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Spaces of polynomial functions
of bounded degrees on an embedded manifold

and their duals

by Shuzo Izumi (Osaka)

Abstract. Let O(U) denote the algebra of holomorphic functions on an open subset
U ⊂ Cn and Z ⊂ O(U) its finite-dimensional vector subspace. By the theory of least
spaces of de Boor and Ron, there exists a projection Tb from the local ring On,b onto the
space Zb of germs of elements of Z at b. At a general point b ∈ U its kernel is an ideal
and Tb induces the structure of an Artinian algebra on Zb. In particular, this holds at
points where the kth jets of elements of Z form a vector bundle for each k ∈ N. For an
embedded manifold X ⊂ Cm, we introduce a space of higher order tangents following Bos
and Calvi. In the case of curve, using Tb, we define the Taylor projector of order d at a
general point a ∈ X, generalising results of Bos and Calvi. It is a retraction of OX,a onto
the set of polynomial functions on Xa of degree up to d. Using the ideal property stated
above, we show that the transcendency index, defined by the author, of the embedding of
a manifold X ⊂ Cm is not very high at a general point of X.

1. Introduction. The motivation of this paper is applications of least
spaces of de Boor and Ron and a generalisation of the theory of Bos and
Calvi of the Taylor projector on a plane algebraic curve. In particular, the
main problem is to clarify the nature of “singularities of an affine embedding
of a manifold” found by Bos and Calvi in the case of plane algebraic curves.

In the early nineties, there was substantial progress in the theory of mul-
tivariate polynomial interpolation with arbitrary interpolation nodes (see
e.g. [GS], [Iz3]). Outstanding methods are application of Gröbner bases (e.g.
Marinari–Möller–Mora [MMM]), use of exponential polynomials for eval-
uation at interpolation points (Dyn–Ron [DR], de Boor–Ron [BR1]) and
the duality between the space of interpolating functions and its least space
(de Boor–Ron [BR1], [BR2]). The first method is widely applied, treating
the interpolation theory as algebraic geometry of 0-dimensional subschemes.
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The second is related to systems of PDEs with constant coefficients. The
author feels that the third method is also applicable to general problems
beyond interpolation. This is an attempt in such a direction.

The essence of the third method above is that, for a finite-dimensional
vector space Zb ⊂ C{t} of holomorphic function germs at b, the initial forms
of its elements with respect to the total degree generate a dual space with
respect to a sesquilinear form, as follows.

Let U be an open subset of an affine space Cn and let On(U) denote the
ring of holomorphic functions on U . Take f(t) ∈ On(U) (t := (t1, . . . , tn))
and b := (b1, . . . , bn) ∈ U . The least part fb↓ of f at b means the non-zero
homogeneous part of lowest degree of the power series expansion of f with
respect to the affine coordinates t′ := t − b centred at b. Since we shall
consider these least parts as elements of a dual space of On(U), we replace
the variable t′ in the least parts by the corresponding Greek letter. In §2,
this will be treated as a Schwartz distribution supported at b. We have no
need to attach the symbol b to τ . The polynomial fb↓ may be considered as
a homogeneous element of C[τ ]. For example(

(t1 − b1)p(t2 − b2)q + (t1 − b1)p+1(t2 − b2)q
)
b
↓ = τp1 τ

q
2 ∈ C[τ ].

If Z is a vector subspace of On,b := C{t − b} or O(U), then Zb↓ ⊂ C[τ ]
denotes the linear span SpanC(fb↓ : f ∈ Z) over C of the least parts of
elements of Z. The mapping

↓ : Z → Zb↓, f 7→ fb↓,
is called the least operator. Let

Sn,b : C[τ ]×On,b → C
denote the ordinary sesquilinear form (see §5). The restriction SZ : Zb↓ ×Z
→ C[t] of Sn,b is found to be non-degenerate by de Boor and Ron [BR1],
[BR2]. Let us define the projector

TZ,b : On,b → Zb

as the adjoint linear mapping of the inclusion Zb↓ → On,b↓ = C[τ ]. This
is a retraction, i.e. TZ,b ◦ κ = idZb , where κ denotes the inclusion mapping.
A vector subspace of C[τ ] is defined to be D-invariant if it is closed with
respect to the partial differentiations with respect to τ1, . . . , τn. Let U inv

Z
denote the set of points where Zb↓ (b ∈ U) is D-invariant, and Ubdl

Z the
set of points of U where, for each k ∈ N, the k-jets of elements of Z form a
vector bundle in a sufficiently small neighbourhood. The set Ubdl

Z is invariant
under biholomorphic transformations of U . We prove the following.

Theorem 4.5. The set Ubdl
Z is non-empty and analytically open and

Ubdl
Z ⊂ U inv

Z , where a set is called analytically open if it is the complement
of a closed analytic subset.
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This is the key theorem of this paper but it can be proved easily by
describing C[Φ]db↓ in the language of the “formal theory of differential equa-
tions”. This method was suggested to the author by Tohru Morimoto.

Theorem 8.3. Let U be an open subset of Cn and Z a finite-dimen-
sional vector subspace of On(U). Then U inv

Z is invariant under biholomorphic
transformations of U and the vector space Zb has the structure of an Artinian
algebra as a factor algebra of On,b via the projector TZ,b : On,b → Zb at
each b ∈ U inv

Z . This structure is unique up to a canonical isomorphism as
a contravariant tensor (see Remark 9.7).

These results trace back to the very interesting theory of Bos and Calvi
[BC1]. Let X be a complex submanifold in an open subset U ⊂ Cm and OX,a
the local algebra of germs of holomorphic functions on X at a. The vector
space of polynomials of degree at most d in x is denoted by C[x]d ⊂ C[x].
We set

P d(Xa) := C[x]d|Xa ⊂ OX,a,
the vector subspace of polynomial functions on X of degree at most d. Let

Φ := (Φ1, . . . , Φm) : Cnb → Cma
be a local parametrisation ofX, which means that, if its range is restricted to
the image Xa, it is the germ of a biholomorphic mapping. In this paper, we
indicate an analytic mapping germ by an upper case bold Greek letter, and
the induced algebra homomorphism by the corresponding lower case letter,
like

ϕ : Om,a → On,b, f 7→ ϕ(f) := f ◦Φ.
Let

C[Φ]d := ϕ(C[x]d) ⊂ On,b
denote the vector subspace of all pullbacks of elements of C[x]d by Φ, that
is, the polynomials of degree ≤ d in the component functions Φ1, . . . , Φm.
Following Bos and Calvi, we introduce a special set Dϕ,d

a ⊂ C[ξ] of higher
order tangents of X at a as the set of pushforwards of elements of C[Φ]db↓ ⊂
C[τ ] by Φ, where C[Φ]db↓ is considered as a set of higher order tangents of
Cn at b. It can be expressed as Dϕ,d

a := sϕ(C[Φ]db↓) ⊂ C[ξ], using the adjoint
homomorphism sϕ : C[τ ] → C[ξ] of ϕ. It is a dual space of P d(Xa) with
respect to the sesquilinear form induced by Sn,b and we call its elements
Bos–Calvi tangents. We define the ϕ-Taylor projector

Tϕ,d
a : OX,a → P d(Xa)

of degree d on X ⊂ Cm at a as the adjoint homomorphism of the inclusion
Dϕ,d
a → C[τ ]. The mapping Tϕ,d

a and the space Dϕ,d
a are defined using a local

parametrisation ϕ of X around a. To grasp the complicated relations among
these spaces and mappings at a glance, see Diagram 4 in §10.
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Proposition 10.7. Let X be a complex submanifold of an open subset
of Cm. For any point a ∈ X, the following conditions are equivalent for each
local parametrisation ϕ:

(1) The set Dϕ,d
a of Bos–Calvi tangents is D-invariant at a.

(2) The space of annihilators (Dϕ,d
a )⊥X = Ker Tϕ,d

a is an ideal of OX,a.
Remark 10.10. Let X be a complex submanifold of an open subset

of Cm. If Dψ,d
a is D-invariant for some ψ, it is so also for all local parametri-

sations ϕ at a, that is, Dϕ,d
a is a covariant tensor.

Let us call a point a ∈ X D-invariant of degree d if it satisfies the condi-
tion (1) (or (2)) of Proposition 10.7 for any (or some) ϕ, and D-invariant of
degree ∞ if it is D-invariant of degree d for all d ∈ N. Theorem 4.5 implies
that the set of D-invariant points of degree d contains a non-empty analyt-
ically open subset X. Thus the set of points which are not D-invariant of
degree ∞ is contained in a countable union of thin analytic subsets of X,
a set of first Baire’s category with Lebesgue measure 0 in X.

In the case of a plane algebraic curve, Bos and Calvi [BC2] prove that
Tϕ,d
a is independent of the choice of ϕ if and only if the powers of monomials

appearing in C[Φ]db↓ ⊂ C[τ ] form a gap-free sequence and that this condition
actually holds at all but a finite number of points onX, using the Wronskian.
In this case, the gap-free property is equivalent to theD-invariance of C[Φ]db↓.
Bos and Calvi [BC2] give the name “Taylorian property” to the independence
of Tϕ,d

a from the local parametrisation ϕ. In this paper, we generalise the
theorem of Bos and Calvi to analytic curves of larger codimension as follows.

Theorem 11.1. Let X be a 1-dimensional regular complex submanifold
of an open subset of Cm. Take a local parametrisation Φ : Cnb → Cma . Then,
for any d ∈ N, the following three properties of a ∈ X are equivalent:

(1) For all k ∈ N0, a is a bundle point of the k-jet spaces of C[Φ]db↓.
(2) The powers of monomials appearing in C[Φ]db↓ ⊂ C[τ ] form a gap-free

sequence.
(3) The point a is Taylorian of degree d.

For a higher-dimensional submanifold, however, D-invariance does not
mean the Taylorian property and the set Dϕ,d

a of higher order tangents de-
pends upon the local parametrisation Φ, as we will see in Example 9.6.

We can measure simplicity of embeddingX ⊂ Cm by the set of Bos–Calvi
tangents. Define

θOn,b,Φ(d) := max{deg p : p ∈ C[Φ]db↓ \ {0}}.
Let ordb(f) of f ∈ On,b denote the vanishing order of f at b. Since θOn,b,Φ(d)
is equal to

sup{ordb F (Φ1, . . . , Φm) : F ∈ C[x]d, F (Φ1, . . . , Φm) 6= 0},
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its estimate as a function of d is called a zero-estimate of Φ. It is related to
transcendence of the embedding X ⊂ Cm at a. Zero-estimates are one of the
most important methods in transcendental number theory. They have been
found for exponential polynomials, for some number-theoretic functions or
solutions of some good system of differential equations so far. Here, using
D-invariance of degree ∞, we show an effective zero-estimate for a certain
set of quite general holomorphic functions, but only at a general point. Let

χ(Xa, d) := dimCC[Φ]d − dimCC[Φ]d−1

= dimC P
d(Xa)− dimC P

d−1(Xa)

(with dimC P
−1(Xa) = 0) denote the Hilbert function of the smallest alge-

braic subset (the Zariski closure) Xa of Cm that contains a representative
of the germ Xa. We have the following estimates.

Theorem 12.5. Let Φ : Cnb → Xa ⊂ Cma be an embedding of a complex
manifold. Then(

n+ d

n

)
+ θOn,b,Φ(d)− d ≤ dimCC[Φ]d =

d∑
i=0

χ(Xa, i) ≤
(
m+ d

m

)
for any D-invariant point a of degree d. Hence the transcendency index

α(Xa) := lim sup
d→∞

logd θOn,b,Φ(d),

defined in [Iz2], is majorised by dimXa (≤ m) at a D-invariant point of
degree ∞.

That is, the transcendency index of an embedding X ⊂ Cm of complex
manifold is bounded above effectively except at points of a set expressed
as a countable union of thin analytic subsets, even if X is quite general.
This estimate has both merits and demerits in comparison with the zero-
estimate obtained as a corollary of Gabrielov’s multiplicity-estimate [Ga] for
Noetherian functions on an integral manifold of a Noetherian vector field.

All results remain valid also in the real analytic category. In this paper
we do not treat the multi-point interpolation problem as [BC1]. The first half
of this paper consists of detailed descriptions of basic facts which may be
well-known to specialists of the respective fields. They are included because
the author could not guess the fields of expertise of possible readers.

2. Least spaces. Here we recall the notion of least space of a vector
space of holomorphic functions at a point. It is the graded space associated
to the maximal-ideal-adic filtration. We use the term “least space” and the
simple symbol ↓ of de Boor and Ron [BR1], [BR2] used in interpolation
theory.
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First we define the least operator and the least space in an intrinsic way.
Let

On,b := C{t− b} = C{t1 − b1, . . . , tn − bn}
denote the local algebra of convergent power series centred at b := (b1, . . . , bn)
∈ Cn and

mn,b := (t− b)On,b = (t1 − b1, . . . , tn − bn)On,b
its maximal ideal. This algebra On,b has a filtration

On,b = m0
n,b ⊃ m1

n,b ⊃ · · ·
satisfying the following conditions:⋂

i∈N0

mi
n,b = {0}, dimC

mi
n,b

mi+1
n,b

=
(n+ i− 1)!

