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Hukuhara’s differentiable iteration semigroups of
linear set-valued functions

by ANDRZEJ SMAJDOR (Krakéw)

Abstract. Let K be a closed convex cone with nonempty interior in a real Banach
space and let cc(K) denote the family of all nonempty convex compact subsets of K.
A family {F® : t > 0} of continuous linear set-valued functions F* : K — cc(K) is a
differentiable iteration semigroup with F(z) = {z} for z € K if and only if the set-valued
function &(t,x) = F*(z) is a solution of the problem

Did(t,x) = B(t,G(a)) = _J{B(t,y) :y € G0)},  8(0.2) = {a},

for x € K and t > 0, where D;®(t,z) denotes the Hukuhara derivative of ®(¢,x) with
respect to t and G(z) := lims_,04 (F°(z) — z)/s for z € K.

1. Let X be a vector space. Throughout this paper all vector spaces are
supposed to be real. We write

A+B={a+b:ac A be B}, MM:={l:acA}

for A,B C X and A € R. A subset K C X is called a cone if tK C K for
all positive t.

Let X and Y be two vector spaces and let K C X be a convex cone.
A set-valued function F': K — n(Y'), where n(Y') denotes the family of all
nonempty subsets of Y, is called linear if

Fl)+ F(ly)=F(zr+y), F(Qz)=AF(z)

for all x,y € K and A > 0.

Let K be a convex cone in a normed vector space and let b(K), ¢(K),
and cc(K) denote the sets of all bounded, compact, and convex compact
members of n(K), respectively. The difference A — B of A,B € cc(K) is
a set C' € cc(K) such that A = B + C. If the difference exists, then it is
unique. This is a consequence of a theorem of Radstrom (see [7]).

Let H : [0,00) — cc(K) be a set-valued function such that the differences
H(t) — H(s) exist for ¢, s € [0,00) such that t > s. The Hukuhara derivative
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of H at t is defined by the formula (see [3])
H(s)— H(t H(t)— H
DH(t) = tim T ZHO o HE) = Hs)
s—t+ s—1t s—t— t—s
whenever both limits exist with respect to the Hausdorff metric d in ce(K)
derived from the norm in X. Moreover,

DH(0) = lim M
s—0+4 S
Now, we will prove the following
LEMMA 1. Let X be a Banach space and H : [0,00) — cc(X) be a set-
valued function. If H is differentiable at t € [0,00), then H is continuous at
this point.

Proof. For s >t > 0 we have

dE(s), (1) = () - 10, 0) = (5 - 0 T (o))
<(s—1) [d(@ DH(t)) + d(DH(t), {0})} .

< -
This implies that
lim H(s) = H(t).

s—t+
Similarly, for ¢ > 0 and 0 < s < t we have

d(H(s), H(t)) = d({0}, H(t) — H(s)) = (t - S)d<{o}, w>

t—s

<(t—s) [d<w DH(t)) + d(DH(b), {0})} ,

whence

lim H(s) = H(t).

s—t—

Thus H is continuous at ¢.

2. Let K be a nonempty set. A family {F*:t > 0} of set-valued func-
tions F': K — n(K) is said to be an iteration semigroup if
F(z) = FUF ()] = | J{F'(y) -y € Fo(2)}
for all x € K and t,s > 0.

EXAMPLE 1. Let G : R” — cc(R"™) be a set-valued function. The attain-
able set R(t,&) of the differential inclusion

(%) 7'(s) € G(z(s)) ae.in [0,t], ()€ AC[0,t], z(0)=¢,
at time t from £ € R" is defined by the formula
R(t, &) = {x(t) : z(-) satisfies (x) and z(0) = £}.
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It is known that if the sets R(t,&) are nonempty, then the set-valued func-
tions £ — R(¢,€) form an iteration semigroup (see e.g. [2]). Moreover, if G
is locally Lipschitz on R™ and the sets R([0,t],£) are compact, then G is the
infinitesimal generator of this semigroup (see [13]).

Let K be a convex cone in a normed space. An iteration semigroup {F" :
t > 0} of set-valued functions F' : K — cc(K) is said to be differentiable
if all set-valued functions ¢t — F'(z) (z € K) have Hukuhara’s derivative
on [0, 00).

ExXAMPLE 2. Let K be closed convex cone with nonempty interior in a
Banach space. Every concave iteration semigroup {F* : ¢t > 0} of continuous
linear set-valued functions F! : K — cc(K) with FO(x) = {x} for v € K is
differentiable (see [10]).

EXAMPLE 3. The family {F! : t > 0}, where F'(z) = [ef,e?!]z for
t € [0,00) and z € R, is a differentiable iteration semigroup of continuous
linear set-valued functions. This semigroup is not concave.

