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IMAGE COMPRESSION WITH SCHAUDER BASES

Abstract. As is known, color images are represented as multiple channels,
i.e. integer-valued functions on a discrete rectangle corresponding to pixels
on the screen. Thus, image compression can be reduced to investigating suit-
able properties of such functions. Each channel is compressed independently.
We are representing each such function by means of multi-dimensional Haar
and diamond bases so that the functions can be remembered by their basis
coefficients without loss of information. For each of the two bases we present
in detail the algorithms for calculating the basis coefficients and conversely,
for recovering the functions from the coefficients. Next, we use the fact that
both the bases are greedy in suitable Besov norms and apply thresholding
to compress the information carried by the coefficients. After this operation
on the basis coefficients the corresponding approximation of the image can
be obtained. The principles of these algorithms are known (see e.g. [3]

) but the details seem to be new. Moreover, our philosophy of applying
approximation theory is different. The principal assumption is that the in-
put data come from some images. Approximation theory, mainly the isomor-
phisms between Besov function spaces and suitable sequence spaces given
by the Haar and diamond bases (see [1]

, [2]
), and the greediness of these bases, are used only to choose a proper

norm in the space of images. The norm is always finite and it is used for
thresholding only.

1. Introduction. In this paper we investigate functions over a discrete
d-dimensional cube Qd where Q is an interval of integers. The dimension of
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the vector space of all real-valued functions over Qd is |Q|d where |Q| is the
cardinality of Q. In this function space we construct the Haar basis and the
diamond basis. The first one is orthogonal in the natural scalar product, and
the second one is interpolating at the points of the domainQd. For each of the
bases we describe two algorithms: The first one computes the coefficients of
the basis expansion of a given function. The second one computes the values
of a function given its expansion, i.e. from its basis coefficients. In the last
part, motivated by theoretical results presented in Section 2, we consider
suitable greedy norms for both the bases in question. This, after introducing
thresholding , permits us to introduce a criterion for replacing small basis
coefficients by zeros, and then using the second algorithm to produce a
function which is an approximant of the original one and corresponds to
the given value of the thresholding. We mention that the algorithms in the
diamond case are implemented for the compression of images.

2. Theoretical background. We start by recalling some notions re-
lating to Schauder bases in Banach spaces (see e.g. [8]). An abstract Banach
space X with the norm ‖ · ‖X is denoted as [X, ‖ · ‖X ]. A sequence {xn} =
{xn : n = 0, 1, . . .} in [X, ‖·‖X ] is called a Schauder basis, or simply a basis, in
X if for each x ∈ X there is a unique sequence a = {an} = {an, n = 0, 1, . . .}
of scalars such that

x =
∞∑

n=0

an xn.(2.1)

For a given basis {xn} there are unique linear functionals {x∗n} in the
dual space X∗ such that an = x∗n(x). The system {x0, x1, . . . ;x∗0, x

∗
1, . . .}

is biorthonormal , i.e. x∗k(xi) = δk,i. Now, denote by A the set of all a ap-
pearing in (2.1) while x runs through X. The linear space A with the norm

‖a‖A = sup
n≥0

∥∥∥
n∑

i=0

ai xi

∥∥∥
X

(2.2)

is a Banach space linearly isomorphic to X. The Banach space [A, ‖ · ‖A] is
customarily called the coefficient space. The basis {xn} is called uncondi-
tional if for each x ∈ X the series on the right hand side of (2.1) converges
unconditionally, that is,

∞∑

n=0

εnan xn(2.3)

converges for each ε = {εn : n = 0, 1, . . .} with εn = ±. There are two more
recent definitions of special bases in Banach spaces which are important for
approximations and which we recall here. A normalized basis {xn} in the
Banach space X, i.e. such that ‖xn‖X = 1, is said to be democratic if there is
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a constant C > 0 such that for any two subsets P and Q of natural numbers
of finite equal cardinality we have

1
C

∥∥∥
∑

n∈P
xn

∥∥∥
X
≤
∥∥∥
∑

n∈Q
xn

∥∥∥
X
≤ C

∥∥∥
∑

n∈P
xn

∥∥∥
X
.(2.4)

For the second definition we introduce for given x ∈ X and for given natural
m the best nonlinear approximation of order m, i.e.

Em(x,X) = inf
#G=m

inf
cn∈R

∥∥∥x−
∑

n∈G
cnxn

∥∥∥
X
,(2.5)

where G denotes a subset of the natural numbers. Now, a normalized basis
{xn} in X is called greedy if there is a finite constant C such that

Em(x,X) ≤ C
∥∥∥x−

∑

n∈Gm(x)

an xn

∥∥∥
X

(2.6)

for each x ∈ X and each set Gm(x) of indices of cardinality m such that

min{|an| : n ∈ Gm(x)} ≥ max{|an| : n 6∈ Gm(x)}.(2.7)

We state the nice result of S. V. Konyagin and V. N. Temlyakov on greedy
bases [4]:

Theorem 2.1. A normalized basis in a Banach space is greedy if and
only if it is democratic and unconditional.

We now confine our attention to a special class of function spaces on the
d-dimensional cube Id = [0, 1]d, namely to Besov spaces. There are various
definitions of these spaces, usually they depend on three parameters: α—the
smoothness parameter, p—the integrability exponent, and q—the averaging
exponent. In order to write down the definition of the Besov norm we need
a modulus of smoothness. For a function f : Id → R and a vector h ∈ Rd,
we denote by ∆hf the progressive difference of f with increment h:

∆hf(t) =
{
f(t+ h)− f(t) if t, t+ h ∈ Id,
0 otherwise.

(2.8)

If f ∈ Lp(Id), 1 ≤ p ≤ ∞, and t > 0, then the Lp modulus of smoothness is
defined as

ωp(f ; t) = sup
0<|h|<t

( �

Id

|∆hf(x)|p dx
)1/p

,(2.9)

where |h| is the Euclidean length of h ∈ Rd. Now, for f ∈ Lp(Id), the Besov
norm is defined by

‖f‖(α)
p,q =

( 1�

0

(
ωp(f ; t)
tα

)q dt
t

)1/q

.(2.10)
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The Banach space of f ∈ Lp(Id) with (2.10) finite is called the Besov space
and is denoted by Bα

p,q = Bα
p,q(I

d). Note that Bα
p,q is a separable Banach

space for each triple of parameters 0 < α ≤ 1, 1 ≤ p, q <∞, and this is the
range to which we restrict our attention below.