(n− 1)!i!
<∞.

Here the latter equality follows from the fact that the homogeneous polyno-
mials of degree i form a representative system of residue classes of mi

n,b/m
i+1
n,b .

We define the least space of On,b to be

On,b↓ :=
⊕
i∈N0

mi
n,b

mi+1
n,b

(N0 := {0, 1, . . . }).

An element contained in a single componentmi
n,b/m

i+1
n,b is called homogeneous.

Let us define the order function

ordb : On,b → N0, f 7→ ordb f,

by
ordb f := max{i : f ∈ mi

n,b} (ordb 0 = +∞).

If ordb f = i, the least part fb↓ of f is defined to be the residue class of f in
mi
n,b/m

i+1
n,b , i.e.

fb↓ := f mod mα+1
n,b (α := ordb f, 0b↓ := 0).

The mapping
↓ : On,b → On,b↓, f 7→ fb↓,

is called the least operator. It is not a linear map. It is obvious that On,b↓ =
SpanC(fb↓ : f ∈ On,b), the linear span of the least parts of all elements
of On,b. These are the intrinsic definitions of the least part and the least
space.

The original definition of the least part of f by de Boor and Ron is
the non-zero homogeneous part f tb↓ of f of smallest degree in the power
series expansion of f with respect to some affine coordinate system t. This
homogeneous part f tb↓ is a coordinate expression of fb↓. Before §8, we fix
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an affine coordinate system and hence we omit the superscript t even in the
coordinate expression f tb↓. Let us adopt the multi-exponent notation:

ν := (ν1, . . . , νn), (t− b)ν = (t1 − b1)ν1 · · · (tn − bn)νn .

Since we consider elements of On,b↓ as belonging to the dual space of On,b in
later sections, we write them as polynomials in Greek variables corresponding
to the original as

τi := (ti − bi)b↓, τ ν := (t− b)νb↓ ∈ m
|ν|
n,b/m

|ν|+1
n,b .

Hence the least space On,b↓ is identified with the polynomial algebra C[τ ]
with τ := (τ1, . . . , τn), τi := (ti − bi)b↓. The product in C[τ ] is a natural
operation as a consequence of the property

mi
n,bm

j
n,b = mi+j

n,b .

Let Zb be a finite-dimensional vector subspace of On,b. We put

Zb↓ := SpanC(fb↓ : f ∈ Zb) ⊂ C[τ ],

the linear span of {fb↓ : f ∈ Zb}, and call it the least space of Zb. We know
the following (which will be strengthened in Theorem 5.5).

Theorem 2.1 (de Boor–Ron [BR2, Proposition 2.10]; cf. [Iz3, Theorem
7.1]). Let Zb be a finite-dimensional vector subspace of On,b. Then

dimC Zb↓ = dimC Zb.

3. Jet spaces and multivariate Wronskians. Let Z be a vector space
of holomorphic functions on an open subset U ⊂ Cn. The k-jets of elements
of Z at a point of U form a vector space. If we gather such vector spaces
only at good points of U , we get a holomorphic vector bundle, the k-jet
bundle of Z. The theorem of Walker on Wronskians implies that the jet
sections of elements of Z of order up to dimC Z − 1 span those of any order
on an analytically open subset. This order dimC Z − 1 is minimal for a
general Z.

Let On denote the sheaf of germs of holomorphic functions on Cn. We
call the sheaf of germs of holomorphic sections of a holomorphic vector
bundle the associated sheaf or the On-module associated to the bundle. It
is indicated by the script style of the letter used for the bundle. Assigning
to a holomorphic vector bundle on U the associated sheaf defines a bijective
mapping of the set of isomorphism classes of holomorphic vector bundles of
rank r over U onto the set of isomorphism classes of locally free OU -modules
(OU = On|U ) of rank r over U (see e.g. [PR, Proposition 3.3]). We use
parenthesised b for values or sets of values at b (bundle fibre, e.g. Rk(b)), and
subscript b for germs or sets of germs at b ∈ U (stalk, sheaf fibre, e.g. Lkb)
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or to indicate the centre of coordinates for which the least part is defined
(as Zb↓).

Let

πk : Jk(OU )→ U, Jk(OU ) ∼= U × CN(n,k), N(n, k) :=

(
n+ k

k

)
,

denote the k-jet space of holomorphic functions on U , the holomorphic vector
bundle of k-jets of holomorphic functions defined on open subsets of U . Its
coordinates are denoted by

(t, (uν : |ν| ≤ k)) (t := (t1, . . . , tn) ∈ U, ν := (ν1, . . . , νn)).

Let On(V ) denote the algebra of sections of On over V ⊂ U . The k-jet
extension jkf of f ∈ On(V ) is defined by

jkf : V → Jk(OU ), t 7→
(
t, uν(jkf) : |ν| ≤ k

)
,

uν(jkf) :=
1

ν!

∂|ν|f(t)

∂tν
.

This is a section of the jet space Jk(OU ) over V . The coefficient 1/ν! of the
νth fibre coordinate is convenient in the calculation of prolongation below.
The coordinates uν (|ν| ≤ k) are called the fibre coordinates corresponding
to the normalised νth derivative.

If Z is a finite-dimensional vector subspace of On(U), evaluation of the
jet extension at b ∈ U defines the mapping

jk|Z(b) : Z → Jk(OU )(b), f 7→ jkf(b).

Let
(b; Rk(b)) := {jkf(b) : f ∈ Z}

denote its image. Then we have the natural commutative diagram of linear
mappings of vector spaces:

Z

jk|Z(b)

Rk−1(b) Rk(b)
Σk(b)

jk−1|Z(b) jk+1|Z(b)

Rk+1(b)
Σk+1(b)

Diagram 1. Jet spaces of Z ⊂ C[τ ]

Here, the horizontal mappings are projections defined by forgetting the co-
ordinates corresponding to the highest order derivatives. The total image⋃
b∈U (b, Rk(b)) is not an analytic subset of Jk(OU ) nor even a closed sub-

set in general. The complement of a closed analytic subset in U is called
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analytically open in U . Set

rk := max{dimCRk(t) : t ∈ U}, UkZ := {t ∈ U : dimCRk(t) = rk}.
Suppose that U is connected. Since the points of UkZ are characterised by
the full rank condition of certain matrices with holomorphic elements, UkZ is
a non-empty analytically open subset. Setting

Rk := {(b;Rk(b)) : b ∈ UkZ},
we have a holomorphic vector bundle

πk|Rk
: Rk → UkZ .

Definition 3.1. We call a point of UkZ a bundle point of the k-jet space
of Z and a point of Ubdl

Z := U0
Z ∩U1

Z ∩ · · · a bundle point of all the jet spaces
of Z.

Example 3.2. Define Z := Span(s2, t2, s3)) ∈ O2(C2). Since the higher
order derivatives of s2, t2, s3 with respect to the multiple order

ν = (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)

are listed as s
2 2s 0 2 0 0 0 0 0 0

t2 0 2t 0 0 2 0 0 0 0

s3 3s2 0 6s 0 0 6 0 0 0

 ,

we have

r0 = 1, r1 = r2 = · · · = 3;

U0
Z = C2 \ {(0, 0)} ) U1

Z = C2 \ {st = 0}
( U2

Z = C2 \ {s = 0} ( U3
Z = U4

Z = · · · = C2;

Ubdl
Z = C2 \ {st = 0}.

Hence there is no monotone inclusion relation among U0
Z , U

1
Z , U

2
Z , . . . (see

3.6).

Now we recall a known fact on multivariate Wronskians. For multi-
variable polynomials, Siegel [Si] and Roth [Ro] found that their linear in-
dependence is decided by non-vanishing of a certain set of Wronskians, and
applied this to the theory of rational approximation of algebraic numbers.
Walker [Wa] has obtained the minimal set of Wronskians needed to decide
linear independence. It allows us to write out a minimal finite system of
PDEs explicitly whose solution space is a given finite-dimensional vector
subspace Z ⊂ On(U). It also enables us to state the subsequent arguments
efficiently.



10 S. Izumi

Definition 3.3. Walker called Y := {ν1, . . . ,νm} ∈ (Nn0 )m Young-like
if it satisfies the following condition:

(ν ∈ Nn0 , ∃νi ∈ Y : ν ≤ νi) ⇒ ν ∈ Y .
Here ≤ denotes the product order of the usual order of N0 defined as

ν := (ν1, . . . , νn) ≤ µ := (µ1, . . . , µn) ⇔ ν1 ≤ µ1, . . . , ν1 ≤ µn.
Young-likeness of Y is equivalent to D-invariance of SpanC(τ ν1 , . . . , τ νm) in
the sense defined in §4. Set

Ym := {Y ∈ (Nn0 )m : Y is Young-like}.
Young-like sets are also called order-closed [BR2], monotone or lower

sets.

Theorem 3.4 (Siegel [Si]; Roth [Ro]; Walker [Wa, Theorem 3.1, Theorem
3.4, Remark in §3]).

(1) Let f1, . . . , fm be meromorphic functions on a connected open subset
U ⊂ Cn. Then they are linearly independent if and only if there exists
at least one {ν1, . . . ,νm} ∈ Ym such that

W (f1, . . . , fm;ν1, . . . ,νm) :=

f
(ν1)
1 f

(ν2)
1 . . . f

(νm)
1

f
(ν1)
2 f

(ν2)
2 . . . f

(νm)
2

...
...

...
...

f
(ν1)
m f

(ν2)
m · · · f

(νm)
m

does not vanish identically.
(2) The set Ym is the least set with the above property in the following

sense. If Y ′ ⊂ (Nn0 )m and Y ′ ( Ym, then there exist linearly indepen-
dent monomials f1, . . . , fm such that

W (f1, . . . , fm; ν1, . . . ,νm) = 0

for all (ν1, . . . ,νm) ∈ Y ′.
We use the following immediate consequence of this theorem.

Corollary 3.5. Let {f1, . . . , fm} be a basis of a vector subspace Z ⊂
On(U). Then Z is the space of holomorphic solutions of the system of PDEs

W (f1, . . . , fm, y; ν1, . . . ,νm+1) = 0 ({ν1, . . . ,νm+1} ∈ Ym+1),

where y = y(t) ∈ On(U) denotes the unknown function.

Lemma 3.6. Let U be a connected open subset of Cn and let {f1, . . . , fm}
(m ≥ 1) be a basis of a vector subspace Z ⊂ On(U).

(1) If Y = {ν1, . . . ,νm} ∈ Ym and W (f1, . . . , fm;Y )(b) 6= 0, then
b ∈ Um−1Z and the vectors (f

(νi)
1 (b), . . . , f

(νi)
m (b)) (i = 1, . . . ,m)
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span all (f
(ν)
1 (b), . . . , f

(ν)
m (b)) (ν ∈ Nm0 ). Hence the fibre coordinates

uν1 , . . . , uνm of Jm−1(OU ) form a fibre coordinate system of Rm−1
over a neighbourhood of b.

(2) We have

1 = r0 ≤ r1 ≤ · · · ≤ rm−1 = rm = · · · = m,

Um−1Z ⊂ UmZ ⊂ · · · , Ubdl
Z = U1

Z ∩ · · · ∩ Um−1Z .

(3) The vector bundles Rk (k ≥ m−1) are all isomorphic when restricted
to Um−1Z .

(4) The sets UkZ and Ubdl
Z are non-empty analytically open subsets of U

and independent of the choice of local coordinates of U .

Proof. (1) If νi ∈ Y ∈ Ym, there is a chain Z connecting it to (0, . . . , 0).
It is not longer than #Y − 1 = m − 1 (1 ≤ i ≤ m). Then the coordinates
uν1 , . . . , uνm form a subset of the fibre coordinate system of Jm−1(OU )(b).
The assumption W (f1, . . . , fm;Y )(b) 6= 0 implies that Rm−1(b) is an m-
dimensional subspace of Jm−1(OU )(b). Since Rk(b) is spanned by m vectors,
it is maximal and we see that b ∈ Um−1Z . The rest is now obvious.

(2) The fact that the ri are non-decreasing is obvious. By Theorem 3.4,
there exist b and Y := {ν1, . . . ,νm} ∈ Ym with W (f1, . . . , fm;Y )(b) 6= 0.
Then rm−1 = m by (1). These prove the first expression. Since rm−1 = rm =
· · · = m and the Rk are increasing, we have Um−1Z ⊂ UmZ ⊂ · · · . Therefore
Ubdl
Z = U1

Z ∩ U2
Z ∩ · · · = U1

Z ∩ · · · ∩ Um−1Z .
(3) Property (1) implies that uν (|ν| ≤ m− 1) is a linear combination of

uν1 , . . . , uνm in Rm−1 with coefficients in On. Thus Rk (k ≥ m− 1) are not
proper extensions of Rm−1.

(4) We have already stated that UkZ are open in their definition above.
Independence from coordinate changes is a consequence of the fact that the
jet spaces are contravariant geometric objects (see Remark 9.7), which will
be detailed in §8.

