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Hukuhara’s differentiable iteration semigroups of
linear set-valued functions

by Andrzej Smajdor (Kraków)

Abstract. Let K be a closed convex cone with nonempty interior in a real Banach
space and let cc(K) denote the family of all nonempty convex compact subsets of K.
A family {F t : t ≥ 0} of continuous linear set-valued functions F t : K → cc(K) is a
differentiable iteration semigroup with F 0(x) = {x} for x ∈ K if and only if the set-valued
function Φ(t, x) = F t(x) is a solution of the problem

DtΦ(t, x) = Φ(t, G(x)) :=
⋃
{Φ(t, y) : y ∈ G(x)}, Φ(0, x) = {x},

for x ∈ K and t ≥ 0, where DtΦ(t, x) denotes the Hukuhara derivative of Φ(t, x) with
respect to t and G(x) := lims→0+(F s(x)− x)/s for x ∈ K.

1. Let X be a vector space. Throughout this paper all vector spaces are
supposed to be real. We write

A+B = {a+ b : a ∈ A, b ∈ B}, λA := {λa : a ∈ A}
for A,B ⊂ X and λ ∈ R. A subset K ⊂ X is called a cone if tK ⊂ K for
all positive t.

Let X and Y be two vector spaces and let K ⊂ X be a convex cone.
A set-valued function F : K → n(Y ), where n(Y ) denotes the family of all
nonempty subsets of Y , is called linear if

F (x) + F (y) = F (x+ y), F (λx) = λF (x)

for all x, y ∈ K and λ > 0.
Let K be a convex cone in a normed vector space and let b(K), c(K),

and cc(K) denote the sets of all bounded, compact, and convex compact
members of n(K), respectively. The difference A − B of A,B ∈ cc(K) is
a set C ∈ cc(K) such that A = B + C. If the difference exists, then it is
unique. This is a consequence of a theorem of R̊adström (see [7]).

Let H : [0,∞)→ cc(K) be a set-valued function such that the differences
H(t)−H(s) exist for t, s ∈ [0,∞) such that t > s. The Hukuhara derivative
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of H at t is defined by the formula (see [3])

DH(t) = lim
s→t+

H(s)−H(t)
s− t = lim

s→t−
H(t)−H(s)

t− s ,

whenever both limits exist with respect to the Hausdorff metric d in cc(K)
derived from the norm in X. Moreover,

DH(0) = lim
s→0+

H(s)−H(0)
s

.

Now, we will prove the following

Lemma 1. Let X be a Banach space and H : [0,∞) → cc(X) be a set-
valued function. If H is differentiable at t ∈ [0,∞), then H is continuous at
this point.

Proof. For s > t ≥ 0 we have

d(H(s),H(t)) = d(H(s)−H(t), {0}) = (s− t)d
(
H(s)−H(t)

s− t , {0}
)

≤ (s− t)
[
d

(
H(s)−H(t)

s− t ,DH(t)
)

+ d(DH(t), {0})
]
.

This implies that
lim
s→t+

H(s) = H(t).

Similarly, for t > 0 and 0 < s < t we have

d(H(s),H(t)) = d({0},H(t)−H(s)) = (t− s)d
(
{0}, H(t)−H(s)

t− s

)

≤ (t− s)
[
d

(
H(t)−H(s)

t− s ,DH(t)
)

+ d(DH(t), {0})
]
,

whence
lim
s→t−

H(s) = H(t).

Thus H is continuous at t.

2. Let K be a nonempty set. A family {F t : t ≥ 0} of set-valued func-
tions F t : K → n(K) is said to be an iteration semigroup if

F s+t(x) = F t[F s(x)] :=
⋃
{F t(y) : y ∈ F s(x)}

for all x ∈ K and t, s ≥ 0.