To each of the two algorithms for image compression there corresponds
a basis in Bα

p,q. We start with the description of the diamond basis and then
we pass to the Haar basis. To define the diamond basis over Id we start
with the function ψ(t) = max[0, 1 − |t|] and with the set D of all dyadic
points in I. Define D0 = {0, 1} and Dk = {(2j − 1)/2k : j = 1, . . . , 2k−1} for
k = 1, 2, . . . Thus

D =
⋃

k≥0

Dk,(2.11)

and the Faber–Schauder functions over I are defined as follows:

φτ (t) = ψ(2k(t− τ)) for τ ∈ Dk, k = 0, 1, . . .(2.12)

For the diamond functions over Id it is convenient to set C0 = D0 and
Ck = Ck−1 ∪Dk. Then

Cdk = Cdk−1 ∪Dk,d,(2.13)

where

Dk,d = {τ = (τ1, . . . , τd) ∈ Cdk : ∃i τi ∈ Dk}, D0,d = Dd
0.(2.14)

Now, define

φτ (t) =
d∏

i=1

ψ(2k(ti − τi)) for τ ∈ Dk,d, k = 0, 1, . . .(2.15)

In the two-dimensional case all the basis functions restricted to I2 can be
easily graphically represented, and they look like diamonds. The system
{φτ : τ ∈ Dd} is called the diamond or multi-affine basis, and when ordered
in a sequence in such a way that Dk,d precedes Dk+1,d, it is a basis in the
Banach space C(Id) of continuous functions over Id (cf. [5], [7]). We mention
some of its properties. For each f ∈ C(Id) there is a unique collection
{bτ : τ ∈ Dk,d, k = 0, 1, . . .} of real numbers such that

f =
∞∑

k=0

∑

τ∈Dk,d
bτφτ ,(2.16)

and the series converges uniformly over the cube Id (i.e. in the norm of
C(Id)). The coefficients bτ = bτ (f) are linear functions of f . By their unique-
ness we obtain bτ (φτ ′) = δτ,τ ′ . The coefficient functionals {bτ} form therefore
a biorthogonal system to the diamond basis {φτ}. This system is explicitly
known and for given f ∈ C(Id) and τ ∈ Dd the values of the corresponding
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functionals are given as follows (see [5]):

bτ (f) = f(τ) for τ ∈ D0,d,(2.17)

and for k ≥ 1,

bτ (f) =
1
2d

∑

ε∈{−1,1}d
(f(τ)− f(τ ε)) for τ ∈ Dk,d,(2.18)

where τ ε = (τ ε1, . . . , τ
ε
d) with

τi
ε =

{
τi + εi · 2−k if τi ∈ Dk,
τi if τi ∈ Ck−1.

(2.19)

It is convenient to introduce the following finite-dimensional projections in
the space C(Id):

Rk(f) =
∑

τ∈Dk,d
bτ (f)φτ .(2.20)

The fact that (φτ (t) : τ ∈ Dd) is an interpolating basis in C(Id) can now be
stated as

Proposition 2.2. For each f ∈ C(Id) the series
∞∑

k=0

Rk(f)(2.21)

converges to f in the maximum norm ‖ · ‖∞. The kth partial sum

Pk(f) =
k∑

l=0

Rl(f)(2.22)

interpolates f at the set Cdk of dyadic points, i.e. for each k ≥ 0,

f(τ) = Pk(f)(τ) for τ ∈ Cdk .(2.23)

Consequently, for all k and nonnegative f from C(Id) we have Pkf≥0.
Moreover the basis constant is 1, i.e. ‖Pkf‖∞ ≤ ‖f‖∞ for all k and f ∈
C(Id). One more property of the diamond basis functions should be men-
tioned here (see (2.2) in [2]).

Proposition 2.3. For any reals bτ and 1 ≤ p ≤ ∞ we have
∥∥∥
∑

τ∈Dk,d
bτφτ

∥∥∥
p
∼ 2−dk/p

( ∑

τ∈Dk,d
|bτ |p

)1/p
,(2.24)

where the implied constants depend only on the dimension d. In particular ,

‖φτ‖p ∼ 2−dk/p for τ ∈ Dk,d.(2.25)

The main result motivating our algorithm in the diamond case was es-
tablished in [2], Theorem 3.3. Before we state its particular case we recall
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that the inequality d/p < α implies the embedding Bα
p,q ⊂ C(Id), so for

f ∈ Bα
p,q the series (2.16) converges uniformly over Id.

Theorem 2.4. Let 1 ≤ p, q <∞ and p/d < α < 1. Then for f ∈ Bα
p,q,

‖f‖(α)
p,q ∼

( ∞∑

k=0

[
2k(α−d/p)

( ∑

τ∈Dk,d
|bτ |p

)1/p]q)1/q
,(2.26)

where the implied constants do not depend on f .

Corollary 2.5. Let 1 ≤ p, q < ∞ and p/d < α < 1. Then the system
{φτ} defined in (2.15) is an unconditional basis in Bα

p,q. Moreover , when
normalized in Bα

p,q, it is democratic if and only if p = q.

Proof. According to (2.26) we have

‖φτ‖(α)
p,q ∼ 2k(α−d/p) for τ ∈ Dk,d.(2.27)

Introducing φ(α)
τ ;p,q = φτ/‖φτ‖(α)

p,q we can rewrite (2.16) as follows:

f =
∞∑

k=0

∑

τ∈Dk,d
aτφ

(α)
τ ;p,q.(2.28)

Now, combining (2.28), (2.27) and Theorem 2.4 we get

‖f‖(α)
p,q ∼

( ∞∑

k=0

( ∑

τ∈Dk,d
|aτ |p

)q/p)1/q
.(2.29)