4. Generic D-invariance of least spaces. Let Z be a vector space
of holomorphic functions on an open subset U ⊂ Cn. The vector space of
germs of elements of Z at b ∈ U is denoted by Zb. The least space Zb↓ of
Zb is identified as a vector subspace of C[τ ] (as stated in the introduction).
Our main purpose here is to prove that Zb↓ is closed under partial differen-
tiation by τi (1 ≤ i ≤ n) at a general point of U . The point of the proof is
the prolongation of PDEs annihilating the jets of elements of Z, which was
suggested to the author by Tohru Morimoto.

Definition 4.1. A vector subspace Q ⊂ C[τ ] (τ := (τ1, . . . , τn)) is
D-invariant if it is closed with respect to the partial differentiations with
respect to τ1, . . . , τn. Let Z be a vector space of holomorphic functions on
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an open subset U ⊂ Cn. Define

U inv
Z := {b : Zb↓ is D-invariant}.

Proposition 4.2. If 0 < dimC Zb <∞ and b ∈ U inv
Z , then there exists

f ∈ Zb such that f(b) 6= 0.

Proof. If f(b) = 0 for all f ∈ Zb, we have 1 6∈ Zb↓. This contradicts the
assumption of D-invariance of Zb↓.

Therefore, at a point b of the simultaneous vanishing locus of the elements
of Z, the least space Zb↓ is not D-invariant. The converse does not hold, as
we will see in Example 7.6.

Proposition 4.3. If Q ⊂ C[τ ] is D-invariant, it is translation invari-
ant, i.e. p(τ ) ∈ Q implies p(τ + b) ∈ Q for any constant vector b.

Proof. This is obvious from the ordinary Taylor formula:

p(τ + b) =
∑
|ν|≤d

1

ν!

∂|ν|p(τ )

∂τ ν
bν (d := deg p).

Let Lk denote the sheaf of germs of holomorphic functions on the mani-
fold Jk(OUbdl

Z
) vanishing on the submanifold Rk which are linear in the fibre

coordinates uν . This is an OUbdl
Z

-module on Ubdl
Z . The local sections of Lk

are functions
A(t,u) :=

∑
|ν|≤k

αν(t) · uν

which are homogeneous linear in fibre coordinates uν of Jk(OUbdl
Z

) with
coefficients αν(t) ∈ On(V ) (V ⊂ Ubdl

Z ). If the uν are replaced by the cor-
responding differential operators (1/ν!) · ∂|ν|/∂tν , then elements of Lk(V )
become linear partial differential operators which annihilate the functions of
Z on V .

Definition 4.4. Take a local section

A(t,u) :=
∑
|ν|≤k−1

αν(t) · uν ∈ Lk−1(V ) (αν(t) ∈ On(V ))

over V ⊂ U . Differentiating the relation∑
|ν|≤k−1

1

ν!
αν(t) · ∂

|ν|f
∂tν

= 0 (f ∈ Z)

with respect to ti, we have∑
|ν|≤k−1

1

ν!

(
α
(ei)
ν (t) · ∂

|ν|

∂tν
+ αν(t) · ∂

|ν+ei|

∂tν+ei

)
f = 0 (f ∈ Z),
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where ei := (δ1i, . . . , δni) denotes the ith unit vector. Hence α(ei)
ν expresses

the derivative of αν with respect to ti. This equation implies that∑
|ν|≤k−1

(
α
(ei)
ν (t) · uν + (νi + 1)αν(t) · uν+ei

)
∈ Lk(V ) (i = 1, . . . , n).

These are called the first prolongations of A(t,u).

Theorem 4.5. Let On(U) be the algebra of holomorphic functions on a
connected open subset U ⊂ Cn, Z its finite-dimensional vector subspace and
Ubdl
Z ⊂ U the set of bundle points of all the jet spaces of Z (Definition 3.1).

Then Ubdl
Z is a non-empty analytically open subset and Ubdl

Z ⊂ U inv
Z .

Proof. We have seen that Ubdl
Z is a non-empty analytically open set in

Lemma 3.6. The canonical projections

Πk : Jk(OU )→ Jk−1(OU ), Σk : Rk → Rk−1

are constant rank homomorphisms over Ubdl
Z and they induce the inclusion

i k : KerΣk → KerΠk of locally free analytic sheaves by the following dia-
gram:

Jk−1(OU ) Jk(OU ) 0KerΠk

Rk−1 Rk 0KerΣk

ik

Σk

Πk

A local section of KerΠk is expressed as

f(t, τ ) =
∑
|ν|=k

βν(t)τ ν , βν(t) :=
1

ν!

∂|ν|f
∂τ ν

(t,0),

where the monomials τ ν stand for the base of the fibre corresponding to
the coordinate uν . (We may write τ ν as (dt)�ν = (dt1)

�ν1 � · · · � (dtn)�νn ,
using the symmetric tensor product �, see Theorem 8.3(1).)

The least space Zb↓ is obtained by evaluating KerΣk at b. Hence D-
invariance of Zb↓ at degree k reduces to the implication

f ∈ KerΣk ⇒ ∂f

∂τi
∈ KerΣk−1.

Take f(t, τ ) ∈ KerΣk and any defining equation

A(t,u) :=
∑
|ν|≤k−1

αν(t) · uν ∈ Lk−1(V )

of Rk−1 over a neighbourhood V of b. We have
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A

(
jk
(
∂f

∂τi

))
=

∑
|ν|≤k−1

αν(t) · uν
(
jk
(
∂f

∂τi

))
=

∑
|ν|≤k−1

(νi + 1)αν(t) · uν+ei(jkf)

=
∑
|ν|≤k−1

(
α
(ei)
ν (t) · uν + (νi + 1)αν(t) · uν+ei

)
(jkf) = 0.

Here, since |ν| ≤ k − 1 implies uν(jkf) = 0, the third equality follows.
The last equality follows from the first prolongations stated above. This
proves that ∂f/∂τi ∈ Rk−1,b. The inclusion ∂f/∂τi ∈ KerΣk−1

b follows from
f(t, τ ) ∈ KerΣk (homogeneity of f). Evaluating at b ∈ UkZ ∩Uk−1Z , we have
shown that Zb↓ is D-invariant at degree k. Altogether, Zb↓ is D-invariant
on the open subset

Ubdl
Z := U0

Z ∩ U1
Z ∩ · · · = U0

Z ∩ · · · ∩ Um−1Z

(m := dimC Z) described in Proposition 3.6.

By Corollary 3.5, there exists k ≤ m − 1 such that a system of linear
PDEs of order k + 1 is sufficient to select the sections of Z, namely Z is
defined by Lk. We may call the sheaf Lk for such k the defining system of
PDEs for Z. In particular, Lm−1 is a defining system of Z.

5. Sesquilinear forms and weak topologies. Here we recall the
sesquilinear form on the product C[τ ]×C{t} of the space of polynomials and
the convergent power series algebra. The restriction of this sesquilinear form
to the product of a finite-dimensional subspace Z ⊂ C{t} and its least space
Zb↓ ⊂ C[τ ] was proved by de Boor–Ron [BR1], [BR2] to be non-degenerate.
We choose the notation and prove their properties via the statements on
bilinear forms in Bourbaki [Bo2].

Let us define a complex bilinear form

Bn,b : C[τ ]×On,b → C, (p, f) 7→ Bn,b〈p ‖ f〉,
by

Bn,b

〈∑
finite

aντ
ν
∥∥∥ ∑ bµ(t− b)µ

〉
:=
∑
finite

ν!aνbν ,

where ν! = ν1! · · · νm!. In particular,

Bn,b〈τ ν ‖ (t− b)µ〉 =
∂|ν|(t− b)µ

∂tν
(b)

=
∂ν1+···+νn(t− b)µ
∂tν11 . . . ∂tνnn

(b) =

{
ν! (ν = µ),
0 (ν 6= µ).
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Thus the monomial τ ν can be identified with the signed higher order deriva-
tive (−1)|ν|δ(ν)b of the Dirac delta function supported at b ∈ Cm. The sign
(−1)|ν| here originates from partial integration in Schwartz’s distribution
theory [Sc, (II, 1;7)].

Now let u denote the complex conjugations:

u : C[τ ]→ C[τ ],
∑
finite

aντ
ν 7→

∑
finite

āντ
ν ,

u : On,b → On,b,
∑

bµ(t− b)µ 7→
∑

b̄µ(t− b)µ.
The sesquilinear form

Sn,b : C[τ ]×On,b → C, (p, f) 7→ Sn,b〈p | f〉,
is defined by

Sn,b〈p | f〉 := Bn,b〈p ‖ u(f)〉.
This can also be written as

Sn,b := Bn,b ◦ (idC[τ ], u).

Explicitly, we have

Sn,b

〈∑
finite

aντ
ν

∣∣∣∣ ∑ bµ(t− b)µ
〉

=
∑

ν!aν b̄ν .

The weak topology of C[τ ] with respect to Bn,b is the coarsest topology
such that the linear functionals

b‖f : C[τ ]→ C, p 7→ Bn,b〈p ‖ f〉,
are continuous for all f ∈ On,b. Similarly the weak topology of On,b with
respect to Bn,b is the coarsest topology such that the linear functionals

bp‖ : On,b → C, f 7→ Bn,b〈p ‖ f〉,
are continuous for all p ∈ C[τ ]. With these topologies, C[τ ] and On,b become
topological vector spaces.

Remark 5.1. We have chosen the sesquilinear form expressed by the
diagonal matrix with diagonal elements ν! but note that this does not have
intrinsic legitimacy. This form may be transformed to a different positive
definite Hermitian matrix in other affine coordinates but the weak topologies
remain unchanged.

If L is a vector subspace of C[τ ], its annihilator space (orthogonal space)
with respect to Bn,b is denoted by L>:

L> := {f : Bn,b〈p ‖ f〉 = 0 for all p ∈ L}.
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Similarly, if K is a vector subspace of On,b, its annihilator space with respect
to Bn,b is denoted by K>:

K> := {p : Bn,b〈p ‖ f〉 = 0 for all f ∈ K}.
These are vector subspaces. We adopt the abbreviation L>> = (L>)> and
K>> = (K>)>, etc. Recall that L>> and K>> are the weak closures of L
and K respectively [Bo2, 4, §1, n◦3, 4].

The weak topologies of C[τ ] and On,b with respect to Sn,b are defined
in a similar way to those with respect to Bn,b and they yield topological
vector spaces. The weak topology of On,b is nothing but that of coefficient-
wise convergence. If L ⊂ C[τ ] and K ⊂ On,b are vector subspaces, their
annihilator spaces with respect to Sn,b are denoted by L⊥, K⊥:

L⊥ := {f : Sn,b〈p | f〉 = 0 for all p ∈ L},
K⊥ := {p : Sn,b〈p | f〉 = 0 for all f ∈ K}.

These are also vector subspaces. We write L⊥⊥ = (L⊥)⊥ andK⊥⊥ = (K⊥)⊥,
etc. It is obvious that

Sn,b〈p | f〉 = Bn,b〈p ‖ u(f)〉 = Bn,b〈u(p) ‖ f〉,
Bn,b〈p ‖ f〉 = Sn,b〈p | u(f)〉 = Sn,b〈u(p) | f〉.

Defining s|f , sp| in a similar way to b||f , bp||, we have

s|u(f) = b‖f , s|f = b‖u(f), sp| = bp‖ ◦ u, bp‖ = sp| ◦ u.
Since u is an involution (i.e. u ◦ u is the identity) and commutes with the
operations ⊥ and >, we have the equalities

{s|f : f ∈ On,b} = {b|f : f ∈ On,b}, {sp‖ : p ∈ C[τ ]} = {bp‖ : p ∈ C[τ ]}.
Hence we obtain the following.

Proposition 5.2. The weak topologies on C[τ ] (resp. On,b) with respect
to Bn,b and Sn,b coincide. If L (resp. K) is a vector subspace of C[τ ] (resp.
On,b), then

L⊥ = u(L>) = (u(L))>, K> = u(K⊥) = (u(K))⊥,

K⊥ = u(K>) = (u(K))>, L> = u(L⊥) = (u(L))⊥,

and hence
L⊥⊥ = L>>, K>> = K⊥⊥.

By the first assertion, we have no need to refer to forms Bn,b and Sn,b
for weak topologies. Now we can deduce a few properties of the space of
annihilators with respect to the sesquilinear forms from those with respect
to bilinear forms [Bo2, 4, §1, n◦4].
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Corollary 5.3. Let L (resp. K) be a vector subspace of C[τ ] (resp.
On,b). Then:

(1) K⊥ and L⊥ are all weakly closed.
(2) L⊥⊥ is the weak closure of L in C[τ ] and K⊥⊥ is the weak closure

of K in On,b.
(3) L⊥⊥⊥ = L⊥ and K⊥⊥⊥ = K⊥.

We can easily prove the following.

Proposition 5.4. The form Sn,b : C[τ ]×On,b → C is a non-degenerate
sesquilinear form, i.e. C[τ ]⊥ = {0} and O⊥n,b = {0}.