Let X and Y be two vector spaces and let K be a convex cone in X.
A set-valued function F': K — n(Y') is called superadditive if

F(z)+ F(y) C F(x +y)
for all z,y € K. A set-valued function F' : K — n(K) is said to be Q-
homogeneous if
F(\x) = AF(x)
for all x € K and all positive rational numbers A.
We will use the following six lemmas.

LEMMA 2 (see Lemma 3 in [10]). Let X and Y be two topological vector
spaces and let K be a closed conver cone in X. Assume that ' : K —
cc(K) is a continuous additive set-valued function and A, B € cc(K). If
the difference A — B exists, then F(A) — F(B) exists and F(A) — F(B) =
F(A-B).

LEMMA 3 (Theorem 3 in [12], see also Lemma 4 in [9]). Let X andY be
two normed vector spaces and let K be a convex cone in X. Suppose that
{F; : i € I} is a family of superadditive lower semicontinuous and Q-
homogeneous set-valued functions F; : K — n(Y). If K is of the second
category in K and | J;c; Fi(z) € b(Y') for x € K, then there exists a positive
constant M such that

1Es(2)[| := sup{llyll : y € Fi(x)} < M|
for everyi e I and x € K.
COROLLARY 1. If X, Y and K are as in Lemma 3, then the functional
F o || F|| o= sup{|[F@) | /[l«] : = € K, & # 0}
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1s finite for every Q4 -homogeneous superadditive lower semicontinuous set-
valued function F: K — b(Y).

LEMMA 4 (Lemma 5 in [9]). Let X and Y be two normed spaces and let
d be the Hausdorff distance derived from the norm in Y. Suppose that K
is a convex cone in X with nonempty interior. Then there exists a positive
constant My such that for every linear continuous set-valued function F :
K — ¢(Y) the inequality
d(F(z), F(y)) < Mo||F| [l — vl
holds for every z,y € K.

LEMMA 5 (Theorem 2 in [5]). Let (X, pox) and (Y,py) be two metric
spaces and let dx and dy be the corresponding Hausdorff metrics. If F :
X — n(Y) is a set-valued function and M is a positive constant such that

dy (F(z), F(y)) < Mox(z,y)
for any x,y € X, then
dy (F(A), F(B)) < Mdx (A, B)
for any nonempty subsets A, B of X.

LEMMA 6 (Lemma 4 in [8]). Let D be a nonempty set and 'Y be a normed
space. If Fy, Fy, : D — c(Y') are set-valued functions and the sequence (Fy,)
uniformly converges to Fy on D, then

lim F, (D) = Fy(D).
n—oo
LEMMA 7. Let X be a Banach space, Y a normed space, and K a closed

convex cone in X with nonempty interior. Suppose that Fy, F,, : K — ¢(Y)
are continuous linear set-valued functions. If

(1) Fo(y) = lim F,(y)

n—oo
for y € K, then the sequence (F,) uniformly converges to Fy on every
D € ¢(K).

Proof. By (1) the set |J{F.(y) : n = 0,1,2,...} is bounded for every
y € K and by Lemma 3 there exists a positive constant M such that

[l < M

for n = 0,1,2,... According to Lemma 4 there exists a positive constant
My such that

d(Fn(z), Fa(y) < Mol Full [z = yll < MoM ||z — y]|
for z,y € K and n =0,1,2,... This implies that

|d(Fn(z), Fo(z)) — d(Fn(y), Fo(y))|
< d(Fu(x), Fu(y)) + d(Fo(x), Fo(y)) < 2M Moz — yl|.
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Consequently, the family {d((F,,(-), Fo(-)) : n =0,1,2,...} is equicontinuous
in K and by (1), Fy is the uniform limit of (F),) on every compact subset D
of K (see Theorem 3.2.4 in [4]).

3. Now, we can prove our main results.

THEOREM 1. Let X be a Banach space and let K be a closed convex cone in

X with nonempty interior. Suppose that {F* : t > 0} is a differentiable itera-

tion semigroup of linear continuous set-valued functions Ft : K — cc(K) with

FO(x) = {x}. Then the set-valued function (t,x) — F'(x) is continuous and
DyF'(z) = F'(G(x))

for x € K, t > 0, where Dy denotes the Hukuhara derivative of F'(z) with
respect to t and

forx e K.