Thus, the sequence space Ap,q of all a = {aτ : aτ ∈ Dk,d, k ≥ 0} with the
norm

‖a‖p,q =
( ∞∑

k=0

( ∑

τ∈Dk,d
|aτ |p

)q/p)1/q
(2.30)

is linearly isomorphic to [Bα
p,q, ‖ · ‖(α)

p,q ]. Since this isomorphism takes the
normalized diamond basis into the customary unit basis vectors in Ap,q,
it is sufficient to check that the latter basis is democratic if and only if
p = q. If p = q, then Ap,p is simply the lp space and the unit basis vectors
form a democratic basis. Let us now take unit basis vectors eτk ∈ Ap,q with
τk ∈ Dk,d, k = 1, . . . ,m. Then

‖eτ1
+ . . .+ eτm‖p,q ∼ m

1/q(2.31)

and if for fixed k we are given m unit basis vectors eτ∗i ∈ Ap,q with τ ∗i ∈ Dk,d,
i = 1, . . . ,m, then

‖eτ∗1 + . . .+ eτ∗m‖p,q ∼ m
1/p.(2.32)

Comparing (2.31) and (2.32) leads to the conclusion that p = q and this
completes the proof.
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Corollary 2.6. Let 1 ≤ p < ∞ and p/d < α < 1. Then as a model
space for the diamond compression we can take the Besov space Bα

p,p with

the basis φ(α)
τ ;p,p, which is greedy.

We now turn to outlining the corresponding properties of the Haar or-
thogonal system over Id, in which case it is asumed that I = [0, 1). Let us
start with the definition of the Haar functions over Id. We begin with the
following decompositions:

I =
2j−1−1⋃

k=0

Ij,k for j ≥ 1,(2.33)

where

Ij,k =
[

k

2j−1 ,
k + 1
2j−1

)
, |Ij,k| =

1
2j−1 .(2.34)

Observe that this leads for each j ≥ 1 to the splitting formula

Ij,k = Ij+1,2k ∪ Ij+1,2k+1 for k = 0, . . . , 2j−1 − 1.(2.35)

Definition 2.1. The Haar functions over I are defined as follows:

h0(t) = 1 for t ∈ I,(2.36)

and for 0 ≤ k < 2j−1, j ≥ 1,

h2j−1+k(t) = hj,k(t) =

{
1 for t ∈ Ij+1,2k,
−1 for t ∈ Ij+1,2k+1,
0 elsewhere in I.

(2.37)

It now follows that

hj,k(t) = h1(2j−1t− k).(2.38)

Now one checks directly the orthogonality of the system

{hn : n ≥ 0}(2.39)

with respect to the Lebesgue measure on I. We mention only that the Haar
system (2.39) is an orthogonal basis in Lp(I) for 1 ≤ p < ∞ (see [6]). For
later convenience we introduce Z+ = {k ∈ Z : k ≥ 0}, D = {1, . . . , d},
and for k = (k1, . . . , kd) define ∨k = max(k1, . . . , kd). The multivariate
Haar orthogonal system will be indexed by elements of Zd+ according to the
decomposition

Zd+ =
⋃

j∈Z+

Zj,d(2.40)

where

Zj,d =
{
{k ∈ Zd+ : 2j−1 ≤ ∨k < 2j} for j > 0,
0 ∈ Zd+ for j = 0.

(2.41)
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We also introduce

Yn,d =
n⋃

j=0

Zj,d for n ∈ Z+.(2.42)

Definition 2.2. The Haar function over Id with index k ∈ Zj,d is de-
fined as follows: If k = 0, then

h0 =
d⊗

i=1

h0.(2.43)

If k ∈ Zj,d and E = {i ∈ D : 2j−1 ≤ ki < 2j}, then

hk =
⊗

i∈E
hki ⊗

⊗

i∈D\E
|h2j−1+ki |.(2.44)

Corollary 2.7. The Haar system {hk : k ∈ Zd+} is orthogonal and for
1 ≤ p ≤ ∞ and real {ak ∈ R : k ∈ Zj,d} we have, for j ≥ 0,

∥∥∥
∑

k∈Zj,d
ak hk

∥∥∥
p
∼
(

2−jd
∑

k∈Zj,d
|ak|p

)1/p
,(2.45)

where the implied constants depend only on d. In particular , for k ∈ Zj,d,
‖hk‖p ∼ 2−jd/p.(2.46)

To the index sets (2.41) and (2.42) there correspond respectively the
finite-dimensional function spaces

Wj = span{hk : k ∈ Zj,d},(2.47)

Vn = span{hk : k ∈ Yn,d}.(2.48)

We introduce the respective orthogonal projections of L2(Id) onto Wj and
onto Vn:

Qj(f) =
∑

k∈Zj,d
(f, hk)hk/‖hk‖22,(2.49)

Pn(f) =
∑

k∈Yn,d
(f, hk)hk/‖hk‖22.(2.50)

Lemma 2.8. For f ∈ Lp(Id) and 1 ≤ p < ∞ we have the Schauder
decomposition

f =
∑

j∈Z+

Qj(f).(2.51)

For the partial sum Pn(f) of f ∈ L1 we have the formula

Pn(f)(x) =
1
|Q|

�

Q

f(y) dy for x ∈ Q,(2.52)
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where Q ⊂ Id is a dyadic cube of volume 2−dn. Moreover , for f ∈ Lp,
1 ≤ p ≤ ∞ and n ∈ Z+ we have

‖Pn(f)‖p ≤ ‖f‖p,(2.53)

‖f − Pn(f)‖p ≤ C ωp(f ; 2−n).(2.54)

The following Bernstein type inequality also holds:

ωp(f ; δ) ≤ C(min(δ · 2n, 1))1/p ‖f‖p for f ∈ Vn,(2.55)

where C depends only on d.

Proof. Most of the statements are well known at least in one variable.
Extension to several variables for the Haar system defined as in (2.43) and
(2.44) is straightforward.

Theorem 2.9. For f ∈ L1(Id) we have the following Fourier–Haar ex-
pansion convergent in L1:

f =
∑

j∈Z+

∑

k∈Zj,d
bkhk,(2.56)

where
bk = (f, hk)/‖hk‖22.(2.57)

Let now 1 ≤ p, q <∞ and 0 < α < 1/p ≤ 1. Then for f ∈ Bα
p,q we have

‖f‖(α)
p,q ∼

( ∑

j∈Z+

[
2j(α−d/p)

( ∑

k∈Zj,d
|bk|p

)1/p]q)1/q
,(2.58)

where the implied constants do not depend on f .