Following the notation of §2, write

τ ν := (t− b)νb↓ ∈ m
|ν|
n,b/m

|ν|+1
n,b ⊂ C[τ ] = On,b↓

for elements of the least spaces. The following is a most natural and efficient
construction of a dual space of a finite-dimensional subspace of On,b.

Theorem 5.5 (de Boor–Ron [BR2, Theorem 5.8]). Let Z be a vector
subspace of On,b. Then the sesquilinear form

SZ : Zb↓ × Z → C
obtained as the restriction of Sn,b : C[τ ]×On,b → C is non-degenerate, i.e.
C[τ ]⊥Z = {0} and O⊥Z

n,b = {0}, where ⊥Z denotes the space of annihilators
with respect to SZ .

Proof. Suppose that f 6= 0 belongs to Z and annihilates Zb↓. We can
write f as

f =
∑
|ν|≥d

aντ
ν , d := ordb f <∞.

Then we have
0 = SZ(fb↓, f) =

∑
|ν|=d

ν!|aν |2 6= 0,

a contradiction. This proves that (Zb↓)⊥Z = {0}.
Suppose that p 6= 0 belongs to Zb↓ and annihilates Z. Let pb↑ 6= 0 denote

the highest degree homogeneous part of p at b. Since Zb↓ is generated by
homogeneous elements, there exists g ∈ Z such that pb↑ = gb↓. Then

0 < Sn〈pb↑ | pb↑〉 = Sn〈pb↑ | gb↓〉 = SZ〈p | g〉 = 0,

a contradiction. This proves that Z⊥ = {0}.
Let us recall an elementary fact: existence of the adjoint mapping.

Lemma 5.6. Let S : Q×Z → C and S′ : Q′×Z ′ → C be non-degenerate
sesquilinear forms defined on products of topological vector spaces equipped
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with the weak topologies with respect to S and S′ respectively, and let κ :
Z → Z ′ be a linear mapping. Then the following are equivalent:

(1) κ is weakly continuous.
(2) There exists a linear mapping sκ : Q′ → Q (which we call the adjoint

of κ) such that

∀p ∈ Q, ∀f ∈ Z ′ : S〈κ(p) | f〉 = S′〈p | sκ(f)〉.
The linear mapping sκ which satisfies (2) is unique for κ. Each of these
conditions implies that sκ is weakly continuous and ssκ := s(sκ) = κ.

Proof. Let u denote the complex conjugation
∑
aµ(t−b)µ 7→∑ āµ(t−b)µ

and define the bilinear forms B : Q× Z → C and B′ : Q′ × Z ′ → C by

B〈p ‖ f〉 := S〈p | u(f)〉, B′〈p ‖ f〉 := S′〈p | u(f)〉
(cf. the third paragraph of §5). If κ is weakly continuous, it has the weakly
continuous transpose mapping, i.e. there exists a linear mapping tκ : Q′ → Q
such that

∀p ∈ Q, ∀f ∈ Z ′ : B〈κ(p) ‖ f〉 = B′〈p ‖ tκ(f)〉,
by [Bo2, 4, §4, n◦1]. We have only to set sκ := u ◦ tκ ◦ u. The rest follows
from the corresponding properties of bilinear forms.

Lemma 5.7. Multiplication by p(τ ) in C[τ ] is the adjoint of the differ-
ential operator u(p)(∂t) (∂t := (∂/∂t1, . . . , ∂/∂tn)) on On,b with respect to
Sn,b. In particular, multiplication by τi is the adjoint of differentiation in ti.
Similarly, multiplication by f(t) in On,b is the adjoint of the infinite differ-
ential operator u(f)(∂τ ) (∂τ := (∂/∂τ1, . . . , ∂/∂τn)) on C[τ ] with respect to
Sn,b. (Such an operator is valid for polynomials.) In particular, multiplication
by ti is the adjoint of differentiation in τi.

Proof. First note that these operations are weakly continuous and hence
they have weakly continuous adjoinds by Lemma 5.6. The second assertion
is obvious from the direct calculations:

Sn,b

〈∑
λ

cλ∂
λ
τ

∑
ν

aντ
ν
∣∣∣ ∑
µ

bµt
µ
〉

=
∑
ν,λ

(λ+ ν)!cλaλ+ν b̄ν

=
∑
ν

∑
µ≥ν

µ!aµb̄νcµ−ν = Sn,b

〈∑
ν

aντ
ν
∣∣∣ ∑
λ

cλt
λ
∑
µ

bµt
µ
〉
,

where ≥ denotes the product order of the order of the set of integers. The
proof of the first inequality is quite similar.

6. Weak topologies of analytic algebras. Here we recall some topo-
logical properties of analytic algebras over C and their homomorphisms. The
main reference is Grauert–Remmert [GR].
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An algebra isomorphic to a factor algebra of a convergent power series
algebra by a proper ideal is called a (local) analytic algebra. Take an analytic
algebra A := On,b/I. This is a local C-algebra in the sense it has a unique
maximal ideal mA, which consists of the residue classes of elements of mn,b,
and A is a vector space over the subalgebra C ⊂ A such that the canonical
homomorphism

C→ A/mA, λ 7→ λ · 1 mod mA,

of fields is an isomorphism. A homomorphism of algebras is always assumed
to be unitary: 1 7→ 1. Then any homomorphism ϕ : B → A of local C-
algebras is local: ϕ(mB) ⊂ mA.

Following Grauert–Remmert [GR], let us see that the weak topology on A
is independent of the expression A = On,b/I. Let πi : A→ A/mi

A (i ∈ N) be
the factor epimorphism. The analytic algebra A/mi

A is a finite-dimensional
C-vector space and hence it has a unique structure of a topological vector
space by [Bo2, 1, §2, n◦3, Th. 2]. We give A the coarsest topology such
that all the πi (i ∈ N) are continuous and call it the projective topology. Of
course this is independent of the expression On,b/I. Note that the projective
topology is called “schwache Topologie” in [GR], which will be proved to be
the same as our weak topology in the following lemma.

Lemma 6.1. Let I ⊂ On,b be an ideal and A := On,b/I the analytic
algebra. Then:

(1) On a regular analytic algebra On,b, the projective topology and the
weak topology coincide.

(2) The ideal I is closed with respect to both the projective topology and
the weak topology with respect to Sn,b : C[τ ]×On,b → C.

(3) The sesquilinear form Sn,b induces a non-degenerate form

SA : I⊥n ×A→ C.
(4) The weak topology of I⊥n (resp. of A) with respect to SA coincides

with the relative topology from On,b (resp. the factor topology of On,b).
(5) The projective topology of A := On,b/I coincides with the factor topol-

ogy of On,b with the projective topology.
(6) The weak topology and the projective topology on A coincide and the

factor epimorphism On,b → A is always a weakly continuous and
open mapping.

Proof. The first assertion is easy to see. Closeness is proved in [GR,
II, §1, Satz 2], and hence I = I⊥n⊥n . Then Sn,b induces a non-degenerate
sesquilinear form SA on I⊥n ×A ∼= I⊥n × (On,b/I⊥n⊥n) by [Bo2, 4, §1, n◦5,
Prop. 5]. This pairing defines a weak topology on A. It coincides with the
factor topology of On,b by [Bo2, 4, §1, n◦5, Prop. 7]. The weak topology
on I⊥n coincides with the relative one by [Bo2, 4, §1, n◦5, Prop. 6]. The
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projective topology on A coincides with the factor topology of On,b by [GR,
II, §1, Satz 3]. Assertions (1), (4) and (5) imply that the two topologies
on A coincide. Continuity and openness are obvious properties of a factor
morphism of topological groups.

Corollary 6.2. Let ϕ : B → A be a homomorphism of analytic al-
gebras. Then ϕ is weakly continuous.

Proof. Suppose that A=Om,b/I and B=On,b/J , and let πA : Om,a→A
and πB : On,b → B denote the factor epimorphisms. Then ϕ lifts to ϕ̃ :
On,b → Om,a (see e.g. [GR, II, §0, Satz 3]). Since ϕ̃ is obtained by substi-
tuting for yi elements of the maximal ideal of On,b, it is easy to see that ϕ̃ is
weakly continuous. Then the inverse image (πA ◦ ϕ̃)−1(U) of an open subset
U ⊂ A is open by Lemma 6.1. This implies that ϕ−1(U) is open again by
Lemma 6.1 and so ϕ is weakly continuous.

7. Projector to a vector subspace. Bos and Calvi used the least
space of de Boor and Ron to define the Taylor projector. Their construction
can be abstracted as follows. Let Zb be a finite-dimensional vector subspace
of the local analytic algebra On,b. Then there exists a retraction (projector)
TZ,b : On,b → Zb of vector spaces. By the results of former sections, at
a general point b, the kernel of TZ,b is an ideal and the space Zb has the
structure of an Artinian algebra as a quotient of On,b.

Let ϕ : Om,a → On,b be a homomorphism of analytic algebras. Its adjoint
sϕ : C[τ ] = On,b↓ → C[ξ] = Om,a↓

exists by Lemma 5.6. This is nothing but the push-forward of derivatives
of Dirac delta (a distribution with one-point support {a}, see Schwartz [Sc,
(III, 10;1), (IX, 4;1)]). Its concrete forms are given by multivariate versions
of Faà di Bruno’s formula (the formula for the higher order derivatives of
composite multivariate functions, see e.g. [LP], [Ma]). Note that the image of
a homogeneous element by sϕ is not always homogeneous. It is a troublesome
task to calculate this formula by hand.

Definition 7.1. For a finite-dimensional vector subspace Zb ⊂ On,b, we
have defined a non-degenerate sesquilinear form

SZ,b : Zb↓ × Zb → C

induced from Sn,b using some fixed coordinates t = (t1, . . . , tn) (Theorem
5.5). The topology of Zb (resp. Zb↓) as a topological vector space is unique
by [Bo2, 1, §2, n◦3, Th. 2]. Let ι : Zb↓ → On,b↓ and κ : Zb → On,b denote the
inclusion mappings. Since all linear mappings defined on a finite-dimensional
space are continuous by [Bo2, 1, §2, n◦3, Cor. 2], the mappings ι and κ are
continuous. Then we have the weakly continuous adjoint linear mappings
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TZ,b := sι : On,b → Zb of ι and sκ : On,b → Zb↓ of κ by Lemma 5.6.
Thus we have the following diagram, where the bold vertical lines indicate
sesquilinear pairings:

Zb →֒ On,b = C{t − b}

Zb↓ →֒ On,b↓ = C[τ ]ι

L99
sκ

κ

TZ,b

L99
SZ,b Sn,b

Diagram 2. Projector

Proposition 7.2. Let Zb ⊂ On,b be a finite-dimensional vector sub-
space. Then:

(1) The mappings TZ,b and sκ are weakly continuous.
(2) We have the equalities

Ker TZ,b = (Zb↓)⊥n , (Ker TZ,b)⊥n = Zb↓,
Ker sκ = (Zb)

⊥n , (Ker sκ)⊥n = Zb,

where ⊥n denotes the subspace of annihilators with respect to Sn,b.
(3) The mappings Ta,d and sκ are retractions of vector spaces, i.e.

TZ,b ◦ κ and sκ ◦ ι are the identities.
Proof. Property (1) is already stated above. The first equality of (2)

follows from the fact that the sesquilinear form Sn,b is non-degenerate. Since
Zb↓ is finite-dimensional, it is weakly closed and Zb↓ = (Zb↓)⊥n⊥n . Then the
first equality implies the second. The remaining assertions of (2) are proved
quite similarly. If f ∈ Zb and p ∈ Zb↓, we have

SZ,b〈p | f〉 = Sn,b〈ι(p) | κ(f)〉 = SZ,b〈p | TZ,b ◦ κ(f)〉.
Since SZ,b is non-degenerate, this implies that TZ,b ◦ κ is the identity. Simi-
larly sκ ◦ ι is also the identity.

Remark 7.3. A retraction of a space F of smooth functions is closely
related to interpolation. Let Z be a finite-dimensional vector subspace of F .
An interpolation problem is the task of finding a function f ∈ Z which,
together with its higher order derivatives, takes the prescribed values at a
finite number of points bi. These quantities, the values of the function itself or
its higher order derivatives at bi, can be expressed by Schwartz distributions
pi (1 ≤ i ≤ q) supported at bi as we have seen in §5, and can be expressed as
elements of C[τ ]. For simplicity, consider the case when the support consists
of a single point b. If we apply the distributions pi to f ∈ On,b, we get
“interpolation data” Sn,b〈pi | f〉 ∈ C (1 ≤ i ≤ q). Take a finite-dimensional
space Zb ⊂ On,b. Since

Sn,b〈pi | f〉 = SZ,b〈pi | TZ,b(f)〉 (f ∈ On,b),
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f and TZ,b(f) have the same data for the interpolation quantities pi ∈ Zb↓.
Thus the data of f is interpolated by an element TZ,b(f) ∈ Zb.

Lemma 7.4. Let Zb ⊂ On,b be a finite-dimensional vector subspace. Then
the following conditions are equivalent:

(1) The least space Zb↓ is D-invariant.
(2) Ker TZ,b = (Zb↓)⊥n is an ideal.

