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NOTE ON STABILITY ESTIMATION IN SEQUENTIAL

HYPOTHESIS TESTING

Abstract. We introduce a quantitative measure ∆ of stability in optimal
sequential testing of two simple hypotheses about a density of observations:
f = f0 versus f = f1. The index ∆ represents an additional cost paid when
a stopping rule optimal for the pair (f0, f1) is applied to test the hypothesis

f = f0 versus a “perturbed alternative” f = f̃1. An upper bound for ∆ is
established in terms of the total variation distance between f1(X)/f0(X)

and f̃1(X)/f0(X) with X ∼ f0.

1. Problem setting. Consider two probability densities f0 and f1 with
respect to a given σ-finite measure on (R,B(R)), and suppose that a sequence
X1, X2, . . . of i.i.d. random variables (observations defined on a suitable
probability space (Ω,F)) has a common density f0 or f1. The sequential
hypothesis testing f0 versus f1 we deal with consists in finding an a.s. fi-
nite stopping time τ and a terminal decision function δ which minimize the
following cost functional:

W (τ, δ) := c0E0τ + c1α(τ, δ) + c2β(τ, δ),

where E0 represents the expectation corresponding to the density f0, α and
β are probabilities of errors of type I and type II, respectively, and c0, c1,
c2 are given “penalty costs”, which are strictly positive.

In [N1] and [GNZ] it was proven (using the results from [L]) that the
above problem reduces to the minimization over stopping times of the func-
tional

V (τ) := c0E0τ + E0 min{c1, c2eSτ },(1)
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where S0 := 0 and Sn :=
∑n

k=1 log[f1(Xk)/f0(Xk)], n ≥ 1; here Xk, k ≥ 1,
are i.i.d. random variables with density f0. Furthermore, for certain con-
stants −∞ < A ≤ 0 ≤ B <∞, the a.s. finite stopping time

τ∗ = inf{n ≥ 0 : Sn /∈ (A,B)}(2)

is optimal, that is, V (τ∗) = infτ V (τ).

To set the stability estimating problem we assume that the density f1
is interpreted as some “theoretical approximation” to a “real” alternative
density f̃1 about which the statistician is not certain. Such an alternative
can be set, for example, as in the problems of robust statistics, namely
f̃1 := (1 − ε)f1 + εf ′ (see e.g. [H] and [J], [K1], [K2] on robust procedures
for sequential hypothesis testing).

For the pair of densities (f0, f̃1) the cost functional Ṽ (τ) is defined as in

(1) with Sτ replaced by S̃τ :

Ṽ (τ) := c0E0τ + E0 min{c1, c2eS̃τ },(3)

where

S̃0 := 0, S̃n :=

n∑
k=1

log

[
f̃1(Xk)

f0(Xk)

]
, Xk ∼ f0, n ≥ 1.

Again, there exist constants −∞ < Ã ≤ 0 ≤ B̃ <∞ such that the stopping
time

τ̃∗ := inf{n ≥ 0 : S̃n /∈ (Ã, B̃)}(4)

is optimal in testing f0 against f̃1, i.e. Ṽ (τ̃∗) = infτ Ṽ (τ).

Uncertainty about f̃1 does not allow one to find Ã and B̃. However, we
suppose that for the pair of densities (f0, f1) the constants (A,B) in (2) can
be obtained (at least “theoretically”), and that the stopping rule determined

by (A,B) is applied to S̃n. Thus, in order to test f0 against f̃1, instead of
the inaccessible stopping rule (4), the following stopping rule is exercised:

stop on first exit of the sequence S̃n, n ≥ 1, from the interval (A,B). This
procedure generates the stopping time τ̃ :

τ̃ := inf{n ≥ 0 : S̃n /∈ (A,B)}.(5)

The following stability index (see, for instance, [GY]) measures an extra cost
paid for using τ̃ instead of the optimal stopping time τ̃∗:

∆ = Ṽ (τ̃)− Ṽ (τ̃∗) ≥ 0,(6)

where the functional Ṽ is as defined in (3).
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The goal of this note is to prove the following “stability inequality”:

