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GLOBAL MILD SOLUTIONS OF THE MICROPOLAR FLUID
SYSTEM IN CRITICAL SPACES

Abstract. We prove the global in time existence of a small solution for
the 3D micropolar fluid system in critical Fourier–Herz spaces by using the
Fourier localization method and Littlewood–Paley theory.

1. Introduction. We consider the incompressible micropolar fluid sys-
tem in R+ × R3:

(1.1)


∂tu− (χ+ ν)∆u+ u · ∇u+∇π − 2χ∇× ω = 0,

∂tω − µ∆ω + u · ∇ω + 4χω − κ∇ divω − 2χ∇× u = 0,

div u = 0,

(u, ω)|t=0 = (u0, ω0).

Here u(t, x) and ω(t, x) denote the linear velocity and the angular velocity
field of the fluid respectively. The scalar π(t, x) denotes the pressure of the
fluid. The constants κ, χ, ν, µ are the viscosity coefficients. Here, for simplic-
ity of exposition, we take χ = ν = 1/2 and κ = µ = 1.

The modern theory of micropolar fluid dynamics began over 40 years
ago, when Eringen [8] published his pioneering works on the micropolar
fluid motion equations, a model which accounts for micro-rotation effects
and micro-rotation inertia in a fluid motion system. In a physical sense,
micropolar fluids represent fluids consisting of barlike elements. For example,
some polymeric fluids and fluids containing certain additives in narrow films
may be represented by a sort of fluid model as in (1.1) ([8, Secs. 1 and 6]).
Moreover, experiments with fluids containing extremely small amounts of
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polymeric additives indicate that the skin friction near a rigid body in such
fluids is considerably lower than that of the same fluids without additives
(cf. [20]). In other words, micropolar fluid systems can describe phenomena
which appear in a large number of complex fluids such as suspensions, animal
blood, liquid crystals, which cannot be appropriately characterized by the
Navier–Stokes system. For more background, we refer the reader to [18] and
the references therein.

Due to their importance in mathematics and physics, there are a large
number of works on the mathematical theory of micropolar fluid equations
(1.1) (see, for example, [1, 8, 10, 12, 23]). First of all, we refer to [8] for
the uniqueness and existence of local smooth solutions. The existence and
uniqueness of global solutions were extensively studied by Lange [16], Ya-
maguchi [23], and Chen–Miao [6]. Recently, Ferreira and Villamizar-Roa [9]
considered the existence and stability of solutions to micropolar fluid equa-
tions in exterior domains. Villamizar-Roa and Rodríguez-Bellido [21] studied
the micropolar system in a bounded domain using the semigroup approach
in Lp spaces, showing the global existence of strong solutions for small data
as well as the asymptotic behavior and stability of solutions. Blow-up criteria
for smooth solutions and regularity criteria for weak solutions can be found
in [25, 24, 22] and in the references therein.

If the microstructure of the fluid is not taken into account, that is, the
effect of the angular velocity fields of the particle rotation is omitted, i.e.,
ω = 0, then equation (1.1) reduces to the classical Navier–Stokes equations

∂tu− ν∆u+ u · ∇u+∇π = 0,

div u = 0,

u(x, 0) = u0.

(1.2)

Fujita and Kato [11, 14] proved the local well-posedness for large initial
data and the global well-posedness of this problem for small initial data in
the homogeneous Sobolev space Ḣ1/2 and the Lebesgue space L3 respec-
tively. These spaces are critical ones, which is associated to the scaling of
the Navier–Stokes equations: if (u, p) solves (1.2), then

(uλ(t, x), pλ(t, x)) := (λu(λ2t, λx), λ2p(λ2t, λx))(1.3)

is also a solution of (1.2). The critical space is the one such that the asso-
ciated norm is invariant under the scaling of (1.3). Recently, Lei and Lin
[17] proved an interesting global well-posedness result for the initial data
in the space X−1 := {u ∈ D′(R3);

	
R3 |ξ|−1|û(ξ) dξ < ∞}. Cannone and

Wu [5] improved that result by proving the global well-posedness for the
Navier–Stokes equations in a family of critical Fourier–Herz spaces, which
are larger than the space X−1 introduced by Lei and Lin. The Fourier–Herz
spaces have also been used by Iwabuchi [13] to study the Keller–Segel sys-
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tem, and by Konieczny and Yoneda [15] to construct the stationary solution
of the Navier–Stokes equations.