Condition (2) is the property of an ideal projector of Birkhoff [Bi]. This
property is important because it ensures that TZ,b induces a factor epi-
morphism of rings. Equivalence of (1) and (2) appears in M. G. Marinari,
H. M. Möller and T. Mora [MMM, Proposition 2.4], and de Boor–Ron [BR2,
Proposition 6.1]. Interpolation defined by a projector with this property is
sometimes called Hermite interpolation but it was suggested to use this word
for interpolation with better properties (de Boor–Shekhtman [BS]).

Proof. Suppose that Zb↓ is D-invariant. If p ∈ Zb↓ and f ∈ (Zb↓)⊥n , we
have

Sn,b〈p | tif〉 = Sn,b〈∂p/∂τi | f〉 = 0 (i = 1, . . . , n)

by Lemma 5.7. This implies that ti(Zb↓)⊥n ⊂ (Zb↓)⊥n . Then for any g(t) ∈
C[t], we have g(t)(Zb↓)⊥n ⊂ (Zb↓)⊥n . Taking the weak limit shows that
this holds for g ∈ On,b, which implies that (Zb↓)⊥n is an ideal of On,b and
completes the proof of (1)⇒(2). In a similar way, we see that if (Zb↓)⊥n is an
ideal of Om,a, then (Zb↓)⊥n⊥n is D-invariant. Since every homogeneous part
of Zb↓ is finite-dimensional and belongs to Zb↓, we see that Zb↓ is weakly
closed. Then (Zb↓)⊥n⊥n = Zb↓ and (2)⇒(1) follows.

Remark 7.5. If (2) holds and Zb 6= ∅, the vector subspace Zb has the
structure of a C-algebra such that the linear mapping TZ,b : On,b → Zb is a
factor epimorphism of a C-algebra [BC2, Corollary 3.6]. Since dimC Zb <∞,
it is a local analytic algebra of Krull dimension 0. Then it is Artinian in
the sense that it satisfies the descending chain condition of ideals (cf. [Mat]).
Thus we have associated to each point of U inv

Z an Artinian local algebra. Since
all the elements of the maximal ideal are nilpotent, Zb is not a subalgebra
of On,a in general.

Example 7.6. We show a common example. Let us take the vector space

Z := SpanC(1, s, t, t2 + st2, t3) ⊂ O2(R2).

Paying attention to the normalizing factor 1/ν! of fibre coordinates in §3,
we have Diagram 3 below for the jets of basis of Z. For example, the bottom
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of the diagram implies j3(t3)(b) = (b; b3, 0, 3b2, 0, 0, 3b, 0, 0, 0, 1) at b =
(a, b). Then we have

dimCRk(b) =



1 (k = 0),

3 (k = 1),

3 (a = −1, b = 0, k = 2),

4 (a 6= −1, b = 0, k = 2),

5 (b 6= 0, k = 2),

5 (k ≥ 3).

Then, denoting s′ = s− a, t′ = t− b, we have the following.

Diagram 3. Bases of jet spaces of Z at (a, b)

jet space

R0

R1

R2

R3

fibre coordinates u(0,0) u(1,0) u(0,1) u(1,1) u(0,2) u(1,2) u(0,3)

1 1 0 0 0 0 0 0

s a 1 0 0 0 0 0

t b 0 1 0 0 0 0

t2 + st2 b2 + ab2 b2 2(1 + a)b 2b 1 + a 1 0

t3 b3 0 3b2 0 3b 0 1

(1) If b 6= 0, then
Z(a, b)↓ = Span(1, σ, τ, στ, τ2), (Z(a, b)↓)⊥2 = (s′2, s′t′2, t′3)C{s′, t′}.

These points form Ubdl of Z and, since the kernels (Z(a, b)↓)⊥2 are of the same
form, the associated Artinian algebras are all isomorphic at these points.

(2) If a 6= −1, b = 0, then
Z(a,b)↓ = Span(1, σ, τ, τ2, τ3), (Z(a,b)↓)⊥2 = (s′2, s′t′, t′4)C{s′, t′}.

These points form U inv \Ubdl of Z. The associated Artinian algebras are all
isomorphic at these points but not isomorphic to those associated to bundle
points.

(3) If a = −1, b = 0, then
Z(a,b)↓ = Span(1, σ, τ, στ2, τ3),

(Z(a,b)↓)⊥2 = (s′3, s′t′3, t′4)C{s′, t′}+ Cs′t′ + Ct′2.
The least space of Z is not D-invariant here.

We will see this example again in Example 10.8.
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8. Intrinsic treatment of least spaces. Here we show an intrinsic
treatment of the least space, D-invariance property and the Artinian algebra
associated to a D-invariant point. These are defined for complex manifolds
independently of local coordinates t = (t1, . . . , tn). To explain them we dis-
tinguish the coordinate expression f t0↓ := (f ◦ Φ)0↓ of the least part (resp.
the least space Ztb↓) and the intrinsic one fb↓ (resp. Zb) of f ∈ OM,b in this
section.

Let M be an n-dimensional complex manifold and ϕ a local parametri-
sation of M centred at b: ϕ(0) = b. Let s be the local coordinates for ϕ.
Then fs0 := (f ◦ Φ)0↓ is expressed as a homogeneous polynomial, say of
degree k, in σ := s0↓. If Ψ is another local parametrisation of M centred at
b with local coordinates t and dual coordinates τ := t0↓, then there exists
a biholomorphic germ Θ with Φ = Ψ ◦Θ. Let

j̃θ : C[τ ]→ C[σ], p(τ ) 7→ p(Jθσ),

denote the isomorphism induced by the linear coordinate transformation
expressed by the Jacobian matrix Jθ := ∂t/∂s evaluated at s = 0, where σ
and τ are treated as column vectors. By the definition of the least part, we
have

j̃θ(f
t
0↓) = f t0↓(Jθσ) = (f ◦ Ψ)0↓(Jθσ) = ((f ◦ Ψ)(Jθs))0↓

= (f ◦ Ψ ◦Θ ◦ s)0↓ = (f ◦Φ)0↓ = fs0↓.
Then the collection

fb↓ := {(Φ, fs0↓) : Φ = Φ(s) is a local parametrisation of M at b},
whose elements are related by j̃θ as above, can be seen as an evaluation at
b of the k-fold symmetric tensor product, over the sheaf OM of holomorphic
functions on M , of the usual cotangent sheaf T ∗ of Cn. The least part fs0↓ ∈
C[σ] is a coordinate expression of fb↓. Hence, we have the intrinsic form of
the least space:

OM,b↓ := {fb↓ : f ∈ OM,b} ∼=
⊕
k

T ∗(b)�k,

where the symmetric tensor product � is taken over C (cf. Quillen [Qu,
p. 2]).

Definition 8.1. Let M be an n-dimensional complex manifold with a
local parametrisation Φ = Φ(s) at b, and Z ⊂ OM,b a finite-dimensional
vector subspace. We denote by Mbdl

Z the set of bundle points of all the jet
spaces of

Zsb := {(f ◦Φ)0 : f ∈ Z} ⊂ C{s},
and by M inv

Z the set of D-invariant points of

Zsb↓ := SpanC(fs0↓ : f ∈ Z) ⊂ C[σ].
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Theorem 8.2. The sets Mbdl
Z and M inv

Z are well-defined independently
of the local parametrisation ϕ, and Mbdl

Z ⊂M inv
Z .

Proof. Take two local parametrisations Φ and Ψ and the isomorphism j̃θ
as above. Since j̃θ is a result of a linear change of variables, it does not alter
the rank of Rk in §3. Then the setMbdl

Z of bundle points of all jet spaces of Z
is well-defined independently of ϕ. The transformation j̃θ changes a partial
differentiation to a linear combination of partial differentiations. Hence the
set M inv

Z of D-invariant points for Z is also well-defined. By Theorem 4.5,
we have Mbdl

Z ⊂M inv
Z .

The collection of Zsb↓ for all ϕ forms the intrinsic least space Zb↓ ⊂ OM,b↓
at b.

Theorem 8.3. Let M be an n-dimensional complex manifold and Z ⊂
O(M) be a finite-dimensional vector subspace. If b ∈ M inv

Z , then the vector
subspace Zb has the structure On,b/(Zb↓)⊥n of an Artinian algebra, which
is unique up to a canonical isomorphism (induced by sj̃θ in the proof ) as a
contravariant tensor.

Proof. Existence of the structure of an Artinian algebra is explained in
Remark 7.5. Take two local parametrisations around b ∈ M which induce
isomorphisms ϕ : On,b → C{s} and ψ : On,b → C{t} such that ϕ = θ ◦ψ for
the third isomorphism θ of algebras. We have the homomorphism j̃θ : C[τ ]→
C[σ] defined above and its adjoint sj̃θ : C{s} → C{t}, which is nothing but
the homomorphism corresponding to the coordinate transformation defined
by the linear part of θ. We have the following implications:

f ∈ (Ztb↓)⊥n ⇔ f ∈ (j̃θ(Z
s
b↓))⊥n ⇔ ∀p ∈ j̃θ(Zsb↓) : Sn,0〈p | f〉 = 0

⇔ ∀q ∈ Zsb↓ : Sn,0〈j̃θ(q) | f〉 = 0 ⇔ ∀q ∈ Zsb↓ : Sn,0〈q | sj̃θ(f)〉 = 0

⇔ sj̃θ(f) ∈ (Zsb↓)⊥n ⇔ f ∈ (sj̃θ)
−1((Zsb↓)⊥n).

This proves
(Ztb↓)⊥n = (sj̃θ)

−1((Zsb↓)⊥n)

and (Zsb↓)⊥n is the image of (Ztb↓)⊥n under the isomorphism sj̃θ. This iso-
morphism is obtained by replacing s by sJθt and hence it is even an algebra
isomorphism. Then (Zsb↓)⊥n is an ideal if and only if (Ztb↓)⊥n is so, and
hence Zsb↓ is D-invariant if and only if Ztb↓ is so by Lemma 7.4. When this
is the case, we have an isomorphism

C{s}/(Zsb↓)⊥n → C{t}/(Ztb↓)⊥n

of algebras induced by sj̃θ.

Theorem 8.4. Let ϕ : Om,a := C{x} → On,b := C{t} be a homo-
morphism of analytic algebras and let sϕ : C[τ ] → C[ξ] denote its adjoint
mapping with respect to the sesquilinear forms Sm,a and Sn,b. If Q ⊂ C[τ ]
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is a finite-dimensional vector subspace, then ϕ induces a monomorphism ψ
of the factor vector spaces

ψ : Om,a/(sϕ(Q))⊥m → On,b/Q⊥n .

Furthermore:

(1) If Q is D-invariant, so is sϕ(Q) and ψ is a monomorphism of Ar-
tinian algebras.

(2) If ϕ is an epimorphism, then ψ is an isomorphism and sϕ(Q) is
D-invariant if and only if Q is so. If this is the case, then ψ is an
isomorphism of Artinian algebras.

Proof. To prove that ψ exists and is a monomorphism, we have only to
prove the equality (sϕ(Q))⊥m = ϕ−1(Q⊥n). This is obvious from

f ∈ (sϕ(Q))⊥m ⇔ ∀q ∈ Q : Sm,a〈sϕ(q) | f〉 = 0

⇔ ∀q ∈ Q : Sn,b〈q | ϕ(f)〉 = 0 ⇔ f ∈ ϕ−1(Q⊥n).

(1) The algebra On,b/Q⊥n is Artinian because dimCOn,b/Q⊥n = dimCQ
<∞ by [Bo2, 4, §1, n◦5, Prop. 5]. If Q is D-invariant, then Q⊥n is a proper
ideal by Theorem 7.4. Then, by the implication above, (sϕ(Q))⊥m is also an
ideal and ψ is a monomorphism of algebras. Then Om,a/(sϕ(Q))⊥m is also
Artinian.

(2) If ϕ is an epimorphism, it is obvious that ψ is an isomorphism and that
the equality (sϕ(Q))⊥m = ϕ−1(Q⊥n) is equivalent to ϕ((sϕ(Q))⊥m) = Q⊥n .
Thus, (sϕ(Q))⊥m is an ideal if and only if Q⊥n is so. This proves equivalence
of D-invariance of sϕ(Q) and of Q. The last assertion is trivial by (1).

9. Higher order tangents of Bos and Calvi. Following the method
of Bos–Calvi, we introduce the space Dϕ,d

a of higher order tangents of a
complex analytic submanifold X of an open subset Ω ⊂ Cm at a ∈ X. It is
not an intrinsic object associated to Xa as a germ of a complex space but
it reflects the properties of the embedding germ Xa ⊂ Cma . It also depends
upon the choice of the local parametrisation ϕ of Xa in general. It is a dual
space of the space P d(Xa) of polynomial functions of degrees at most d. We
will often skip the modifier “higher order” for tangents.

LetXa be the germ of a regular complex submanifoldX of an open subset
Ω ⊂ Cm at a. The algebra OX,a of germs at a of holomorphic functions on
respective neighbourhoods (in X) of a is isomorphic to the factor algebra of
Om,a = C{x} (x := (x1, . . . , xm)) by the ideal Ia of convergent power series
vanishing on the germ Xa: OX,a ∼= Om,a/Ia. Hence OX,a is an analytic local
algebra. Let

π : Om,a → OX,a
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denote the factor epimorphism. By the assumption that X is a submanifold,
there is an isomorphism

ψ : OX,a → On,b = C{t− b} (t := (t1, . . . , tn), dimX = n).

