u − w) − Sh(uh − wh)‖1,Ω0

+ ‖w − Shwh‖1,Ω0

≤ Cε + Ch2‖w‖3,Ω ≤ C ′ε + Ch2‖u‖3,Ω,

where wh is the Galerkin projection of w (corresponding to the boundary
value problem considered and the finite element space used). Since ε > 0
was arbitrary, we arrive at

‖u − Shuh‖1,Ω0
≤ Ch2‖u‖3,Ω

for u ∈ H3(Ω).

3.9. Pointwise estimates at local symmetry points. Estimates at a sym-
metry point N yield

|Fi,N (u)| ≤
C

(2h)d

∥

∥

∥

∥

∂

∂xi
(u − Lhu)

∥

∥

∥

∥

0,N+Πh

‖1‖0,N+Πh
≤

C ′

(2h)d/2
h|u|2,N+Πh

and since Fi,N (q) = 0 for all quadratic polynomials q, we can write

|Fi,N (u)| ≤
C

(2h)d/2
h|u − q|2,N+Πh

.

The use of approximation theory (see [3]) then yields the following result,
which we will employ later in Section 3.11.



486 K. Kolman

Lemma 3.3. There exists a constant C > 0 such that if N is a symmetry

point of the mesh, then

(19) |Fi,N (u)| ≤
C

(2h)d/2
h2|u|3,N+Πh

, i = 1, . . . , d,

for h small enough.

3.10. Modifications. We can alter the above approach for d = 2 to per-
form the averaging over a different area symmetric with respect to its center
of gravity, e.g., Ξh or Λh of Figure 2, and obtain the same postprocessing
accuracy as for the area Πh. The proof would be identical as in the case of
Πh as long as we choose to average over a point-symmetric area such that
the results of Lemma 3.2 are valid.

Whereas results of Section 3.9 carry over to the case of a general point-
symmetric averaging area for d ≥ 3, the condition of symmetry itself will
not allow a similar proof of the quadratic polynomial recovery property (16)
as in Section 3.8. However, (19) can still be utilized for proving error bounds
of various averaging schemes as in the following section.

Fig. 2. Averaging areas Πh, Ξh and Λh

3.11. Gradient superconvergence. For arbitrary space dimension d we
easily obtain

‖∇u − LhSh∇uh‖0

≤ ‖∇u − LhSh∇u‖0 + ‖LhSh(∇u −∇Lhu)‖0 + ‖LhSh(∇Lhu −∇uh)‖0

≤ Ch2‖u‖3 + ‖LhSh(∇u −∇Lhu)‖0,

and employing the bound (19) at vertices to bound the remaining linear
term, we easily get

‖∇u − LhSh∇uh‖0,Ω0
≤ Ch2‖u‖3,Ω.

Choosing to average over Ξh (d = 2, see Figure 2), one immediately gets
the superconvergence result for the linear field (see [5])

LhSh∇uh(N) =
1

6

∑

τ∩N 6=∅

∇uh|τ ,

for d = 3 (see [4])
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LhSh∇uh(N) =
1

24

∑

τ∩N 6=∅

∇uh|τ ,

or similarly for an arbitrary d with coefficient 1/(d + 1)!.

Averaging over Λh for d = 2 leads to the postprocessing scheme (see [2])

LhSh∂x1
uh(N) =

uh(N + (h, 0)) − uh(N − (h, 0))

2h
,

LhSh∂x2
uh(N) =

uh(N + (0, h)) − uh(N − (0, h))

2h
.

Remark 3.4. The postprocessed solution Shuh is not better in the L2-
sense, i.e., we only have

‖u − Shuh‖0,Ω0
= O(h2),

and this estimate cannot be improved.

4. Numerical experiments. We tested the superconvergence rate for
the problem (8) with A = I on the cube Ω = [0, 1]3. The first inequality in
(11) allowed us to restrict ourselves to testing the second order of conver-
gence of the interpolation ‖u−ShLhu‖1,Ω only. Results reported in Table 1

are for the function u(x) =
∏3

i=1 sin(πxi), which is an eigenfunction of the
problem considered. Note that in this case

‖∂1u − Sh∂1Lhu‖0 >
∥

∥

∥

3
∑

i=1

∂iu − Sh

3
∑

i=1

∂iLhu
∥

∥

∥

0
,

as reported in Table 1. This observation is in agreement with Section 3.7.

The computation of the error in L2-norms was performed with HIntLib,
a C++ package for high dimensional numerical integration.

The smoothening effect of the Steklov operator applied to two-dimen-
sional continuous piecewise linear functions is shown in Figures 3 and 4.
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Fig. 3. Basis function for piecewise linear elements and its postprocessing
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Table 1. Reduction factors for u =
∏

3

i=1
sin(πxi)

1/h ‖∂1u − Sh∂1Lhu‖0 reduct. ‖
∑

3

i=1
∂iu − Sh

∑

3

i=1
∂iLhu‖0 reduct.

4 0.290806 – 0.1440776 –

8 0.0997422 2.90 0.0485776 2.91

16 0.029411 3.19 0.0152295 3.39

32 0.00785763 3.32 0.00458811 3.74
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Fig. 4. Graphs of Lhu and ShLhu for u(x1, x2) = e−2/
√

ϑ exp((b1x1 + b2x2)/2ϑ) ·
sin(kπx1) sin(lπx2) with ϑ = 1/10, b1 = 1, b2 = 0, k = 1, l = 3 for h = 1/8 (graph
of ShLhu fitted to an h2 mesh)
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