Proof. 1t is obvious that the differences F'*(x) — x exist for s > 0 and
x € K, and hence, according to Lemma 2, so do the differences

F!*(2) = F'(z) = F'[F*(2)] - F'(2) = F'(F*(z) — x)
and
Fi(w) = F©5(x) = F*5[F(a)] — F'=*(x) = F'*(F(z) — )

whenever ¢t > 0, s € (0,¢) and z € K.
By Lemmas 4 and 5,

d(FtJrs(x) _ Ft(x),F%G(a:))) _ d(ﬁ(%)ﬁ((l(x)))

8 < M0||Ft||d<@’0(x)>

forx € K,t>0, s e (0,¢), so (2) implies
t+s N nl4
L F () - )
s—0+ S

fort >0 and x € K.
Similarly, for t > 0, s € (0,¢) and z € K we have

e G0
= d<Ft_5 <W> , Ft‘S(FS(G(w))))

<o T2 )

= F'(G(x))
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By Lemma 1 the function s — F*(y) is continuous for every y € K.
Therefore the image Jj< <, £"*(y) of the interval [0, ¢] under this set-valued
function is compact (see [1, p. 110]), whence it is bounded. According to
Lemma 3 there exists a positive constant M such that

IF*=* ()]l < Mly]
for 0 < s <t and y € K. Consequently,
IF*=2) < M
for s € [0, t]. This inequality and (3) imply that

@ a2 i)

Fé(x) -z

SMOMd< S

,G(:c)> + MyMd(G(x), F*(G(x)))
fort >0, s € (0,t) and x € K. By Lemmas 7 and 6 we have

Ji F(G(#) = Gla),
and by (2) and (4),

Ft _ Ft—s
D! (x) = Tim L&) (@)
s—0+ S

= FY(G(2)).

It remains to prove that the multifunction (¢, z) — F'(z) is continuous. Fix
t >0,z € K and y € G(x). By Lemmas 3-5 there are two positive constants
My and M such that

d(F"(2), F'(y)) < d(F"(2), F*7 (y)) + d(F"™(y), F'(y))
< Mol|F*||(M ||z = yll + d(F*(y), {y}))
for every s € (0,1) and z € G(x). Therefore

(5) limsup d(F'"(2), F'(y)) = 0.
(5,2)=(0+.y)

Similarly, fix t > 0, z € K and y € G(z). There exist two positive constants
My and M for which

(6)  d(F'"(2), F'(y) < d(F'™*(2), F'*(y)) + d(F**(y), F' (1))
< MoMa(||z =yl + d(F*(y), {y})),

for every s € (0,t) and z € G(x). By (5) and (6) the set-valued function
(t,y) — F(y) is continuous.

DEFINITION 1. Let K be a convex cone in a Banach space X and let
G,¥ : K — cc(K) be two continuous linear maps. A map @ : [0,00) x K —
cc(K) is said to be a solution of the problem

(7) Did(t, ) = O(t, G(z)) == {2t y) - y € G(a)},
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(8) P(0,2) = ¥(x),

if @ is continuous in [0,00) x K and differentiable with respect to ¢, and
satisfies (7) and (8) everywhere in [0,00) x K and K, respectively.

LEMMA 8 (Theorem 2 in [11]). Let K be a closed convexr cone with non-
empty interior in a Banach space and let G,W : K — cc(K) be two continu-
ous linear maps. Then there exists exactly one solution of problem (7)—(8).
This solution is linear with respect to the second variable.

THEOREM 2. Let X be a Banach space, let K be a closed convexr cone
in X with nonempty interior, and let G : K — cc(K) be a continuous lin-
ear set-valued function. Suppose that @ : [0,00) x K — cc(K) is a solution
of problem (7)—(8) with ¥(x) = {z} for x € K, such that every set-valued
function  — @(t,x), t > 0, is linear. Then the family {F* : t > 0}, where
Fi(x) := &(t,z) for (t,x) € [0,00) x K, is a differentiable iteration semi-
group.

Proof. Fix t > 0 and define
als,z) = B(s + 4,2),  Bls,x) = B(L, (s, )
for x € K, s > 0. We see that
9) a(0,z) = D(t, z),
(10) 5(0,2) = @(t, (0, z)) = &(t, x)
for x € K. Now, we have

a(u,x) — as, )

P t,x)— @ t
lim = lim (uttz) (s+t2) =P(s+t,G(x))
u—s+ u—38 U—s+ uU—38

=UH{2(s+t,y) sy € G@)} =U{als,y) :y € G(a)} = afs, G(z))
forx € K, s > 0, and

a(s,x) — a(u,x)