Then we have the epimorphism

ϕ := ψ ◦ π : Om,a → On,b.
This is just the epimorphism defined by the pullback by the germ of the
embedding

Φ = (Φ1, . . . , Φm) : Cnb → Cma ,

namely ϕ(f) = f ◦Φ. We call this ϕ or Φ a local parametrisation of X at a.
Let C[Φ] ⊂ On,b denote the algebra of pullbacks of C[x] by ϕ. Let

P (Xa) = C[x]|Xa = π(C[x]) ⊂ OX,a
denote the ring of germs of polynomial functions on Xa. It is easy to see the
following.

Lemma 9.1. We have the algebra isomorphism

C[Φ] := ϕ(C[x]) = ψ(P (Xa)) ∼= P (Xa).

By the general property of the transpose mapping of a surjective ho-
momorphism, tϕ is injective and hence so is sϕ : C[τ ] → C[ξ]. The image
Dϕ
a := sϕ(C[τ ]) is geometrically the space of higher order tangents ofX at a.

The property Dϕ
a = I⊥m

a shown below means that higher order tangents of
Xa are just the higher order tangents of Cma which annihilate all the func-
tions vanishing on Xa. The sesquilinear form Sn,b induces a non-degenerate
sesquilinear form

SϕX,a : Dϕ
a ×OX,a → C

through ψ and sψ (see Diagram 4 in §10). Let I⊥m
a and I⊥X

a denote the
spaces of annihilators of Ia with respect to Sϕm,a and SϕX,a respectively.

Proposition 9.2. We have (Dϕ
a)⊥m = Ia and I⊥m

a = Dϕ
a. Hence Dϕ

a is
independent of the local parametrisation ϕ.

Thus we may omit the superscript ϕ of Dϕ
a .

Proof. The first equality follows from the implications

f ∈ Ia ⇔ ϕ(f) = 0 ⇔ ∀p ∈ C[τ ] : Sn,b〈p | ϕ(f)〉 = 0

⇔ ∀p ∈ C[τ ] : Sm,a〈sϕ(p) | f〉 = 0⇔ f ∈ (sϕ(C[τ ]))⊥m ⇔ f ∈ (Dϕ
a)⊥m .

Then we have I⊥m
a = (Dϕ

a)⊥m⊥m . To see the equality I⊥m
a = Dϕ

a , we have
only to prove that (Dϕ

a)⊥m⊥m = Dϕ
a , or that Dϕ

a = sϕ(C[τ ]) is weakly
closed in C[ξ]. Since ϕ is an open continuous epimorphism by Lemma 6.1,
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tϕ(C[τ ]) is weakly closed by [Bo2, 4, §4, n◦1, Proposition 4]. Since the com-
plex conjugations u : C[τ ]→ C[τ ] and u : C[ξ]→ C[ξ] are homeomorphisms,
sϕ(C[τ ]) = u ◦ tϕ ◦ u(C[τ ]) is also weakly closed.

Let

P d(Xa) := {p mod Ia : p ∈ C[x], deg p ≤ d} ⊂ P (Xa) ⊂ OX,a
denote the vector space of polynomial functions on X of degree at most d
at a.

Remark 9.3. If Xa is defined by an ideal Ia ⊂ Om,a, the algebra

C[x]/((Ia + md+1
a ) ∩ C[x]) ∼= C{x}/(Ia + md+1

a )

is different from the vector space P d(Xa). The canonical mapping

πd : P d(Xa)→ C[x]/((Ia + md+1
a ) ∩ C[x])

is surjective but not always injective.

Let
C[x]d := {f(x) : f ∈ C[x], deg f ≤ d} ⊂ C[x]

denote the vector space of polynomials of degree at most d. If we put

C[Φ]d := ϕ(C[x]d) = ψ(P d(Xa)) ⊂ On,b
using a local parametrisation Φ, we have an increasing sequence of finite-
dimensional vector subspaces

C = C[Φ]0 ⊂ C[Φ]1 ⊂ · · ·
of the C-algebra C[Φ] ⊂ On,b. Then we have a sequence

C = C[Φ]0b↓ ⊂ C[Φ]1b↓ ⊂ · · ·
of finite-dimensional vector subspaces of C[τ ] = On,b↓. Let us fix the degree
d hereafter. Recall that Sn,b induces a non-degenerate sesquilinear form

Sϕ,dn,b : C[Φ]db↓ × C[Φ]d → C
by Theorem 5.5.

Definition 9.4. Set

Dϕ,d
a := sϕ(C[Φ]db↓) ⊂ Da.

Since there is a natural isomorphism ψ|P d(Xa) : P d(Xa)→ C[Φ]d by Lemma
9.1, we see that Sϕ,dn,b induces a non-degenerate sesquilinear form

Sϕ,dX,a : Dϕ,d
a × P d(Xa)→ C.

We call the elements of Dϕ,d
a Bos–Calvi tangents of Xa of dual degree d (see

Diagram 4 in §10).
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Usually, some element of Dϕ,d
a has a degree higher than d, as we will see

in the examples below.

Lemma 9.5. Let Xa be the germ of a regular complex submanifold X of
an open subset Ω ⊂ Cm at a. Take two local parametrisations

Φ : Cnb → Cma , Ψ : Cnb′ → Cma
of Xa. Let Θ : Cnb → Cn

b′ denote the biholomorphic germ (coordinate change)
such that Φ = Ψ ◦Θ and ϕ = θ ◦ ψ. Then:

(1) The isomorphism θ induces an isomorphsm θ|C[Ψ ]d : C[Ψ ]d → C[Φ]d.
(2) If b is a bundle point of all the jet spaces of C[Φ]d, it is so for C[Ψ ]d.

If b is an D-invariant point of C[Φ]db↓, it is so for C[Ψ ]db↓.
Proof. There are isomorphisms

C[Φ]d
∼=→ P d(Xa)

∼=← C[Ψ ]d

obtained as restrictions of the isomorphism in Lemma 9.1. Since

θ|C[Ψ ]d : C[Ψ ]d → C[Φ]d

is compatible with these mappings, it is also an isomorphism. Assertion (2)
follows from Theorem 8.2.

Example 9.6. If dimX ≥ 2, Dϕ,d
a is very sensitive to a change of the

local parametrisation even in the case d = 1. Let us consider the surface
X ⊂ C3 defined by x3 = x22. Take two global parametrisations:

ϕ : x1 = s1, x2 = s2, x3 = s22;

ψ : x1 = t1 + t2, x2 = t2, x3 = t22.

These are related by a simple linear transformation of local coordinates:
t1 = s1 − s2, t2 = s2. The dimensions of the spaces Rk(b) (a = ϕ(b)) for
C[Φ]1 defined in §3 are independent of b ∈ R2:

dimCR0(b) = 1, dimCR1(b) = 3, dimCRk(b) = 4 (k ≥ 2).

This means that all points are bundle points of all the jet spaces of C[Φ]1.
Then C[Ψ ]1 also has the bundle property everywhere by Lemma 9.5. Set

σi := si,b↓, τi := ti,b↓, ξi := xi,a↓.
The least spaces of the pullbacks of polynomials of degree at most 1 with
respect to them are

C[Φ]1b↓ = SpanC(1, σ1, σ2, σ
2
2), C[Ψ ]1b↓ = SpanC(1, τ1, τ2, τ

2
2 ),

and they areD-invariant everywhere (which is also a consequence of Theorem
4.5). The pushforwards of these bases are computed as follows:

sϕ(1) = 1, sϕ(σ1) = ξ1,
sϕ(σ2) = ξ2 + 2s2ξ3,

sϕ(σ22) = 2ξ3 + ξ22 + 4s2ξ2ξ3 + 4s22ξ
2
3 ;
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sψ(1) = 1, sψ(τ1) = ξ1,
sψ(τ2) = ξ1 + ξ2 + 2t2ξ3,

sψ(τ22 ) = 2ξ3 + ξ21 + 2ξ1ξ2 + 4t2ξ1ξ3 + ξ22 + 4t2ξ2ξ3 + 4t22ξ
2
3 .

The monomial ξ21 appears in the linear span of the latter but not in that of
the former. Hence the two spaces of Bos–Calvi tangents Dϕ,1

a and Dψ,1
a at

a = Φ(b) = Ψ(b) ∈ X are different.

Remark 9.7. In this paper we use the word “contravariant” to mean
that the objects are mapped in the opposite direction to the geometric map-
ping of the underlying complex spaces. This is an intrinsic usage and it is
equivalent to “covariant in the classical sense” which refers to change of com-
ponents (coefficients). The inconsistency in Example 9.6 originates from the
treatment of the elements of the least space. An element of C[t]1b↓ is defined
as a tensor of cotangents, a contravariant object. Then we identify it as a
higher order tangent, a covariant one, using a positive sesquilinear form (see
Remark 5.1) and send it to C[ξ] as a higher order tangent. Thus our higher
order tangents are not geometric objects.

10. Taylor projector. Now we can introduce the Taylor projector of
degree d using Bos–Calvi tangents defined in the previous section. In general,
this projector depends upon the local parametrisation but, in the case of a
curve, it is independent at a general point.

Assume the same as in the previous section for a ∈ X ⊂ Cm and its local
parametrisation ϕ : Om,a → On,b.

Definition 10.1. Let ι : Dϕ,d
a → Da denote the inclusion mapping. We

call its adjoint linear mapping

Tϕ,d
a := sι : OX,a → P d(Xa)

the ϕ-Taylor projector of degree d at a. This was introduced by Bos and
Calvi [BC1], [BC2]. It is a little different from ours. Their projector is the
composition of our Tϕ,d

a and the factor epimorphism π : Om,a → OX,a. The
image Tϕ,d

a (f) is called the ϕ-Taylor polynomial of f of degree d.

We know the following by Proposition 7.2:

(1) The ϕ-Taylor projector Tϕ,d
a is a weakly continuous linear mapping.

(2) We have the equalities

Ker Tϕ,d
a = (Dϕ,d

a )⊥X , (Ker Tϕ,d
a )⊥X = Dϕ,d

a ,

Ker Tϕ,d
a ◦ π = (Dϕ,d

a )⊥m , (Ker Tϕ,d
a ◦ π)⊥m = Dϕ,d

a ,

where ⊥X (resp. ⊥m) denotes the space of annihilators with respect
to SϕX,a (resp. Sϕm,a).
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(3) The ϕ-Taylor projector Tϕ,d
a is a retraction of a vector space, i.e.

Tϕ,d
a ◦ κ : P d(Xa) → P d(Xa) is the identity, where κ : P d(Xa) →
OX,a denotes the inclusion.

On,b
←֓

C[Φ]d
∼=←− P d(Xa)

→֒L99
κ

Tϕ,d
a

OX,a π←− Om,a

Da →֒ C[ξ]C[τ ]
←֓ →֒ι

C[Φ]db↓
∼=−→ Dϕ,d

a

〈
∼=
ψ

∼= 〉
sψ

sϕ

ϕ

Sn,b Sϕ,d
n,b Sϕ,d

X,a Sϕ
X,a Sm,a

Diagram 4. Dualities by the sesquilinear forms ↓

Summing up we have Diagram 4, where the bold lines indicate the dual
pairings Sm,a and Sn,b with respect to the affine coordinates x and t and
the dotted ones indicate those induced by Sn,b through the isomorphisms ψ
and sψ. The upper half and the lower half correspond mutually by taking
adjoints, except the inclusions in the upper half.

Example 10.2. Take an analytic set

X := {(x, y, z) ∈ C3 : z = x+ y + x2 + y2}
with a parametrisation Φ defined by

x = s, y = t, z = s+ t+ s2 + t2.

Obviously we have

C[Φ]10↓ = SpanC(1, σ, τ, σ2 + τ2).

The pushforwards of σ, σ2 ∈ C[Φ]10↓ are calculated as follows:

∂f(s, t, s+ t+ s2 + t2)

∂s
= fx + (1 + 2s)fz,

sϕ(σ) = ξ + ζ;

∂2f(s, t, s+ t+ s2 + t2)

∂s2
=

∂

∂s
(fx + (1 + 2s)fz)

= fxx + (1 + 2s)fxz + 2fz + (1 + 2s)fzx + (1 + 2s)2fzz,
sϕ(σ2) = 2ζ + ξ2 + 2ξζ + ζ2.
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By the symmetry of σ and τ , we have
sϕ(τ) = η + ζ, sϕ(τ2) = 2ζ + η2 + 2ηζ + ζ2.

Thus

Dϕ,1
0 = SpanC(sϕ(1), sϕ(σ), sϕ(τ), sϕ(σ2 + τ2))

= SpanC(1, ξ + ζ, η + ζ, 4ζ + ξ2 + η2 + 2ξζ + 2ηζ + 2ζ2).