(7) ∆ ≤ Var

(
f1(X)

f0(X)
,
f̃1(X)

f0(X)

){
(c0+c1)

[
logβ

(
1

4
Var

(
f1(X)

f0(X)
,
f̃1(X)

f0(X)

))]2
+ b logβ

(
1

4
Var

(
f1(X)

f0(X)
,
f̃1(X)

f0(X)

))}
,

where β ∈ (0, 1) and b < ∞ are certain constants (which can be evaluated
for some particular classes of densities), X has density f0, and Var denotes
the total variation distance.

Remark 1. In the paper [GNZ], which dealt with the same problem,
a different “stability inequality” was obtained. After the publication of the
paper, it was realized that the proof given in [GNZ] is correct only for
another definition of the stability index ∆, which is different from (and less
practical than) that given in (6). Moreover, for such a proof rather restrictive
assumptions on densities have to be used.

2. Stability index estimation

Assumption 1. Let X denote a random variable with density f0. We
assume that there exists a Borel set D ⊂ R such that

	
D f0(x) dx = 1, and

f0(x), f1(x), f̃1(x) > 0 for all x ∈ D.

In what follows we denote Y = f1(X)/f0(X) and Ỹ = f̃1(X)/f0(X).

Theorem 1. There are constants β ∈ (0, 1) and b <∞ such that

(8) ∆ ≤ Var(Y, Ỹ )

{
(c0 + c1)

[
logβ

(
1

4
Var(Y, Ỹ )

)]2
+ b logβ

(
1

4
Var(Y, Ỹ )

)}
.

Remark 2. The proof in Section 4 shows that if in (7) and (8),Var(Y, Ỹ )
is small enough, then β and b are completely determined by the densities
(f0, f1), and so can be chosen independently of f̃1.

To prove (8) we use the well-known exponential inequalities (from [S2])
for the probabilities of “tails” of stopping times defined in (2), (4) and (5).
In general, these inequalities are very rough. This implies that the constant
β < 1 in (8) can be too close to 1. (And in some examples this is indeed the
case.) For this reason, inequality (8) does not have much quantitative value,
and the simplest exponential bound on “tail probabilities” is used only to
indicate the way to obtain inequalities of this type. The advantage of the
inequalities in [S2] is that they hold without any additional restrictions. Us-
ing more accurate bounds on “tail probabilities”, which hold under certain
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restrictions on the densities f0, f1 and f̃1, one can prove more precise ver-
sions of (8) by applying the same arguments as in Section 4. For example,

assuming the existence of exponential moments of Y and Ỹ , the inequalities
for “tail probabilities” of stopping times can be derived from exponential
inequalities for sums of i.i.d. random variables (see for instance [S1], [PU]).

In any case, inequality (8) ensures that if the “approximating density” f1
approaches to f̃1 in the sense that Var(Y, Ỹ )→ 0, then the stability index ∆
(defined in (6)) tends to zero. To grasp what the rate of convergence ∆→ 0
could be, we present in Section 3 some evaluations of ∆ in the simplest
example of exponential densities. These data are obtained by simulations
and numerical optimization.

3. Calculations of stability index for exponential densities. In
functionals (1) and (3), we have chosen c0 = 1 and c1 = c2 = 100. Let

f0 ∼ Exp(λ = 1), f1 ∼ Exp(λ = 2), f̃1,ε ∼ Exp(λ = 2+ε), ε > 0. We denote

Y = f1(X)/f0(X), Ỹε = f̃1,ε(X)/f0(X), where X ∼ f0. For this example

it is easy to calculate Var(Y, Ỹε) in (8) (see Table 1). The constants β and
b in (8) can also be evaluated, but they are of little help for estimating
the stability index ∆ quantitatively (since β is too close to 1). Table 1
displays the results of numerical calculations of ∆ = ∆(ε). To carry out
these calculations we used Monte-Carlo optimizations of the corresponding
stopping rules in (2), (4) and (5).