Proof. Using Lemma 2.8 we can prove by standard arguments the equiv-
alence

( ∑

n∈Z+

(2αnωp(f ; 1/2n))q
)1/q

∼
( ∑

n∈Z+

(2αn‖Qnf‖p)q
)1/q

,(2.59)

and consequently by Corollary 2.7 we obtain (2.58).

Corollary 2.10. The Haar functions h
(α)
k;p,q normalized in Bα

p,q, 0 <

α < 1/p, 1 ≤ p, q <∞, form a greedy basis in this space if and only if p = q.
Thus, we can take Bα

p,p(I
d) with 0 < α < 1/p as a model space for the Haar

compression.

3. The diamond compression. We start with a fixed power of two,
2n, n ≥ 0, and the interval of integers J = [0, . . . , 2n]. Denote by Ln(J) the
real vector space of all real vectors x = {x(k) : k ∈ J}; the dimension of
Ln(J) is |J | = 2n + 1 (here and in what follows, the number of elements
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of a finite set A is denoted by |A|). There is a natural basis of unit vectors
in Ln(J):

ei = {ei(k) : k ∈ J} with ei(k) = δi,k for i, k ∈ J.(3.1)

For each x ∈ Ln(J) we have the basis representation

x =
∑

i∈J
x(i)ei.(3.2)

Now, we are going to define the one-dimensional discrete Schauder basis and
the corresponding partitions of unity. We use the function

ψ(t) = max[0, 1− |t|] for t ∈ R.(3.3)

Now, each i ∈ J is of the form

i = 2n−j · ν(3.4)

where the integer n− j is the maximal power of 2 dividing i; here ν is odd
for i 6= 0, with 0 < ν < 2j , and for i = 0 we set j = 0, ν = 0. Now, for each
i ∈ J represented as in (3.4), the corresponding Schauder function over J is
defined as follows:

φi(m) = ψ(2j−nm− ν) for m ∈ J,(3.5)

The Schauder functions are linearly independent and

Ln(J) = span{φi : i ∈ J}.(3.6)

Thus, for each x ∈ Ln(J) there is a unique a ∈ Ln(J) such that

x =
∑

i∈J
a(i)φi.(3.7)

Now, it is known and also easy to check that for i as in (3.4),

a(i) =
{
x(i) for i = 0, 2n,

x(i)− 1
2 [x(i− 2n−j) + x(i+ 2n−j)] for 0 < i < 2n.

(3.8)

A system of functions in Ln(J) is called a partition of unity if its members
are nonnegative and add up to the constant function 1. We now define a
family of such partitions. For given s, 0 ≤ s ≤ n, and ν, 0 ≤ ν ≤ 2s, define

ψs,ν(m) = ψ(2s−nm− ν) for m ∈ J.(3.9)

It follows that in vector notation
2s∑

ν=0

ψs,ν = 1.(3.10)

In particular, in the extreme cases of s = 0 and s = n we obtain respectively
ψ0,0 = φ0, ψ0,1 = φ2n and ψn,ν = eν for ν ∈ J . Formula (3.9) also yields

φi = ψj,ν for i as in (3.4).(3.11)
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Let us now introduce an increasing sequence of subspaces of Ln(J) by setting

Ln,s(J) = span{ψs,ν : 0 ≤ ν ≤ 2s} with 0 ≤ s ≤ n.(3.12)

Clearly, {ψs,ν : 0 ≤ ν ≤ 2s} is a basis in Ln,s(J) and Ln,n(J) = Ln(J).
However, in the same space there is another basis, namely a suitable part
of the Schauder basis. More precisely, using (3.11), we get

Ln,s(J) = span{φi = ψj,ν : 0 ≤ j ≤ s and ν as in (3.4)}.(3.13)

Let now 0 < s ≤ n. Then the basis {ψs,ν : 0 ≤ ν ≤ 2s} in Ln,s(J) is
interpolating at the points m for which ψs,ν(m) = 1. Consequently, for
y ∈ Ln,s(J) we have

y =
2s∑

ν=0

y(2n−sν)ψs,ν .(3.14)

Applying this to y = ψs−1,µ and using (3.9) we get the lifting up formula

ψs−1,µ = ψs,2µ +
ψs,2µ−1 + ψs,2µ+1

2
.(3.15)

We now turn to the multidimensional case. As in one dimension, Ln(Jd)
denotes the real vector space of real vectors x = {x(m) : m ∈ Jd}. We also
introduce an increasing sequence of its subspaces by setting

Ln,s(Jd) = span{ψs,ν : ν ∈ Jd, ∨ν ≤ 2s} with 0 ≤ s ≤ n,(3.16)

where

ψs,µ =
d⊗

k=1

ψs,µk .(3.17)

The system {ψs,ν : ν ∈ Jd, ∨ν ≤ 2s} is a partition of unity and it is a basis
in Ln,s(Jd). As in the one-dimensional case we have

Proposition 3.1. For s = 1, . . . , n and {µ ∈ Jd : ∨µ ≤ 2s−1} we have

ψs−1,µ =
∑

ε∈{−1,0,1}d

1
2|ε|

ψs,2µ+ε,(3.18)

where |ε| = |ε1|+ . . .+ |εd|.

Proof. Take u ∈ Ln,s(Jd). Since the basis {ψs,ν : ν ∈ Jd, ∨ν ≤ 2s} is
interpolating at the points 2n−sν it follows that

u =
∑

∨ν≤2s
u(2n−sν)ψs,ν .(3.19)
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In particular, since ψs−1,ν ∈ Ln,s(Jd), it follows from (3.19) that

ψs−1,µ =
∑

∨ν≤2s
ψs−1,µ(2n−sν)ψs,ν .(3.20)

Now, (3.20), (3.17), and (3.9) imply (3.18).
To define the diamond basis in Ln(Jd) we need the following decompo-

sition of the index set J :

J =
n⋃

j=0

δ(J)j ,(3.21)

where δ(J)0 = {0, 2n} and

δ(J)j = {2n−jν : 1 ≤ ν ≤ 2j , ν odd} for 1 ≤ j ≤ n.(3.22)

We also introduce J0 = {0, 2n}, Jj = Jj−1 ∪ δ(J)j. Clearly, Jn = J . Hence,

Jj = {2n−jν : 0 ≤ ν ≤ 2j} for j = 1, . . . , n.(3.23)

We may now decompose the d-dimensional index set Jd. Define

δ(Jd)0 = Jd0 , δ(Jd)j = Jdj \ Jdj−1 for j = 1, . . . , n.(3.24)

Then

δ(Jd)j = {i ∈ Jdj : ∃k ik ∈ δ(J)j},(3.25)

Jd =
n⋃

j=0

δ(Jd)j .(3.26)

Definition 3.1. For i ∈ δ(Jd)j , 0 ≤ j ≤ n, define

φi =
d⊗

k=1

ψj,νk with νk = ik2j−n.(3.27)

In this formula, if νk is odd, then ψj,νk = φik with ik = 2n−jνk. The system
{φi : i ∈ Jd} is a basis in Ln(Jd), called the diamond or multi-affine basis.