Then the element f :=
∑∞

i,j,k=0 aijkx
iyjzk ∈ O3,0 belongs to (C[Φ]10↓)⊥3 if

and only if

a000 = a100+a001 = a010+a001 = 2a001+a200+a020+a101+a011+2a002 = 0.

All the functions f(x, y, z) ∈ O3,0 of degree greater than 2 at 0 are contained
in (C[Φ]10↓)⊥3 and hence the Taylor expansions of their restrictions to X
are identically 0. The Taylor expansions of the restrictions to X of linear
functions are the identity by property (3) above.

Let us calculate the Taylor expansion of x2|X . We have

S3,0〈1 | x2〉 = 0, S3,0〈ξ + ζ | x2〉 = 0, S3,0〈η + ζ | x2〉 = 0;

S3,0〈4ζ + ξ2 + η2 + 2ξζ + 2ηζ + 2ζ2 | x2〉 = 2;

on the other hand,

S3,0〈1 | a+ bx+ cy + dz〉 = a,

S3,0〈ξ + ζ | a+ bx+ cy + dz〉 = b+ d,

S3,0〈η + ζ | a+ bx+ cy + dz〉 = c+ d,

S3,0〈4ζ + ξ2 + η2 + 2ξζ + 2ηζ + 2ζ2 | a+ bx+ cy + dz〉 = 4d.

Solving the equations a = 0, b + d = 0, c + d = 0, 4d = 2, we have
a = 0, b = c = −1/2, d = 1/2. This implies that Tϕ,1

X,0(x2|X) = −x−y+z
2

∣∣
X
.

Let us recall that, even in the 1-dimensional case, there can exist a point
with two different Taylor projectors.

Example 10.3 (Bos–Calvi [BC2, Example 4.2]). Let X ⊂ C2 be the
plane curve defined by y−x2−x6 = 0. Take two local parametrisations of X
at 0:

ϕ : C0 → C2
0, s 7→ Φ(s) := (s, s2 + s6),

ψ : C0 → C2
0, t 7→ Ψ(t) := (t+ t2, (t+ t2)2 + (t+ t2)6).

Then, setting σ := s0↓, τ := t0↓, we have

C[Φ]20↓ = SpanC(1, σ, σ2, σ3, σ4, σ6), C[Ψ ]20↓ = SpanC(1, τ, τ2, τ3, τ4, τ6).

These lack the degree 5 term and are not D-invariant. We can see that

Tϕ,2
0 (x5|X) = 0, Tψ,20 (x5|X) = 5(y − x2)|X .
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This means that two different local parametrisations sometimes define dif-
ferent Taylor projectors and that our Taylor projector does not necessarily
coincide with the ordinary Taylor projector.

Definition 10.4. Set

λΦ(d) := max

{
k :

k⊕
i=0

mi
n,b

mi+1
n,b

⊂ C[Φ]db↓
}

= max{k : C[τ ]k ⊂ C[Φ]db↓}

= max{k : (C[Φ]db↓)⊥n ⊂ mk+1
n,b } = max{k : OX,a ⊂ P d(Xa) + mk+1

X,a}.
This is independent of the parametrisation Φ.

Proposition 10.5. We have λΦ(d) ≥ d.
Proof. Since Φ generates mn,b, all τ1, . . . , τn appear in the linear terms

of C[Φ]1. Hence all terms of C[τ ]d appear in C[Φ]db↓.
From the inequality λΦ(d) ≥ d, we have the following formal error bound

for our ϕ-Taylor polynomial Tϕ,d
a (f):

f − κ ◦ Tϕ,d
a (f) ∈ (Dϕ,d

a )⊥X ⊂ m
λΦ(d)+1
X,a (f ∈ OX,a),

where κ : P d(Xa) → OX,a denotes inclusion. This formal error bound is
equal to or smaller than that of the ordinary Taylor polynomial T∗da (f):

f − κ(T∗da (f) mod Ia) ∈ md+1
X,a (f ∈ OX,a).

The author does not know whether or not

∀f ∈ OX,a : ordX,a(f − κ ◦ Tϕ,d
a (f)) ≥ ordX,a

(
f − κ(T∗da (f) mod Ia)

)
where ordX,a is the order on Xa defined by

ordX,a(f) = max{k : f ∈ mk
X,a} (f ∈ OX,a).

Definition 10.6. If C[Φ]db↓ is D-invariant for all (or some by Lemma
9.5) local parametrisation ϕ, we call a = Φ(b) ∈ X D-invariant of degree d. If
a is D-invariant of degree d for all d ∈ N, we call it D-invariant of degree ∞.
If the ϕ-Taylor projector of degree d at a ∈ X is independent of the local
parametrisation, we call a Taylorian of degree d (following Bos and Calvi).
If a is Taylorian of degree d for all d ∈ N, we call it Taylorian of degree ∞.

Proposition 10.7. Let X be a regular complex submanifold of an open
subset of Cm with dimX ≥ 1. For a ∈ X, the following conditions are
equivalent for each fixed d ∈ N:

(1) a is a D-invariant point of degree d.
(2) (C[Φ]db↓)⊥n is an ideal of On,b for every (or some) local parametri-

sation ϕ of Xa.
(3) Ker Tϕ,d

a = (Dϕ,d
a )⊥X is an ideal of OX,a for every (or some) local

parametrisation ϕ.



34 S. Izumi

(4) Dϕ,d
a is D-invariant in C[ξ] for every (or some) local parametrisa-

tion ϕ.

If b is a bundle point of all the jet spaces of C[Φ]d, all of these conditions
hold.

Proof. Note that the condition of bundle point is independent of the local
parametrisation (Theorem 8.2 or Lemma 9.5). The equivalence (1)⇔(2) is
proved in Theorem 7.4. Since the image or the inverse image of an ideal
under a ring epimorphism is an ideal, the equivalence (2)⇔(3) holds. The
equivalence (1)⇔(4) follows from Theorem 8.4(2). The last assertion on a
bundle point follows from Theorem 8.2.

Example 10.8. Let us take the global parametrisation Φ := (s, t, t2 +
st2, t3) of the surface X := {(x, y, z, w) : z = y2 + xy2, y2 = w} ⊂ C4. Then
C[Φ]1 coincides with Z of Example 7.6. All points of the form (a, 0) (a 6= −1)
are D-invariant of degree 1 but they are not bundle points of 1-jets of C[Φ]1.

For plane algebraic curves, Bos and Calvi proved that D-invariance (gap-
free property) is equivalent to the condition that the ϕ-Taylor projector is
independent of the local parametrisation [BC2, Theorem 3.4, 4.10]. Unfortu-
nately this cannot be generalised. The Taylorian property fails in the simplest
2-dimensional example:

Example 10.9. Let us recall the surface X ⊂ C3 defined by x3 = x22 in
Example 9.6. We have seen two local parametrisations ϕ and ψ. Although
they are related by a linear transformation, their sets of Bos–Calvi tangents
of order 1 are different:

(Dϕ,1
a )⊥X⊥X = Dϕ,1

a 6= Dψ,1
a = (Dψ,1

a )⊥X⊥X (a ∈ X).

Then the kernels (Dϕ,1
a )⊥X and (Dϕ,1

a )⊥X of the Taylor projectors are differ-
ent. Hence, no point of X is Taylorian although they are all bundle points.

Remark 10.10. For a general D-invariant point, we can only say that
our Taylor projector of order d defines the structure of an Artinian alge-
bra on P d(Xa). This structure is isomorphic to C{t}/(C[Φ]db↓)⊥n , which is
transformed by the isomorphism described in Theorem 8.3 as a contravariant
tensor by a change of the local parametrisation.

11. Taylorian property of points on embedded curves. If we re-
strict ourselves to the case of embedded analytic curves, the Taylor projector
is well-defined at a general point, which generalises [BC2, Theorem 3.4] on
plane algebraic curves.

Theorem 11.1. Let X be a 1-dimensional regular complex submanifold
of a neighbourhood of a ∈ Cm and let Φ = (Φ1, . . . , Φm) : Cb → Cma be
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its local parametrisation. Then, for any fixed d ∈ N, the following three
properties of a ∈ X are equivalent:

(1) a is a bundle point of all the jet spaces of C[Φ]db↓.
(2) The powers of monomials appearing in C[Φ]db↓ ⊂ C[τ ] form a gap-free

sequence, i.e. a is D-invariant of degree d.
(3) a is Taylorian of degree d (see Definition 10.6).

Proof. The degree k part of C[Φ]dt↓ is 0-dimensional or 1-dimensional for
any k ∈ N0. Suppose that a satisfies condition (1). Then the degree k part
of C[Φ]dt↓ is constant-dimensional in a neighbourhood of b for each k. If the
degree k part is 0-dimensional on a neighbourhood V , the parts with higher
degrees are all 0 on V . Then (2) holds.

Since dimCC[Φ]db↓ = dimCC[Φ]da = d+ 1, condition (2) implies that, for
each k with 0 ≤ k ≤ d+ 1, there is at least one fd ∈ C[Φ]db with f

(k)
d (b) 6= 0.

This situation does not change in a neighbourhood, which implies (1).
To prove (2)⇒(3), recall that every ideal of OX,a ∼= C{x} is of the

formmk
X,a, a power of themaximal ideal. Ifa is aD-invariant point of degree d,

Ker Tϕ,d
a = (Dϕ,d

a )⊥X is an ideal and it is determined by dimCOX,a/(Dϕ,d
a )⊥X

= dimC P
d
X,a. Hence it is independent of ϕ and we have Ker Tϕ,d

a = Ker Tψ,da
for any other local parametrisation ψ. Suppose that a is a D-invariant
point of degree d and take any f ∈ OX,a. Set p := Tϕ,d

a (f) ∈ P d(Xa) and
q := Tψ,da (f) ∈ P d(Xa). In view of the retraction property of the projectors,
we have

p− q = Tϕ,d
a (κ(p)− κ(q)) = Tϕ,d

a

(
(κ(p)− f)− (κ(q)− f)

)
∈ Tϕ,d

a

(
Ker Tϕ,d

a −Ker Tψ,da
)

= Tϕ,d
a

(
Ker Tϕ,d

a −Ker Tϕ,d
a

)
= {0},

where κ : P d(Xa) → OX,a denotes inclusion. This proves that Tϕ,d
a (f) =

Tψ,da (f). Thus D-invariance implies the Taylorian property.
To prove the converse (3)⇒(2), we follow closely the idea of Bos–Calvi.

The least space C[Φ]db↓ is a subspace of C[τ ]. Suppose that a is not a D-
invariant point of degree d. Then there exists s ∈ N such that τ s /∈ C[Φ]db↓
and τ s+1 ∈ C[Φ]db↓. Let s be the maximum of such numbers. There exists
a coordinate xj ∈ C[x] such that ϕ(xj)b↓ = ατ with α 6= 0, otherwise
the image of ϕ does not include the elements of order 1, contradicting the
retraction property. Let l denote the maximal number such that τ s+l ∈
C[Φ]db↓. Then l ≥ 1 and

τ s+1, τ s+2, . . . , τ s+l ∈ C[Φ]db↓, τ s+l+1, τ s+l+2, . . . /∈ C[Φ]db↓
by the maximality of s. The least non-zero monomial appearing in ϕ(xsj)

is αsts. Taking gs+i ∈ C[Φ]d such that ϕ(gs+i)b↓ = τ s+i (i = 1, . . . , l), we
can eliminate the monomials of degrees s + 1, . . . , s + l appearing in ϕ(xsj)
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by subtracting a linear combination c1ϕ(gs+1) + · · ·+ cs+lϕ(gs+l), beginning
from gs+i with smaller i. Then if we set

h := xsj − (c1gs+1 + · · ·+ cs+lgs+l),

we have
ϕ(h) = αsts + k(t) · ts+l+1 ∈ (C[Φ]db↓)⊥n

for some k(t) ∈ On. This proves that Tϕ,d
a (h) = 0.

Now take another local parametrisation

Ψ(t) := Φ(t′ + t′2) = (Φ1(t
′ + t′2), . . . , Φn(t′ + t′2)).

The function ψ(h) is expressed as

ψ(h) = αs(t′ + t′2)s + k(t′ + t′2) · (t′ + t′2)s+l+1.

Here the coefficient of t′s+1 is not 0 and it follows that Sn
〈
τ ′s+1

∣∣ψ(h)
〉
6= 0.

Since τ s+1 ∈ C[Φ]db↓ implies τ ′s+1 ∈ C[Ψ ]db↓ (see the proof of Theorem 8.3),
we see that Tψ,da (h) 6= 0. This is inconsistent with Tϕ,d

a (h) = 0 and proves
that a is not a Taylorian point.

12. Zero-estimate and transcendency index. In this final section
we recall that the growth of the space of Bos–Calvi tangents of dual degree
d measures the transcendence of the embedding of the manifold germ Xa.
In particular, we explain that the D-invariance property of Xa implies that
the embedding of Xa does not have a high index of transcendency.

First let us recall some known facts on zero-estimates on local algebras.
The following invariant θΦ(d) is called “d-order” by Bos and Calvi in [BC1].
It is more important than λΦ(d) (≤ θΦ(d)) defined in §10. This invariant
coincides with the one treated by the present author in [Iz2, §1].