Table 1. Numerical evaluation of ∆

(f0, f1) V (τ∗) = infτ V (τ) = 15.1995

ε Var(Y, Ỹε) Ṽ (τ̃∗) = infτ Ṽ (τ) Ṽ (τ̃) ∆ = ∆(ε)

0.1 0.1464 13.6410 13.8312 0.1902

0.01 0.01448 15.0676 15.2301 0.1626

(f0, f̃1,ε) 10−3 0.001446 15.2509 15.3564 0.1055

10−5 0.00001446 15.2966 15.2966 0.1024

10−6 1.1931 × 10−6 15.2597 15.3289 0.0692

4. Proof of inequality (8). For the random variable X with density
f0 we denote

µ(f1, f̃1) := Var

(
f1(X)

f0(X)
,
f̃1(X)

f0(X)

)
≡ Var(Y, Ỹ ).(9)

In view of Assumption 1, when calculating Var(Y, Ỹ ) in (9) we can

restrict ourselves to the set D where Y, Ỹ ∈ (0,∞). Then using the definition
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of the total variation distance and the monotonicity of log, it can be easily
shown that µ(f1, f̃1) = Var(log Y, log Ỹ ).

For k = 1, 2, . . . we set

Zk = log

[
f1(Xk)

f0(Xk)

]
, Z̃k = log

[
f̃1(Xk)

f0(Xk)

]
,(10)

with Z and Z̃ being the corresponding generic random variables. In (10),
X1, X2, . . . are i.i.d. random variables with density f0. Also as before we
denote

Sn =
n∑
k=1

Zk, S̃n =
n∑
k=1

Z̃k, n ≥ 1, S0 = S̃0 := 0.

Let (A,B) and (Ã, B̃) be the pairs of constants in (2) and (4), respec-
tively. The stopping times obtained using rules as in (2) applied to {Zk} and

{Z̃k} will be denoted by Ψ(Z) and Ψ(Z̃) respectively. In particular, Ψ(Z̃)
is the stopping time defined in (5). On the other hand, the stopping times

obtained from rules as in (4) applied to {Zk} and {Z̃k} will be denoted by

Ψ̃(Z) and Ψ̃(Z̃) respectively. Considering the cases of practical interest, we
can assume that c0 < c1. Using the results obtained in [N1], [N2] it can

be proven that A, Ã ≥ A∗ := log(c0/c1), and that the constant B∗ can be

chosen independently of f̃1 in such a way that B∗ ≥ B, B̃. Since f0 6= f1 and

f0 6= f̃1, it can be easily shown that there are constants γ, γ̃, δ, δ̃ > 0 such
that

P (Z ≤ −γ) ≥ δ, P (Z̃ ≤ −γ̃) ≥ δ̃.(11)

We suppose that for the densities under consideration, constants γ∗ δ∗ are
given for which the following inequalities hold: 0 < γ∗ ≤ min(γ, γ̃) and

0 < δ∗ ≤ min(δ, δ̃).

In view of (4)–(6) and the above definition of Ψ , we have

∆ = Ṽ [Ψ(Z̃)]− Ṽ [Ψ̃(Z̃)](12)

= Ṽ [Ψ(Z̃)]− V [Ψ(Z)] + max
Ψ ′∈{Ψ,Ψ̃}

V [Ψ ′(Z)]− max
Ψ ′∈{Ψ,Ψ̃}

Ṽ [Ψ ′(Z̃)]

≤ 2 max
Ψ ′∈{Ψ,Ψ̃}

|V [Ψ ′(Z)]− Ṽ [Ψ ′(Z̃)]|.