Example 1. Let G : Rn → cc(Rn) be a set-valued function. The attain-
able set R(t, ξ) of the differential inclusion

(∗) x′(s) ∈ G(x(s)) a.e. in [0, t], x(·) ∈ AC[0, t], x(0) = ξ,

at time t from ξ ∈ Rn is defined by the formula

R(t, ξ) = {x(t) : x(·) satisfies (∗) and x(0) = ξ}.
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It is known that if the sets R(t, ξ) are nonempty, then the set-valued func-
tions ξ 7→ R(t, ξ) form an iteration semigroup (see e.g. [2]). Moreover, if G
is locally Lipschitz on Rn and the sets R([0, t], ξ) are compact, then G is the
infinitesimal generator of this semigroup (see [13]).

Let K be a convex cone in a normed space. An iteration semigroup {F t :
t ≥ 0} of set-valued functions F t : K → cc(K) is said to be differentiable
if all set-valued functions t 7→ F t(x) (x ∈ K) have Hukuhara’s derivative
on [0,∞).

Example 2. Let K be closed convex cone with nonempty interior in a
Banach space. Every concave iteration semigroup {F t : t ≥ 0} of continuous
linear set-valued functions F t : K → cc(K) with F 0(x) = {x} for x ∈ K is
differentiable (see [10]).

Example 3. The family {F t : t ≥ 0}, where F t(x) = [et, e2t]x for
t ∈ [0,∞) and x ∈ R, is a differentiable iteration semigroup of continuous
linear set-valued functions. This semigroup is not concave.

Let X and Y be two vector spaces and let K be a convex cone in X.
A set-valued function F : K → n(Y ) is called superadditive if

F (x) + F (y) ⊂ F (x+ y)

for all x, y ∈ K. A set-valued function F : K → n(K) is said to be Q+-
homogeneous if

F (λx) = λF (x)

for all x ∈ K and all positive rational numbers λ.
We will use the following six lemmas.

Lemma 2 (see Lemma 3 in [10]). Let X and Y be two topological vector
spaces and let K be a closed convex cone in X. Assume that F : K →
cc(K) is a continuous additive set-valued function and A,B ∈ cc(K). If
the difference A − B exists, then F (A) − F (B) exists and F (A) − F (B) =
F (A−B).

Lemma 3 (Theorem 3 in [12], see also Lemma 4 in [9]). Let X and Y be
two normed vector spaces and let K be a convex cone in X. Suppose that
{Fi : i ∈ I} is a family of superadditive lower semicontinuous and Q+-
homogeneous set-valued functions Fi : K → n(Y ). If K is of the second
category in K and

⋃
i∈I Fi(x) ∈ b(Y ) for x ∈ K, then there exists a positive

constant M such that

‖Fi(x)‖ := sup{‖y‖ : y ∈ Fi(x)} ≤M‖x‖
for every i ∈ I and x ∈ K.

Corollary 1. If X, Y and K are as in Lemma 3, then the functional

F 7→ ‖F‖ := sup{‖F (x)‖/‖x‖ : x ∈ K, x 6= 0}
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is finite for every Q+-homogeneous superadditive lower semicontinuous set-
valued function F : K → b(Y ).

Lemma 4 (Lemma 5 in [9]). Let X and Y be two normed spaces and let
d be the Hausdorff distance derived from the norm in Y . Suppose that K
is a convex cone in X with nonempty interior. Then there exists a positive
constant M0 such that for every linear continuous set-valued function F :
K → c(Y ) the inequality

d(F (x), F (y)) ≤M0‖F‖ ‖x− y‖
holds for every x, y ∈ K.

Lemma 5 (Theorem 2 in [5]). Let (X, %X) and (Y, %Y ) be two metric
spaces and let dX and dY be the corresponding Hausdorff metrics. If F :
X → n(Y ) is a set-valued function and M is a positive constant such that

dY (F (x), F (y)) ≤M%X(x, y)

for any x, y ∈ X, then

dY (F (A), F (B)) ≤MdX(A,B)

for any nonempty subsets A,B of X.

Lemma 6 (Lemma 4 in [8]). Let D be a nonempty set and Y be a normed
space. If F0, Fn : D → c(Y ) are set-valued functions and the sequence (Fn)
uniformly converges to F0 on D , then

lim
n→∞

Fn(D) = F0(D).