Thus, for each y ∈ Ln(Jd) there is a unique b ∈ Ln(Jd) such that

y =
∑

i∈Jd
b(i)φi.(3.28)

Definition 3.2. The map S : y 7→ b is called the Schauder transform.

Our goal is to describe algorithms for S and for its inverse, i.e. for calcu-
lating b in terms of y and vice versa. Extension of (3.8) to the d-dimensional
case solves the first part. Such a formula is known [5]:

Proposition 3.2. If j = 0, then

b(i) = y(i) for i ∈ δ(Jd)j,(3.29)
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and if 1 ≤ j ≤ n, then

b(i) = y(i)− 1
2d

∑

ε∈{−1,1}d
y(i+ 2n−jε∗) for i ∈ δ(Jd)j,(3.30)

where ε∗ is defined as follows: Since ik ∈ Jj it follows by (3.23) that ik =
2n−jνk with 0 ≤ νk ≤ 2j. Now , put

ε∗k =
{

0 if νk is even,
εk if νk is odd.

Moreover ,

|b(i)| ≤ 2 max{|y(i′)| : i′ ∈ Jd} for i ∈ Jd,(3.31)

and for y ≥ 0,

|b(i)| ≤ max{y(i′) : i′ ∈ Jd} for i ∈ Jd.(3.32)

Now we are interested in finding an algorithm for S−1. Given b in formula
(3.28) we want to recover y. Using decomposition (3.26) we rewrite (3.28) as

y =
n∑

j=0

∑

δ(Jd)j

b(i)φi.(3.33)

In addition we introduce the corresponding partial sums

y(s) =
s∑

j=0

∑

δ(Jd)j

b(i)φi.(3.34)

Since y(s) ∈ Ln,s(Jd), by (3.16) we have a unique representation

y(s) =
∑

∨ν≤2s
b(s)(ν)ψs,ν .(3.35)

The basic algorithm for calculating the inverse to S is presented in

Proposition 3.3. For the vectors b(s) = {b(s)(µ) : ∨µ ≤ 2s} with s =
0, . . . , n, given b, we have the following recurrence relation:

b(0)(µ) = b(2nµ) for µ ∈ {0, 1}d,(3.36)

and for s = 1, . . . , n and ∨µ ≤ 2s,

b(s)(µ) = b
(s)
1 (µ) + b

(s)
2 (µ),(3.37)

where

b
(s)
1 (µ) =

∑

ε∈{−1,0,1}d

1
2|ε|

b(s−1)
(⌊

µ+ 1− ε
2

⌋)
,(3.38)

b
(s)
2 (µ) =

{
b(2n−sµ) if 2s−1 < ∨µ ≤ 2s,
0 if ∨µ ≤ 2s−1.

(3.39)
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Proof. We start with the relation

y(s) = y(s−1) +
∑

δ(Jd)s

b(i)φi.(3.40)

We rewrite both terms on the right hand side of (3.40) in the same basis as
in (3.35). Using Proposition 3.1 we obtain

y(s−1) =
∑

∨ν≤2s−1

b(s−1) (ν)ψs−1,ν

=
∑

∨ν≤2s−1

b(s−1)(ν)
∑

ε∈{−1,0,1}d

1
2|ε|

ψs,2ν+ε

=
∑

ε∈{−1,0,1}d

1
2|ε|

∑

∨ν≤2s−1

b(s−1)(ν)ψs,2ν+ε

=
∑

ε∈{−1,0,1}d

1
2|ε|

∑′

∨ν≤2s−1

b(s−1)(ν)ψs,2ν+ε,

where the last summation is taken over all admissible ν, i.e. such that 0 ≤
2νk + εk ≤ 2s for k = 1, . . . , d. Now, given ε, for each µ with ∨µ ≤ 2s, there
is a unique ν with ∨ν ≤ 2s−1 such that µ = 2ν + ε and ν = b(µ+ 1− ε)/2c
(bxc is the integer part of x). Consequently,

y(s−1) =
∑

∨µ≤2s

( ∑

ε∈{−1,0,1}d

1
2|ε|

b(s−1)
(⌊

µ+ 1− ε
2

⌋))
ψs,µ.(3.41)

To represent the second term of the right hand side of (3.40) we use
Definition 3.1: for i ∈ δ(Jd)s, 1 ≤ s ≤ n, we have

φi = ψs,µ with 2n−1 µ = i.

Thus,
∑

δ(Jd)s

b(i)φi =
∑

δ(Jd)s

b(i)ψs,µ =
∑

2s−1<∨µ≤2s

b(2n−sµ)ψs,µ.(3.42)

Now, (3.41) and (3.42) imply (3.37)–(3.39) and the proof is complete.

Corollary 3.4. If b is the Schauder transform of the image y, then
y(0), y(1), . . . ,y(n) are consecutive approximations (recovers) of y in terms
of b. In particular y = y(n). It also follows from the algorithm that to
calculate y(s) we need to know b(i) only for i ∈ Jds .

For theoretical reasons presented in Section 2, in the diamond case it is
natural to consider the following Besov norm on Ln(Jd): for y as in (3.33),
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we define

‖y‖(α)
p =

( n∑

j=0

2j(αp−d)
∑

i∈δ(Jd)j

|b(i)|p
)1/p

(3.43)

with the admissible parameters 1 ≤ p ≤ ∞, d/p < α < 1. In particular, if
y = φi and i ∈ δ(Jd)j , then ‖φi‖(α)

p = 2j(α−d/p).