Estimation of each term under the “ max ” sign in (12) is accomplished in the
same manner. Choose, for example, Ψ ′ = Ψ . Denoting g(x) = min{c1, c2ex},
for x ∈ [0,∞), τ = Ψ(Z) and τ̃ = Ψ(Z̃), we obtain (see (1) and (3)) for any
n ≥ 1 that
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(13) |V [Ψ(Z)]− Ṽ [Ψ(Z̃)]| ≤ c0|E0τ − E0τ̃ |+ |E0g(Sτ )− E0g(S̃τ̃ )|
≤ c0|E0τI{τ≤n} − E0τ̃ I{τ̃≤n}|+ |E0g(Sτ )I{τ≤n} − E0g(S̃τ̃ )I{τ̃≤n}|

+ c0E0τI{τ>n} + c0E0τ̃ I{τ̃>n} + E0g(Sτ )I{τ>n} + E0g(S̃τ̃ )I{τ̃>n}

=: I1 + I2 + I3 + I4.

On the right-hand side of (13), τI{τ≤n} and g(Sτ )I{τ≤n} are nonnegative

bounded functions of the random vector Z̄n=(Z1, . . . , Zn). Thus denoting˜̄Zn = (Z̃1, . . . , Z̃n) we find that in (13),

(14) I1 ≤ c0(n/2)Var(Z̄n,
˜̄Zn), I2 ≤ (1/2)Var(Z̄n,

˜̄Zn).

Let us show by induction that

(15) Var(Z̄n,
˜̄Zn) ≤ nVar(Z, Z̃), n = 1, 2, . . . .

Indeed, by the triangle inequality,

(16) Var[(Z1, . . . , Zn, Zn+1), (Z̃1, . . . , Z̃n, Z̃n+1)]

≤ Var[(Z1, . . . , Zn, Zn+1), (Z̃1, . . . , Z̃n, Zn+1)]

+ Var[(Z̃1, . . . , Z̃n, Zn+1), (Z̃1, . . . , Z̃n, Z̃n+1)].

For every function ϕ : Rn+1 → R bounded by 1 we obtain (by independence)

|E0ϕ(Z1, . . . , Zn, Zn+1)− E0ϕ(Z̃1, . . . , Z̃n, Zn+1)|

≤
�

R

|E0ϕ(Z1, . . . , Zn, z)− E0ϕ(Z̃1, . . . , Z̃n, z)|PZ(dz)

≤ Var(Z̄n,
˜̄Zn) ≤ nVar(Z, Z̃).

Consequently, the first summand on the right-hand side of (16) is less than

nVar(Z, Z̃). Applying again independence and conditioning on Z̃1, . . . , Z̃n,
we conclude that the second term on the right-hand side of (16) is less than

Var(Z, Z̃).

To bound the terms I3 and I4 in (13) we use the simple exponential
inequalities for P0(τ > n), P0(τ̃ > n) obtained in [S2]. Denoting

m := [(B∗ −A∗)/γ∗] + 1, β := (1− δm∗ )1/m,

([·] stands for integer part) we can see that, from the result in [S2],

(17) max{P0(τ > n), P0(τ̃ > n)} ≤ γβn, n = 1, 2, . . . , where γ = β−m.

Using these inequalities, after simple calculations we find that

I3 ≤ βn+1n

(
2c0

γ(2− β)

β(1− β)

)
, n = 1, 2, . . . .(18)
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Applying (17) again we see that

I4 ≤ βn+1(2c1γ/β), n = 1, 2, . . . .(19)

Combining inequalities (12)–(15), (18) and (19) we establish that for
every n ≥ 1,

∆ ≤ 2

[
c0
2
n2µ(f1, f̃1) +

c1
2
nµ(f1, f̃1)(20)

+ βn+1n

(
2c0

γ(2− β)

β(1− β)

)
+ βn+1(2c1γ/β)

]
≤ (c0 + c1)n

2µ(f1, f̃1) + βn+1n

[
4γ

β

(
c0

2− β
1− β

+ c1

)]
.

Now we choose in (20) n = [logβ
1
4µ(f1, f̃1)] (the integer part). Then in-

equality (8) follows from (20).

Remark 3. In view of (11), if Var(Z, Z̃) is small enough, the constants
γ∗ and δ∗ can be chosen in such a way that they do not depend on the
density f̃1.
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