Lemma 7. Let X be a Banach space, Y a normed space, and K a closed
convex cone in X with nonempty interior. Suppose that F0, Fn : K → c(Y )
are continuous linear set-valued functions. If

F0(y) = lim
n→∞

Fn(y)(1)

for y ∈ K, then the sequence (Fn) uniformly converges to F0 on every
D ∈ c(K).

Proof. By (1) the set
⋃{Fn(y) : n = 0, 1, 2, . . .} is bounded for every

y ∈ K and by Lemma 3 there exists a positive constant M such that

‖Fn‖ ≤M
for n = 0, 1, 2, . . . According to Lemma 4 there exists a positive constant
M0 such that

d(Fn(x), Fn(y) ≤M0‖Fn‖ ‖x− y‖ ≤M0M‖x− y‖
for x, y ∈ K and n = 0, 1, 2, . . . This implies that

|d(Fn(x), F0(x))− d(Fn(y), F0(y))|
≤ d(Fn(x), Fn(y)) + d(F0(x), F0(y)) ≤ 2MM0‖x− y‖.
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Consequently, the family {d((Fn(·), F0(·)) : n = 0, 1, 2, . . .} is equicontinuous
in K and by (1), F0 is the uniform limit of (Fn) on every compact subset D
of K (see Theorem 3.2.4 in [4]).

3. Now, we can prove our main results.

Theorem 1. LetX be a Banach space and letK be a closed convex cone in
X with nonempty interior. Suppose that {F t : t ≥ 0} is a differentiable itera-
tion semigroup of linear continuous set-valued functions F t : K → cc(K) with
F 0(x) = {x}. Then the set-valued function (t, x) 7→ F t(x) is continuous and

DtF
t(x) = F t(G(x))

for x ∈ K, t ≥ 0, where Dt denotes the Hukuhara derivative of F t(x) with
respect to t and

G(x) := lim
s→0+

F s(x)− x
s

(2)

for x ∈ K.

Proof. It is obvious that the differences F s(x) − x exist for s > 0 and
x ∈ K, and hence, according to Lemma 2, so do the differences

F t+s(x)− F t(x) = F t[F s(x)]− F t(x) = F t(F s(x)− x)

and

F t(x)− F t−s(x) = F t−s[F s(x)]− F t−s(x) = F t−s(F s(x)− x)

whenever t > 0, s ∈ (0, t) and x ∈ K.
By Lemmas 4 and 5,

d

(
F t+s(x)− F t(x)

s
, F t(G(x))

)
= d

(
F t
(
F s(x)− x

s

)
, F t(G(x))

)

≤M0‖F t‖d
(
F s(x)− x

s
,G(x)

)

for x ∈ K, t > 0, s ∈ (0, t), so (2) implies

lim
s→0+

F t+s(x)− F t(x)
s

= F t(G(x))

for t > 0 and x ∈ K.
Similarly, for t > 0, s ∈ (0, t) and x ∈ K we have

(3) d

(
F t(x)− F t−s(x)

s
, F t(G(x))

)

= d

(
F t−s

(
F s(x)− x

s

)
, F t−s(F s(G(x)))

)

≤M0‖F t−s‖d
(
F s(x)− x

s
, F s(G(x))

)
.
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By Lemma 1 the function s 7→ F s(y) is continuous for every y ∈ K.
Therefore the image

⋃
0≤s≤t F

s(y) of the interval [0, t] under this set-valued
function is compact (see [1, p. 110]), whence it is bounded. According to
Lemma 3 there exists a positive constant M such that

‖F t−s(y)‖ ≤M‖y‖
for 0 ≤ s ≤ t and y ∈ K. Consequently,

‖F t−s‖ ≤M
for s ∈ [0, t]. This inequality and (3) imply that

(4) d

(
F t(x)− F t−s(x)

s
, F t(G(x))

)

≤M0Md

(
F s(x)− x

s
,G(x)

)
+M0Md(G(x), F s(G(x)))

for t > 0, s ∈ (0, t) and x ∈ K. By Lemmas 7 and 6 we have

lim
s→0+

F s(G(x)) = G(x),

and by (2) and (4),

DtF
t(x) = lim

s→0+

F t(x)− F t−s(x)
s

= F t(G(x)).