Definition 3.3. For the diamond functions normalized in the norm
(3.43) we introduce the notation

φ
(α,p)
i = 2j(d/p−α) φi for i ∈ δ(Jd)j , 0 ≤ j ≤ n.(3.44)

Corollary 3.5. If y ∈ Ln(Jd) is represented in the normalized dia-
mond basis as given in (3.44), i.e.

y =
n∑

j=0

∑

i∈δ(Jd)j

a(i)φ(α,p)
i =

∑

i∈Jd
a(i)φ(α,p)

i ,(3.45)

then

‖y‖(α)
p =

( n∑

j=0

∑

i∈δ(Jd)j

|a(i)|p
)1/p

=
(∑

i∈Jd
|a(i)|p

)1/p
,(3.46)

where

a(i) = 2j(α−d/p)b(i) for i ∈ δ(Jd)j .(3.47)

Clearly , the basis {φ(α,p)
i

: i ∈ Jd} in the Banach space [Ln(Jd), ‖ · ‖(α)
p ] is

greedy.

In order to have a way of dropping the irrelevant coefficients in the rep-
resentation (3.45) we introduce the distribution function for the coefficients
{a(i)} which is related to thresholding. We recall the restrictions on the
parameters α and p: 1 ≤ p ≤ ∞, d/p < α < 1. Now, introduce

B(λ) = {i ∈ Jd : |a(i)| ≤ λ}, λ ≥ 0,(3.48)

and the distribution function

F (λ) = |B(λ)|.(3.49)

For given α, p and λ we assign to y given by (3.45) the compressed y:

yλ =
∑

i∈Jd
aλ(i)φ(α,p)

i ,(3.50)

where

aλ(i) =
{
a(i) for i ∈ Jd \B(λ),
0 for i ∈ B(λ).

(3.51)
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Proposition 3.6. The Besov distance between y and its compression
yλ can be estimated as follows:

‖y − yλ‖(α)
p ≤ λ[F (λ)]1/p.(3.52)

Equality in (3.52) is attained for any y of the form
∑

i∈Jd
±λφ(α,p)

i .(3.53)

The proof of Proposition 3.6 is elementary. We only mention that the
right hand side of (3.52) is a nondecreasing right-continuous piecewise linear
function of λ and it goes to zero as λ→ 0.

Definition 3.4. We say that yλ is an ε-compression if

‖y − yλ‖(α)
p ≤ ε.(3.54)

From the above we get

Corollary 3.7. If λ[F (λ)]1/p ≤ ε, then yλ is an ε-compression.

4. The Haar compression. As in the diamond case we start with a
fixed power 2n, n ≥ 0, and for technical reasons with the “semi-closed”
interval of integers I = [0, . . . , 2n) = [0, . . . , 2n − 1]; again Ln(I) is a real
vector space of dimension |I| = 2n. There is a natural basis of unit vectors
in Ln(I):

ei = {ei(k) : k ∈ I} with ei(k) = δi,k for i, k ∈ I.(4.1)

In the natural scalar product in Ln(I):

(x,y) =
1
|I|
∑

k∈I
x(k)y(k),(4.2)

the basis (4.1) is orthogonal, i.e.

(ei, ek) =
δi,k
|I| for i, k ∈ I.(4.3)

Now, for each x ∈ Ln(I) we have the basic representation

x =
∑

i∈I
(x, ei)ei =

∑

i∈I
x(i)ei.(4.4)

Along with {ei : i ∈ I} we are going to consider the discrete Haar
orthogonal basis and a system of partitions of unity. We start with the
following decomposition of the index set I:

I =
2j−1⋃

k=0

Ij,k for j = 0, . . . , n,(4.5)
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where

Ij,k = [2n−jk, 2n−j(k + 1)), |Ij,k| = 2n−j.(4.6)

Observe that this leads, for each j, 0 ≤ j < n, to the splitting formula

Ij,k = Ij+1,2k ∪ Ij+1,2k+1 for k = 0, . . . , 2j − 1.(4.7)

The Haar orthogonal basis is now defined as follows:

h0 = 1, i.e. h0(i) = 1 for i ∈ Z,(4.8)

and for m = 2j + k with 0 ≤ k < 2j and 0 ≤ j < n define hm as follows:

hj,k(i) = hm(i) =

{ 1 for i ∈ Ij+1,2k,
−1 for i ∈ Ij+1,2k+1,
0 elsewhere in Z,

(4.9)

where Z is the set of all integers. It now follows that

h2j+k(i) = h1(2ji− k2n) for i ∈ I.(4.10)

Now one checks directly the orthogonality formula

(hm,hm′) = δm,m′
|supp hm|
|I| for m,m′ ∈ I.(4.11)

Notice that supp h0 = I and supp hm = Ij,k for m = 2j + k.

Definition 4.1. The system {hm : m ∈ I} is called the discrete Haar
orthogonal basis in LN (I). It is normalized so that (hj,k,hj,k) = 2−j or
equivalently that max |hj,k| = 1.

Consequently, for each x ∈ Ln(I) we have the representation

x =
∑

k∈I
bk hk with bk = (x,hk)/(hk,hk).(4.12)

To each decomposition (4.5) with 0 ≤ j ≤ n, there corresponds a partition
of unity {nj,k ∈ LN (Id) : 0 ≤ k < 2j}, where

nj,k(i) =
{

1 for i ∈ Ij,k,
0 for i ∈ Z \ Ij,k,(4.13)

nj,k(i) = n0,0(2ji− k2n),(4.14)

2j−1∑

k=0

nj,k = 1 on I.(4.15)

Note that (4.6) implies

nn,k = ek for k ∈ I,(4.16)

and for 0 ≤ j < n, (4.7) gives

nj,k = nj+1,2k + nj+1,2k+1 for 0 ≤ k < 2j .(4.17)
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Let us introduce in Ln(I) an increasing sequence of subspaces by setting

Lj(I) = span{nj,k : 0 ≤ k < 2j}, 0 ≤ j ≤ n.(4.18)