Since the micropolar fluid equations (1.1) have the same nonlinear con-
vection structure as the incompressible Navier–Stokes equations, it is nat-
ural to expect analogous results on problem (1.1) in Fourier–Herz spaces.
The purpose of this paper is to follow this way and to prove the global
well-posedness for the three-dimensional micropolar fluid equations in crit-
ical Fourier–Herz spaces by means of Littlewood–Paley decomposition and
Bony’s paradifferential calculus.

2. Main results. The proofs of the results presented in this paper are
based on a dyadic partition of unity in the Fourier variables, called homo-
geneous Littlewood–Paley decomposition. We briefly recall this construction
below.

Let ϕ be a smooth function with values in [0, 1], supported in the shell
{ξ ∈ R3; 3/4 ≤ |ξ| ≤ 8/3} and satisfying∑

j∈Z
ϕ(2−jξ) = 1, ∀ξ ∈ R3 \ {0},

and denote ϕj(ξ) = ϕ(2−jξ) and hj = F−1ϕj , with F−1 the inverse Fourier
transform.

Definition 2.1. For s ∈ R, 1 ≤ q ≤ ∞ and u ∈ S ′, we set

‖u‖Ḃsq :=
(∑
j∈Z

2jsq‖ϕj û‖qL1

)1/q
if q <∞

and ‖u‖Ḃs∞ := supj∈Z 2
js‖ϕj û‖L1 . Here û denotes the Fourier transform of u.

Then, we define the homogeneous Fourier–Herz space as Ḃsq := {u ∈ S ′/P;
‖u‖Ḃsq <∞}.

Remark 2.2. Using Hausdorff–Young’s inequality, we immediately get
the estimate

‖u‖Ḃs∞,q ≤ C‖u‖Ḃsq ,

where Ḃs
∞,q is the usual homogeneous Besov space.

For mixed space-time spaces, we have the following definition.

Definition 2.3. Let s ∈ R, 1 ≤ q, ρ ≤ ∞ and I = [0, T ), with T ∈
(0,∞]. We set

‖u(x, t)‖Lρ(I;Ḃsq) :=
(∑
j∈Z

2jsq‖ϕj û‖qLρ(I;L1)

)1/q
,
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and denote by Lρ(I; Ḃsq) the set of distributions in S ′(I ×R3)/P with finite
‖ · ‖Lρ(I;Ḃsq) norm.

The following theorem is our main result.

Theorem 2.1. Let q ∈ [1, 2], (v0, ω0) ∈ Ḃ−1q (R3), and div v0 = 0. There
exists a constant cq depending only on q such that if

(2.1) ‖(v0, ω0)‖Ḃ−1
q
< cq,

then (1.1) has a unique global solution (v, ω) ∈ C([0,∞); Ḃ−1q )∩L1(0,∞; Ḃ1q )
satisfying

(2.2) ‖(v(t), ω(t))‖L∞(0,∞;Ḃ−1
q )∩L1(0,∞;Ḃ1q)

≤ C‖(v0, ω0)‖Ḃ−1
q
.

3. The linearized system and mild solutions. In this section, we
consider the linearized system corresponding to (1.1) and we define mild
solutions for (1.1).

Throughout this paper, for a matrix M = (Mij)1≤i,j≤m with elements
from a Banach space X, we set

‖M‖X :=
∑
i,j

‖Mij‖X .

Let y = (u, ω). For v ∈ R3, we use the notation v ⊗ y = (v ⊗ u, v ⊗ ω),
where ⊗ denotes the tensor product in R3. Furthermore, we denote abusively
P(v⊗ y) = (P(v⊗u), v⊗ω), where P is the Leray projection. Moreover, we
define

P̂ ̂(v ⊗ y) = ( ̂P(v ⊗ u), v̂ ⊗ ω) = (P̂(ξ) ̂(v ⊗ u), v̂ ⊗ ω).
Now, applying the Leray projection to the equations in (1.1), we obtain

(3.1)


∂tu−∆u+P(u · ∇u)−∇× ω = 0,

∂tω −∆ω + u · ∇ω + 2ω −∇ divω −∇× u = 0,

div u = 0,

(u, ω)|t=0 = (u0, ω0).