It remains to prove that the multifunction (t, x) 7→ F t(x) is continuous. Fix
t ≥ 0, x ∈ K and y ∈ G(x). By Lemmas 3–5 there are two positive constants
M0 and M such that

d(F t+s(z), F t(y)) ≤ d(F t+s(z), F t+s(y)) + d(F t+s(y), F t(y))

≤M0‖F t‖(M‖z − y‖+ d(F s(y), {y}))
for every s ∈ (0, 1) and z ∈ G(x). Therefore

lim sup
(s,z)→(0+,y)

d(F t+s(z), F t(y)) = 0.(5)

Similarly, fix t > 0, x ∈ K and y ∈ G(x). There exist two positive constants
M0 and M1 for which

d(F t−s(z), F t(y)) ≤ d(F t−s(z), F t−s(y)) + d(F t−s(y), F t(y))(6)

≤M0M1(‖z − y‖+ d(F s(y), {y})),
for every s ∈ (0, t) and z ∈ G(x). By (5) and (6) the set-valued function
(t, y) 7→ F t(y) is continuous.

Definition 1. Let K be a convex cone in a Banach space X and let
G,Ψ : K → cc(K) be two continuous linear maps. A map Φ : [0,∞)×K →
cc(K) is said to be a solution of the problem

DtΦ(t, x) = Φ(t,G(x)) :=
⋃{Φ(t, y) : y ∈ G(x)},(7)
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Φ(0, x) = Ψ(x),(8)

if Φ is continuous in [0,∞) × K and differentiable with respect to t, and
satisfies (7) and (8) everywhere in [0,∞)×K and K, respectively.

Lemma 8 (Theorem 2 in [11]). Let K be a closed convex cone with non-
empty interior in a Banach space and let G,Ψ : K → cc(K) be two continu-
ous linear maps. Then there exists exactly one solution of problem (7)–(8).
This solution is linear with respect to the second variable.

Theorem 2. Let X be a Banach space, let K be a closed convex cone
in X with nonempty interior , and let G : K → cc(K) be a continuous lin-
ear set-valued function. Suppose that Φ : [0,∞)×K → cc(K) is a solution
of problem (7)–(8) with Ψ(x) = {x} for x ∈ K, such that every set-valued
function x 7→ Φ(t, x), t ≥ 0, is linear. Then the family {F t : t ≥ 0}, where
F t(x) := Φ(t, x) for (t, x) ∈ [0,∞) × K, is a differentiable iteration semi-
group.

Proof. Fix t ≥ 0 and define

α(s, x) := Φ(s+ t, x), β(s, x) := Φ(t, Φ(s, x))

for x ∈ K, s ≥ 0. We see that

α(0, x) = Φ(t, x),(9)

β(0, x) = Φ(t, Φ(0, x)) = Φ(t, x)(10)

for x ∈ K. Now, we have

lim
u→s+

α(u, x)− α(s, x)
u− s = lim

u→s+
Φ(u+ t, x)− Φ(s+ t, x)

u− s = Φ(s+ t,G(x))

=
⋃{Φ(s+ t, y) : y ∈ G(x)} =

⋃{α(s, y) : y ∈ G(x)} = α(s,G(x))

for x ∈ K, s ≥ 0, and

lim
u→s−

α(s, x)− α(u, x)
s− u = lim

u→s−
Φ(s+ t, x)− Φ(u+ t, x)

s− u
= Φ(s+ t,G(x)) = α(s,G(x))

for x ∈ K, s > 0. Thus

Dsα(s, x) = α(s,G(x))(11)

for x ∈ K, s ≥ 0. Further, by Lemma 2 we have

β(u, x)− β(s, x)
u− s =

Φ(t, Φ(u, x))− Φ(t, Φ(s, x))
u− s

= Φ

(
t,
Φ(u, x)− Φ(s, x)

u− s

)
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for u > s ≥ 0, x ∈ K, and according to Lemma 4,

d

(
β(u, x)− β(s, x)

u− s , Φ(t,DsΦ(s, x))
)

= d

(
Φ

(
t,
Φ(u, x)− Φ(s, x)

u− s

)
, Φ(t,DsΦ(s, x))

)

≤M0‖Φ(t, ·)‖d
(
Φ(u, x)− Φ(s, x)

u− s ,DsΦ(s, x)
)
.