Definition 12.1 (Izumi [Iz1], [Iz2]). Let Xa be a germ of a complex
submanifold of a neighbourhood of a ∈ Cm defined by an ideal I ⊂ OX,a,
and Φ := (Φ1, . . . , Φm) : Cnb → Cma a local parametrisation of the germ Xa.
Let us use the abbreviation f |X := f mod I (the restriction of f ∈ On,a
toXa), x|X := {x1|X , . . . , xm|X} and A := OX,a. The zero-estimate function
is defined by

θA,x|X (d) = θOn,b,Φ(d) := max
{

deg p : p ∈ C[Φ]db↓ \ {0}
}

= sup{ordb F ◦Φ : F ∈ C[x]d, F ◦Φ 6= 0}
= sup{ordX,a F |X : F ∈ C[x]d, F |X 6= 0}

and the transcendency index of Φ by

α(Φ) := lim sup
d→∞

logd θA,x|X (d) = lim sup
d→∞

logd θOn,b,Φ(d),

where ordX,a is defined in the last part of §10.
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Note that the values of θA,x|X (d) = θOn,b,Φ(d) are finite. The zero-
estimate function θΦ(d) and the transcendency index α(Φ) are dependent on
the embedding Xa ⊂ Cma but they are independent of the local parametri-
sation for a fixed Xa ⊂ Cma . We know the following.

Theorem 12.2 (Izumi [Iz1], [Iz2]). Let X be an n-dimensional regular
complex submanifold (n ≥ 1) of a neighbourhood of a ∈ Cm and let Φ :
Cnb → Cma be a local parametrisation of X at a. Then

θOX,a,x|X (d) ≥ d, α(Φ) ≥ 1,

and the following conditions are equivalent:

(1) The germ Xa is an analytic irreducible component of the germ of an
algebraic set at a.

(2) There exist a ≥ 1 and b ≥ 0 such that

θOX,a,x|X (d) = θOn,b,Φ(d) ≤ ad+ b (d ∈ N).

(3) There exist a ≥ 1 and b ≥ 0 such that

C[Φ]d ∩mad+b+1
n,b = {0}, i.e. C[Φ]db↓ ∩

mi
n,b

mi+1
n,b

= {0} (i > ad+ b).

(4) α(Φ) = 1.

The latter condition of (3) appears here for the first time. The equiva-
lence (2)⇔(3) is clear from the definition of the least part. We give α(Φ) the
name “transcendency index” because of the equivalence (1)⇔(4). It is known
that α(Φ) is not necessarily an integer in transcendence theory (cf. [P1], [P2],
[P-W], see also a beginner’s note [Iz2, Example 3.4]). In [Iz1] we treat poly-
nomial functions on an analytically irreducible germ of the analytic subset X
of an open subset of Cm and X need not be a smooth manifold. The general
inequalities θOX,a,x|X (d) ≥ d and α(Φ) ≥ 1 follow from Proposition 10.5.
A complete proof is given in [Iz2, Theorem 2.3], in a stronger form.

The situation of this theorem may be well illustrated by the following.

Example 12.3 (Izumi [Iz1]). Let C be the transcendental plane curve
defined by y = ex − 1. If we parametrise it by Φ = (t, et − 1), we have

C[Φ]d = SpanC(C[t]d,C[t]d−1et,C[t]d−2e2t, . . . ,C[t]1e(d−1)t, edt).

This is just the space of solutions of the differential equation

Dd+1
t (Dt − 1)d(Dt − 2)(d−1) · · · (Dt − d+ 1)2(Dt − d)1f = 0 (Dt := d/dt).

By the elementary theory of ordinary differential equations, for any a ∈ C,
there exists a unique solution f with

f (ν)(a) =

{
0 (0 ≤ ν ≤ (d+ 1)(d+ 2)/2− 2),
1 (ν = (d+ 1)(d+ 2)/2− 1),
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and there exists no solution f 6= 0 with

f (ν)(a) = 0 (0 ≤ ν ≤ (d+ 1)(d+ 2)/2)− 1).

This proves that θO1,a,{t−a,exp(t−a)−1}(d) = (d + 1)(d + 2)/2 − 1 and α = 2
at all points (a, ea − 1) ∈ C.

Remark 12.4. An example of a plane curve with an extremely transcen-
dental point (α(Φ) = ∞) was given by Tetsuo Ueda (see [Iz1], Example 2),
using a gap power series, a functional analogue of the Liouville constant.

For an embedding germ Xa ⊂ Cm, let Xa denote the Zariski closure of
Xa in Cm, that is, the smallest algebraic subset of Cm that includes some
representative of the germ Xa (germs are always taken with respect to the
Euclidean topology). Then the Hilbert function of Xa is defined by

χ(Xa, d) := dimC P
d(Xa)− dimC P

d−1(Xa) = dimCD
ϕ,d
a − dimCD

ϕ,d−1
a

with dimC P
−1(Xa) = dimCD

ϕ,−1
a = 0 (cf. Definition 9.4). This is known to

coincide with a polynomial of degree dimXa− 1 in d for sufficiently large d.

Theorem 12.5. Let ϕ : Om,a → On,b (n ≥ 1) be a local parametrisation
of an embedded manifold germ Xa ⊂ Cm with component functions Φ =
(Φ1, . . . , Φm). If a is a D-invariant point of degree d, we have a zero-estimate
inequality:(

n+ d

n

)
+ θOn,b,Φ(d)− d ≤ dimCC[Φ]d =

d∑
i=0

χ(Xa, i) ≤
(
m+ d

m

)
.

Hence, if a is a D-invariant point of degree ∞, we have an estimate of the
transcendency index:

1 ≤ α(Φ) ≤ dimXa ≤ m.
Proof. Note that

dimC P
d(Xa) = dimCC[Φ]d

by the isomorphism stated in Definition 9.4. If we take p ∈ C[Φ]db↓ with
deg p = θA,{Φ1,...,Φm}(d) (the maximal degree), this dimension dimCC[Φ]d

majorises the sum of the dimensions of the following linear subspaces:

(1) the space C[τ ]d that appeared in Proposition 10.5;
(2) the linear span of{

∂|ν|p
∂τ ν

: d < ordm
∂|ν|p
∂τ ν

<∞, ν ∈ Nn0
}

(by D-invariance).
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Since the intersection of these spaces is {0}, we have the left inequality of
the first assertion. The right inequality follows from

dimC P
d(Xa) ≤ dimCC[x]d =

(
m+ d

m

)
.

The first inequality in the theorem implies that

θOn,b,{Φ1,...,Φm}(d) ≤ dimCC[Φ]d = dimC P
d(Xa) =

d∑
i=0

χ(Xa, i).

Since the Hilbert function of Xa coincides with a polynomial of degree
dimXa − 1 for sufficiently large d, the last term is comparable to ddimXa ,
and the inequality α(Φ) ≤ dimXa follows.

Let Φ : U → Cm be an embedding of an open subset of Cn onto a
submanifold X ⊂ Cm, i.e. Φ induces a biholomorphic homeomorphism onto
the image. We have seen that the complement of the set of bundle points of
all the jet spaces of C[Φ]d for all d ∈ N is contained in a countable union
of thin closed analytic subsets of X. Then the zero-estimate inequality in
Theorem 12.5 implies the following global result.

Corollary 12.6. Let X be an n-dimensional regular complex submani-
fold of an open subset Ω ⊂ Cm (n ≥ 1). Then there exists a countable union
A of thin closed analytic subsets of X such that, for any local parametrisa-
tion Φ at a ∈ Ω \ A, we have α(Φ) ≤ dimXa ≤ m. Note that the set A is
of first category in Baire’s sense and with Lebesgue measure 0 in X.

Remark 12.7. Gabrielov gives a zero-estimate [Ga, Theorem 5] of Noe-
therian functions on an integral curve of a Noetherian vector field (see also
[GK]). It immediately yields a zero-estimate of Noetherian functions on Cn
as follows. Suppose that

Ψ := {x,Φ} ⊂ On,b
is a join of an affine coordinate system x := (x1, . . . , xn) and a Noetherian
chain Φ := {Φ1, . . . , Φm} of order m, which means that

∂Φi
∂xj

= Pij(x1, . . . , xn, Φ1, . . . , Φm) (i = 1, . . . ,m; j = 1, . . . , n)

for some polynomials Pij . This Ψ is the set of mapping components of the
embedding onto the graph X ⊂ Cm+n of the Noetherian chain {Φ1, . . . , Φm}.
Then we have

α(Ψ) ≤ 2(m+ n)

(cf. [Iz4, Corollary 12]).
Our Corollary 12.6 gives a slightly stronger estimate:

α(Ψ) ≤ dimXa ≤ m+ n
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for (only for) the complement of a small subset of X without the Noetherian
condition. In view of Remark 12.4, exclusion of some point set is inevitable
for our general analytic case.

Proposition 12.8. Let Xa ⊂ Cm and X ′a′ ⊂ Cm be affine equivalent
germs of embedded manifolds, i.e. there exists an affine transformation Θ :
Cm → Cm which maps Xa ⊂ Cm to X ′a′ ⊂ Cm biholomorphically. Then
Xa ⊂ Cm and X ′a′ ⊂ Cm simultaneously have (or do not have) the properties
of bundle point, D-invariance, and being Taylorian, and they have the same
θ(d) and α.

Proof. Let Φ be a local parametrisation of Xa. Then Φ′ := Θ ◦ Φ is a
local parametrisation of X ′a′ . Since Θ is affine, C[Φ]d = C[Φ′]d and hence
C[Φ]db↓ = C[Φ′]db↓. This implies everything.

It is easy to see that germs of a quadratic curve in C2 at any pair of
points are affine equivalent. Of course α = 1 in this case because they are
algebraic. It is interesting that the germs at points on the transcendental
curve y = expx − 1 are also affine equivalent. In this case θ(d) and α are
already given in Example 12.3.
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Kōkyūroku 1328, Kyoto Univ., 2003, 159–164.

[LP] R. B. Leipnik and C. E. M. Pearce, The multivariate Faà di Bruno formula and
multivariate Taylor expansions with explicit integral remaider term, ANZIAM
J. 48 (2007), 327–341.

[Ma] T.-W. Ma, Higher chain formula proved by combinatorics, Electron. J. Combin.
16 (2009), no. 1, note 21, 7 pp.

[MMM] M. G. Marinari, H. M. Möller and T. Mora, Gröbner bases of ideals given by
dual bases, in: Proc. ISSAC 91, ACM, 1991, 55–63.

[Mat] H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math. 8,
Cambridge Univ. Press, 1986.

[PR] Th. Peternell and R. Remmert, Differential calculus, holomorphic maps and lin-
ear structures on complex spaces, in: Several Complex Variables VII, H. Grauert
et al. (eds.), Encyclopedia Math. Sci. 74, Springer, Berlin, 1994, 97–144.

[P1] P. Philippon, Lemmes de zéros dans les groupes algébriques commutatifs, Bull.
Soc. Math. France 114 (1986), 355–383.

[P2] P. Philippon, Errata et addenda à «Lemmes de zéros dans les groupes algébri-
ques commutatifs», Bull. Soc. Math. France 115 (1987), 397–398.

[P-W] P. Philippon et M. Waldschmidt, Formes linéaires de logarithmes sur les groupes
algébriques commutatifs, Illinois J. Math. 32 (1988), 281–314.

[Qu] D. G. Quillen, Formal properties of over-determined systems of linear partial
differential equations, Ph.D. Thesis, Harvard Univ., 1964.

[Ro] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2
(1955), 1–20.

[Sc] L. Schwartz, Théorie des distributions, Hermann, Paris, 1973.
[Si] C. Siegel, Über Näherungswerte algebraischer Zahlen, Math. Ann. 84 (1921),

80–99.

http://dx.doi.org/10.1090/S0002-9947-1990-0956032-6
http://dx.doi.org/10.1023/A:1018981505752
http://dx.doi.org/10.3792/pjaa.68.307
http://dx.doi.org/10.1017/S1446181100003527
http://dx.doi.org/10.1112/S0025579300000644
http://dx.doi.org/10.1007/BF01458694


42 S. Izumi

[Wa] R. A. Walker, Linear dependence of quotients of analytic functions of several
variables with the least subcollection of generalized Wronskians, Linear Algebra
Appl. 408 (2005), 151–160.

Shuzo Izumi
Research Center for Quantum Computing
Kindai University
Higashi-Osaka 577-8502, Japan
E-mail: sizmsizm@gmail.com

Received 6.4.2012
and in final form 25.2.2014 (3328)

http://dx.doi.org/10.1016/j.laa.2005.06.002

	1 Introduction
	2 Least spaces
	3 Jet spaces and multivariate Wronskians
	4 Generic D-invariance of least spaces
	5 Sesquilinear forms and weak topologies
	6 Weak topologies of analytic algebras
	7 Projector to a vector subspace
	8 Intrinsic treatment of least spaces
	9 Higher order tangents of Bos and Calvi
	10 Taylor projector
	11 Taylorian property of points on embedded curves
	12 Zero-estimate and transcendency index
	References