Obviously, this system has no scaling property in contrast to the incompress-
ible Navier–Stokes equations. In general there are two ways to achieve the
global existence for small data in the critical space. The first one is Kato’s
semigroup approach extended by Cannone [4]; however, it turns out that the
linear terms ∇ × ω and ∇ × u do not allow one to obtain global in time
solutions if they are regarded as perturbations. The second way is to use
the energy method together with the Fourier localization technique, but the
linear coupling effect of the system (3.1) is too strong to be controlled unless
the coefficients of these two linear terms are sufficiently small, which is not
a reasonable assumption.
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To go around the troubles caused by the terms ∇ × ω and ∇ × u, we
will view them as certain perturbations of the Laplace operator. More pre-
cisely, we will apply the idea developed in [7] for compressible Navier–Stokes
equations, i.e., first, we investigate the following mixed linear system:

(3.2)

{
∂tu−∆u−∇× ω = 0,

∂tω −∆ω + 2ω −∇ divω −∇× u = 0,

and we study the properties of its Green matrix G(x, t). From [10], we have

Ĝf(ξ, t) = e−A(ξ)tf̂(ξ),(3.3)

where

A(ξ) =

[
|ξ|2I B(ξ)

B(ξ) (|ξ|2 + 2)I + C(ξ)

]
with

B(ξ) = i

 0 −ξ3 ξ2

ξ3 0 −ξ1
−ξ2 ξ1 0

 and C(ξ) =

 ξ21 ξ1ξ2 ξ1ξ3

ξ1ξ2 ξ22 ξ2ξ3

ξ1ξ3 ξ2ξ3 ξ23

 .
It has been shown in [10] that G(x, t) has properties similar to the heat
kernel, namely,

(3.4) |Ĝ(ξ, t)| ≤ e−c|ξ|2t.
We are now in a position to introduce the notion of mild solutions for

(3.1), with the help of Duhamel’s principle.

Definition 3.1. A mild solution for (3.1) with initial data y0 = (u0, ω0)
with div u0 = 0 is a couple y = (u, ω) such that

y = G(x, t)y0 −
t�

0

G(x, t− τ)∇ ·P(u⊗ y) dτ.(3.5)

4. Proof of Theorem 2.1. Based on observations provided in Section 3,
we are in a position to prove Theorem 2.1. First, we recall a classical result on
the existence of fixed point solutions of equations with a bilinear continuous
mapping. Its proof can be found e.g. in [3].

Theorem 4.1. Let X be an abstract Banach space with norm ‖ · ‖ and
B : X × X → X a bilinear operator such that ‖B(x1, x2)‖ ≤ η‖x1‖ ‖x2‖
for any x1, x2 ∈ X. Then for any y ∈ X such that 4η‖y‖ < 1 the equation
x = y + B(x, x) has a solution x in X. In particular, this solution satisfies
‖x‖ ≤ 2‖y‖ and it is the only one such that ‖x‖ < 1/(2η).

In order to use Theorem 4.1 in the proof of Theorem 2.1, we have to
obtain the following linear and bilinear estimates.
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Lemma 4.2. There exists a constant C such that for every y0 = (u0, ω0)
∈ Ḃ−1q (R3), we have

‖G(·, ·)y0‖L∞(I;Ḃ−1
q )∩L1(I;Ḃ1q)

≤ C‖y0‖Ḃ−1
q
.(4.1)

Proof. Let us first observe that

(4.2) ‖G(x, t)y0‖L∞(I;Ḃ−1
q ) =

∥∥∥2−j sup
t∈I
‖ϕj ̂G(x, t)y0‖L1

∥∥∥
lq

=
∥∥∥2−j sup

t∈I

�
|ϕj ̂G(x, t)y0| dξ

∥∥∥
lq
=
∥∥∥2−j sup

t∈I

�
|ϕje−tA(ξ)ŷ0| dξ

∥∥∥
lq

≤
∥∥∥2−j sup

t∈I

�
|e−ct|ξ|2ϕj ŷ0| dξ

∥∥∥
lq
≤ C

∥∥∥2−j � |ϕj ŷ0| dξ∥∥∥
lq
= C‖y0‖Ḃ−1

q
,

where we have used estimate (3.4).
Similarly, the second norm is estimated as follows:

(4.3) ‖G(x, t)y0‖L1(I;Ḃ1q) = ‖2
j‖ϕj ̂G(x, t)y0‖L1(I;L1)‖lq

=
∥∥∥2j �

I

�
|ϕj ̂G(x, t)y0| dξ dt

∥∥∥
lq
=
∥∥∥2j �

I

�
|ϕje−tA(ξ)ŷ0| dξ dt

∥∥∥
lq

≤
∥∥∥2j �

I

e−ct2
2j
dt

�
|ϕj ŷ0| dξ

∥∥∥
lq
≤ C

∥∥∥2−j � |ϕj ŷ0| dξ∥∥∥
lq
= C‖y0‖Ḃ−1

q
.