The inclusion Lj(I) ⊂ Lj+1(I) follows by (4.17). Clearly, the dimension of
Lj(I) is 2j . There are important relations between the Haar orthogonal basis
and the family of partitions of unity: for 0 ≤ s < 2j and 0 ≤ j ≤ n,

|h2j+s| = nj,s = nj+1,2s + nj+1,2s+1(4.19)

where |hm| = {|hm(i)| : i ∈ I}, and for 2j ≤ t < 2j+1 and u = t− 2j ,

ht = h2j+u = nj+1,2u − nj+1,2u+1.(4.20)

To define the Haar transform some more notation is needed. It is con-
venient to consider for i ∈ Id the function ∨i = max(i1, . . . , id). We now
decompose Id as follows:

Id = {0} ∪
n⋃

j=0

Jj,(4.21)

where

Jj = {i ∈ Id : 2j ≤ ∨i < 2j+1}.(4.22)

Each of the sets in (4.22) is further decomposed as

Jj =
⋃

∅6=e⊂D
Jj,e,(4.23)

where

Jj,e = {i ∈ Id : 2j ≤ ik < 2j+1 if k ∈ e and ik < 2j if k ∈ D \ e}.(4.24)

Now, define the tensor product x1 ⊗ . . . ⊗ xd of x1, . . . ,xd ∈ Ln(I) as an
element of Ln(Id) such that

(x1 ⊗ . . .⊗ xd)(i) = x1(i1) . . . xd(id) for i ∈ Id.(4.25)

Definition 4.2. The discrete d-dimensional Haar system is defined as
follows:

h0 =
d⊗

k=1

h0,(4.26)

and for i ∈ Jj,e,
hi =

⊗

k∈e
hik ⊗

⊗

k∈D\e
|h2j+ik |.(4.27)

As in the one-dimensional case, for any u,v ∈ Ln(Id) we have the scalar
product

(u,v) =
1
|Id|

∑

i∈Id
u(i)v(i).(4.28)
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In analogy to (4.18) we introduce an increasing sequence of subspaces in
Ln(Id) by defining, for 0 ≤ j ≤ n,

Lj(Id) = span{nj,i : i ∈ Id and ∨i < 2j},(4.29)

where

nj,i =
d⊗

k=1

nj,ik .(4.30)

Proposition 4.1. The d-dimensional Haar system {hi : i ∈ Id} has the
following properties: it is orthogonal , (hi,hi) = 2−jd for i ∈ Jj and

Lj(Id) = span
{

hi : i ∈ {0} ∪
j−1⋃

s=1

Js

}
.(4.31)

Moreover , for the support of hi we have the formula

Ii =
d∏

ν=1

[2n−jkν , 2n−j(kν + 1)) with kν = iν mod 2j .(4.32)

There are always 2d − 1 Haar functions having the same support ; h0 is an
exception.

Each y ∈ Ln(Id) can be represented in the Haar basis {hi : i ∈ Id} as

y =
∑

i∈Id
b(i)hi = b(0)h0 +

n∑

j=0

∑

i∈Jj
b(i)hi,(4.33)

where

b(0) = (y,h0),(4.34)

b(i) = (2j)d(y,hi) for i ∈ Jj , 0 ≤ j ≤ n.(4.35)

Definition 4.3. The map H : y 7→ b given by (4.33) is called the Haar
transform.

Our next goal is to extract from formulas (4.34) and (4.35) an algorithm
for calculating b in terms of y.

Proposition 4.2. To calculate b = Hy we have the following formulas:

b(0) =
1
|Id|

∑

i∈Id
y(i),(4.36)

and if i ∈ Jj,e, then

b(i) =
1
|Ii|
∑

η

(−1)|η|
∑

m′′∈Iη
ye(m′′),(4.37)
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where Ii is given as in (4.32), η runs over 0, 1 sequences of length |e|, ye is
defined as in (4.41) and Iη as in (4.42). Moreover ,

|b(i)| ≤ max{|y(i′)| : i′ ∈ Id} for i ∈ Id.(4.38)

Proof. Formula (4.35) for i ∈ Jj can be rewritten as

b(i) =
1
|Ii|

∑

m∈Ii
y(m)hi(m).(4.39)

Now, by (4.6) and (4.7) for i ∈ Jj,e obtain

Ii =
∏

ν∈D\e
Ij,kν ×

⋃

η

∏

ν∈e
Ij+1,2kν+ην(4.40)

where η = (η1, . . . , η|e|) with ην = 0, 1. Consequently, Ii = I ′ × I ′′, and so
m ∈ Ii if and only if m = (m′,m′′) with m′ ∈ I ′ and m′′ ∈ I ′′ where

I ′ =
∏

ν∈D\e
Ij,kν , I ′′ =

⋃

η

∏

ν∈e
Ij+1,2kν+ην .

Define now

ye(m′′) =
∑

m′∈I′
y(m′,m′′).(4.41)

Clearly,
∑

m∈Ii
y(m)hi(m) =

∑

η

∑

m′′∈Iη
ye(m′′)

∏

ν∈e
h2j+kν (mν),

where

Iη =
∏

ν∈e
Ij+1,2kν+ην .(4.42)

Thus, ∑

m∈Ii
y(m)hi(m) =

∑

η

(−1)|η|
∑

m′′∈Iη
ye(m′′);

comparing this with (4.39) we find (4.37) and the proof is complete.
In the two-dimensional case formula (4.37) becomes very simple.