P -
lim = lim (s+t2) (u+t )
u—s— s—u u—s— s—u

=d(s+1,G(x)) = a(s,G(z))
for x € K, s > 0. Thus
(11) Dsa(s,z) = a(s,G(z))
for x € K, s > 0. Further, by Lemma 2 we have
B(u,x) — B(s,z)  D(t,P(u,x)) — P(t,P(s,2))

u—=s u—=S

e (t, B(u, x) — @(s,x))

u—S
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for u > s > 0, x € K, and according to Lemma 4,

o 2D i D)
= a(o(1, 20T o1, p 05,0

< anfo(e. o 2D =20, b))
Thus
lim WD) =BT gy b pis ) = d(t,B(s, Gx))

u—s+ u—Ss
— (1, {@(5,y)  y € G@)}) = U{@(L, B(s,y)) : y € G(o)}
= U{ﬁ(say) HEVAS G(x)} = ﬂ(S,G(JI))
Similarly for s > u > 0, z € K, we have
B(s,z) — B(u, x) _ D(t, D(s,z)) — P(t,P(u,x))

S—Uu S—1U

_ @(t’ B(s,z) — @(u,m))

s—u
and

d</C (S) "Ii u/é(ua 1) , @(t’ Z)S(P(s, l)))
_dgst,d(s’ ) (u,2) &(t, Dy®(s, x

e e X )
Thus
Jim (s, “”2 = 5 () _ o1, Dod(s, 2)) = B(t, B(5, G(x))
=0t U{P(s,y) 1y € G(x)}) = U{P(¢, D(s,9)) : y € G(z)}
=U{B(s,y) 1y € G(z)} = B(s, G(2)).
Therefore
(12) Dsf(s,x) = B(s, G(x)).

Equalities (9)—(12) mean that o and (3 are solutions of problem (7)—(8) with
U(z) = @(t,x). By Lemma 8 a solution of (7)—(8) is unique. Consequently,
8 = «, which means that

FU(F*(2)) = 8(t, &(s,)) = B(t + 5,2) = F*+(a).
This completes the proof.
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4. Now, we give some applications.

COROLLARY 2. Let K be a closed convexr cone with nonempty interior
in a Banach space and let {F" :t > 0} be a concave iteration semigroup of
continuous linear set-valued functions F* : K — cc(K) with F°(x) = {z} for
x € K. Then the set-valued function® : [0,00) x K — cc(K), ®(t,z) = Ft(x),
is a solution of problem (7)—(8) with ¥(x) = {x} for x € K, where G is given
by (2), and the set-valued functions t — @(t,G(x)), x € K, are increasing.

Proof. By the Theorem in [10] the iteration semigroup {F* : ¢t > 0}
is differentiable and the set-valued function &(t,z) := F!(z) is a solution
of problem (7)—(8) with ¥(x) = {z}, where G is given by (2). Since the
set-valued functions ¢ — &(t,x), z € K, are concave, Theorem 3.1 in [6]
implies that the set-valued functions ¢ — D;®(t, x) are increasing. Thus the
set-valued functions ¢ — F*(G(z)), x € K, are also increasing.

COROLLARY 3. Let K be a closed convexr cone with nonempty interior
in a Banach space and let G : K — cc(K) be a continuous linear set-valued
function. If @ : [0,00) x K — cc(K) is a solution of problem (7)—(8) with
U(x) ={z} for x € K, such that the set-valued functions x — P(t,z),t > 0,
are linear and the functions t — ®(t,G(z)), x € K, are increasing, then the
family {F' : t > 0}, where F'(x) := &(t, x), is a concave iteration semigroup
of continuous linear set-valued functions.

Proof. By Theorem 2 the family {F! : ¢t > 0} is a differentiable iteration
semigroup. According to the Proposition in [11],

Fl(x) = &(t,z) =z + | 8(s,G(z)) ds
0

for x € K, t > 0, where SE denotes a Riemann-type integral. Since the set-
valued functions s — &(s, G(x)) are increasing, Corollary 4.4 in [6] implies
that the set-valued functions t — F(z), z € K, are concave. That means
that the iteration semigroup {F* : ¢ > 0} is concave.

COROLLARY 4. Let K be a closed convex cone with nonempty interior
in a Banach space. Suppose that {F' : t > 0} is a differentiable iteration
semigroup of continuous linear set-valued functions F' : K — cc(K) with
FOx) = {z} for x € K. Then this semigroup is increasing if and only if
0€G(x) forze K.

Proof. Suppose that {F* : t > 0} is increasing. Then x € F'(x) for
x € K and

(13) 0eG(z) = tli%h_

Fi(x) —x

forx e K, t>0.
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To prove the converse, note that by Theorem 1 the set-valued function
&(t,z) := F'(z) is a solution of problem (7)—(8) with ¥(z) = {z} and by
the Proposition in [11],

t
(14) Fl(z) =z + | F*(G(z)) ds.

0
If (13) holds then by (14), z € F'(x) for x € K,t > 0, so this semigroup is
increasing.
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