From (4.2) and (4.3) we obtain (4.1).
To estimate the nonlinear term, we first recall the following bilinear es-

timate from [5].

Lemma 4.3. Let q ∈ [1, 2] and

X = L∞(I; Ḃ−1q ) ∩ L1(I; Ḃ1q )
with the norm

‖u‖X = ‖u‖L∞(I;Ḃ−1
q ) + ‖u‖L1(I;Ḃ1q).

We have the following bilinear estimate:

‖∇ · (uv)‖L1(I;Ḃ−1
q ) ≤ C‖u‖X‖v‖X ,(4.4)

where C is a constant depending only on q.

Next we show the continuity of the bilinear form B(y1, y2) with y1 =
(u1, ω1), y2 = (u2, ω2) in the mild solution formulation (3.5), defined by

B(y1, y2) = −
t�

0

G(x, t− τ)∇ ·P(u1 ⊗ y2) dτ.

Lemma 4.4. Let X = L∞(I; Ḃ−1q )∩L1(I; Ḃ1q ). There exists a constant η
such that for every y1 = (u1, ω1), y2 = (u2, ω2) ∈ X we have

‖B(y1, y2)‖X ≤ η‖y1‖X‖y2‖X .(4.5)
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Proof. Let us first estimate the norm in L∞(I; Ḃ−1q ). Using Young’s in-
equality, (3.4) and (4.4), we obtain

(4.6) ‖B(y1, y2)‖L∞(I;Ḃ−1
q ) =

∥∥2−j sup
t∈I
‖ϕj ̂B(y1, y2)‖L1

∥∥
lq

=
∥∥∥2−j sup

t∈I

�
|ϕj ̂B(y1, y2)| dξ

∥∥∥
lq

=
∥∥∥2−j sup

t∈I

� ∣∣∣ϕj t�
0

e−(t−τ)A(ξ) ̂∇ ·P(u1 ⊗ y2) dτ
∣∣∣ dξ∥∥∥

lq

≤
∥∥∥2−j sup

t∈I

t�

0

�
e−c(t−τ)|ξ|

2 |ϕj ̂∇ ·P(u1 ⊗ y2)| dξ dτ
∥∥∥
lq

≤
∥∥∥2−j sup

t∈I

t�

0

e−c(t−τ)2
2j
�
|ϕj ̂∇ ·P(u1 ⊗ y2)| dξ dτ

∥∥∥
lq

≤ c
∥∥2−j‖ϕj ̂∇ ·P(u1 ⊗ y2)‖L1(I;L1)

∥∥
lq

= c‖∇ ·P(u1 ⊗ y2)‖L1(I;Ḃ−1
q ) ≤ K‖y1‖X‖y2‖X .

The second part of the norm in X is estimated as follows

(4.7) ‖B(y1, y2)‖L1(I;Ḃ1q) =
∥∥2j‖ϕj ̂B(y1, y2)‖L1(I;L1)

∥∥
lq

=
∥∥∥2j �

I

�
|ϕj ̂B(y1, y2)| dξdt

∥∥∥
lq

=
∥∥∥2j �

I

� ∣∣∣ϕj t�
0

e−(t−τ)A(ξ) ̂∇ ·P(u1 ⊗ y2)
∣∣∣ dτ dξ dt∥∥∥

lq

≤
∥∥∥2j �

I

t�

0

�
e−c(t−τ)|ξ|

2 |ϕj ̂∇ ·P(u1 ⊗ y2)| dξ dτ dt
∥∥∥
lq

≤
∥∥∥2j �

I

t�

0

e−c(t−τ)2
2j
�
|ϕj ̂∇ ·P(u1 ⊗ y2)| dξ dτ dt

∥∥∥
lq

≤ c
∥∥2−j‖ϕj ̂∇ ·P(u1 ⊗ y2)‖L1(I;L1)

∥∥
lq

= c‖∇ ·P(u1 ⊗ y2)‖L1(I;Ḃ−1
q )

≤ K‖y1‖X‖y2‖X .

Summing up, from (4.6) and (4.7) we obtain (4.5).

Proof of Theorem 2.1. It suffices to apply to equation (3.5) Lemmas 4.2
and 4.4 combined with Theorem 4.1. The proof of the continuity with respect
to time is standard and omitted here.
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