Our next goal is to present an algorithm for calculating the map G =
H−1, inverse to the Haar transform. We apply the so-called bottom up
algorithm. Using the notation introduced earlier we assume that we are
given b ∈ Ln(Id) and we want to find y = Gb given by (4.33). To construct
the algorithm we introduce the partial sums for y:

y(0) = b(0) h0,(4.43)

y(s) = y(0) +
s−1∑

j=0

∑

i∈Jj
b(i)hi for s = 1, . . . , n.(4.44)
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Clearly,

y(n) = y, y(s) ∈ Ls(Id) for s = 0, . . . , n.(4.45)

It follows from (4.45) and (4.29) that y(s) can be represented in the basis
{ns,i : i ∈ Id and ∨i < 2s}:

y(s) =
∑

∨i<2s
b(s)(i)ns,i.(4.46)

Here and later on we denote by ∨i < 2s the set {i ∈ Id : ∨i < 2s}. We are
going to determine the b(s)(i) recursively in terms of the Haar coefficients
b(i) in (4.33). For s = 0 we have

b(0)(0) = b(0).(4.47)

Now, (4.44) gives

y(s+1) = y(s) +
∑

i∈Js
b(i)hi for s = 0, . . . , n.(4.48)

Using (4.17), for i ∈ Id we get

ns,i =
∑

ε

ns+1,2i+ε,(4.49)

where ε = (ε1, . . . , εd) with εν = 0, 1. Thus (4.46) can be rewritten as

y(s) =
∑

∨i<2s
b(s)(i)

∑

ε

ns+1,2i+ε.(4.50)

Introducing the indicator function χi(m) of the set

{2i1, 2i1 + 1} × . . .× {2id, 2id + 1},
and changing the order of summation in (4.50), we get

y(s) =
∑

∨m<2s+1

∑

∨i<2s
b(s)(i)χi(m)ns+1,m.(4.51)

Now, the equality χi(m) = 1 implies i = bm/2c; here for c = (c1, . . . , cd) we
define bcc = (bc1c, . . . , bcdc). Thus, (4.51) can be simplified to

y(s) =
∑

∨m<2s+1

b(s)(bm/2c)ns+1,m.(4.52)

It also follows by (4.17), (4.19), (4.20) and (4.27) that each hi, i ∈ Js, has an
explicit representation in the basis {ns+1,m : ∨m < 2s+1}. Indeed, defining
k = i mod 2s we find that
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hi =
d⊗

ν=1

(ns+1,2kν + (−1)εs(iν)ns+1,2kν+1)(4.53)

=
∑

η

d⊗

ν=1

(−1)ηνεs(iν)ns+1,2kν+ην

=
∑

η

(−1)η1εs(i1)+...+ηdεs(id)ns+1,2k+η

=
∑

η

(−1)(2k+η)·εsns+1,2k+η

=
∑

∨m<2s+1

(−1)m·εsχk(m)ns+1,m,

where εs(i) is given by the dyadic expansion i = ε0(i)+ε1(i)·2+ε2(i)·22+. . . ;
(2k + η) · εs is the dot product of 2k + η and εs = (εs(i1), . . . , εs(id));
η = (η1, . . . , ηd) with ην = 0, 1; and χk(m) is the indicator function of the
product set {m : 2kν ≤ mν ≤ 2kν + 1 for ν = 1, . . . , d}. Consequently,

∑

i∈Js
b(i)hi =

∑

∨m<2s+1

∑

i∈Js
b(i)(−1)m·εsχk(m)ns+1,m.

Now, for fixed m the equality χk(m) = 1 implies that m = 2k + η and that
k = bm/2c and i = bm/2c + εs2s with |εs| = |εs(i1)| + . . . + |εs(id)| > 0.
Thus, ∑

i∈Js
b(i)hi =

∑

∨m<2s+1

B(s+1)(m)ns+1,m,(4.54)

where

B(s+1)(m) =
∑

η:|η|>0

(−1)η·mb(bm/2c+ η · 2s).(4.55)

where η runs through all the 0,1 sequences of length d. Using now (4.46),
(4.48), (4.52), (4.54) and (4.55) we obtain the basic recurrence relation

b(s+1)(m) = b(s)(bm/2c) +B(s+1)(m)(4.56)

for ∨m < 2s+1 and s = 0, . . . , n. In particular, since y = y(n+1), we obtain
the value of the inverse Haar transform Gb.

In the final step of our discussion we treat the Haar compression, intro-
ducing, motivated by the theory, the corresponding Besov norm

‖y‖(α)
p =

(
|b(0)|p +

n∑

j=0

2j(αp−d)
∑

i∈Jj
|b(i)|p

)1/p
,(4.57)

where the coefficients {b(i)} are given by (4.33). It now follows from (4.57)
that
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‖hi‖(α)
p = 2j(α−d/p) for i ∈ Jj .(4.58)

Let us introduce the Haar system h(α,p)
0 = 1, h(α,p)

i = 2j(d/p−α)hi whenever
i ∈ Jj and j = 0, . . . , n. It is the Haar basis normalized in the Besov norm

‖ · ‖(α)
p and the representation (4.33) now takes the form

y = b(α,p)(0)h(α,p)
0 +

n∑

j=0

∑

i∈Jj
b(α,p)(i)h(α,p)

i =
∑

∨i<2n
b(α,p)(i)h(α,p)

i ,(4.59)

where

b(α,p)(0) = b(0), b(α,p)(i) = 2j(α−d/p)b(i), i ∈ Jj , 0 ≤ j ≤ n.(4.60)

The space Ln(Id) with the Besov norm ‖·‖(α)
p becomes lp2nd and (4.57) reads

‖y‖(α)
p =

[
|b(α,p)(0)|p +

n∑

j=0

∑

i∈Jj
|b(α,p)(i)|p

]1/p
(4.61)

=
[ ∑

∨i<2n
|b(α,p)(i)|p

]1/p
.

We recall that we have a good motivation for these considerations for the
parameters (α, p) in the range 0 < α < 1/p ≤ 1.

To conclude our compression we introduce

B(λ) = {∨i < 2n : |b(α,p)(i)| ≤ λ}, λ ≥ 0,(4.62)

and the distribution function

F (λ) = |B(λ)|.(4.63)

Now, as in the diamond case we have

Proposition 4.3. Assume that 0 < α < 1/p ≤ 1. For given α, p and
λ ≥ 0 we assign to y given by (4.59) the compressed y:

yλ =
∑

∨i<2n
b
(α,p)
λ (i)h(α,p)

i ,(4.64)

where

b
(α,p)
λ (i) =

{
b(α,p)(i) for i ∈ Id \B(λ),

0 for B(λ).
(4.65)

Then
‖y − yλ‖(α)

p ≤ λ[F (λ)]1/p,(4.66)

and equality in (4.66) is attained in particular for y of the form

yλ =
∑

∨i<2n
±λh(α,p)

i .(4.67)
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The definition of ε-compression is the same as in Definition 3.4. More-
over, as in the diamond case we have the same

Corollary 4.4. If λ[F (λ)]1/p ≤ ε, then yλ is an ε-compression.
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