Thus

lim
u→s+

β(u, x)− β(s, x)
u− s = Φ(t,DsΦ(s, x)) = Φ(t, Φ(s,G(x)))

= Φ(t,
⋃{Φ(s, y) : y ∈ G(x)}) =

⋃{Φ(t, Φ(s, y)) : y ∈ G(x)}
=
⋃{β(s, y) : y ∈ G(x)} = β(s,G(x)).

Similarly for s > u ≥ 0, x ∈ K, we have
β(s, x)− β(u, x)

s− u =
Φ(t, Φ(s, x))− Φ(t, Φ(u, x))

s− u
= Φ

(
t,
Φ(s, x)− Φ(u, x)

s− u

)
.

and

d

(
β(s, x)− β(u, x)

s− u , Φ(t,DsΦ(s, x))
)

= d

(
Φ

(
t,
Φ(s, x)− Φ(u, x)

s− u

)
, Φ(t,DsΦ(s, x))

)

≤M0‖Φ(t, ·)‖d
(
Φ(s, x)− Φ(u, x)

s− u ,DsΦ(s, x)
)
.

Thus

lim
u→s−

β(s, x)− β(u, x)
s− u = Φ(t,DsΦ(s, x)) = Φ(t, Φ(s,G(x)))

= Φ(t,
⋃{Φ(s, y) : y ∈ G(x)}) =

⋃{Φ(t, Φ(s, y)) : y ∈ G(x)}
=
⋃{β(s, y) : y ∈ G(x)} = β(s,G(x)).

Therefore

Dsβ(s, x) = β(s,G(x)).(12)

Equalities (9)–(12) mean that α and β are solutions of problem (7)–(8) with
Ψ(x) = Φ(t, x). By Lemma 8 a solution of (7)–(8) is unique. Consequently,
β = α, which means that

F t(F s(x)) = Φ(t, Φ(s, x)) = Φ(t+ s, x) = F t+s(x).

This completes the proof.
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4. Now, we give some applications.

Corollary 2. Let K be a closed convex cone with nonempty interior
in a Banach space and let {F t : t ≥ 0} be a concave iteration semigroup of
continuous linear set-valued functions F t : K → cc(K) with F 0(x) = {x} for
x ∈ K. Then the set-valued function Φ : [0,∞)×K → cc(K),Φ(t, x) = F t(x),
is a solution of problem (7)–(8) with Ψ(x) = {x} for x ∈ K, where G is given
by (2), and the set-valued functions t 7→ Φ(t,G(x)), x ∈ K, are increasing.

Proof. By the Theorem in [10] the iteration semigroup {F t : t ≥ 0}
is differentiable and the set-valued function Φ(t, x) := F t(x) is a solution
of problem (7)–(8) with Ψ(x) = {x}, where G is given by (2). Since the
set-valued functions t 7→ Φ(t, x), x ∈ K, are concave, Theorem 3.1 in [6]
implies that the set-valued functions t 7→ DtΦ(t, x) are increasing. Thus the
set-valued functions t 7→ F t(G(x)), x ∈ K, are also increasing.

Corollary 3. Let K be a closed convex cone with nonempty interior
in a Banach space and let G : K → cc(K) be a continuous linear set-valued
function. If Φ : [0,∞) × K → cc(K) is a solution of problem (7)–(8) with
Ψ(x) = {x} for x ∈ K, such that the set-valued functions x 7→ Φ(t, x), t ≥ 0,
are linear and the functions t 7→ Φ(t,G(x)), x ∈ K, are increasing , then the
family {F t : t ≥ 0}, where F t(x) := Φ(t, x), is a concave iteration semigroup
of continuous linear set-valued functions.

Proof. By Theorem 2 the family {F t : t ≥ 0} is a differentiable iteration
semigroup. According to the Proposition in [11],

F t(x) = Φ(t, x) = x+
t�
0

Φ(s,G(x)) ds

for x ∈ K, t ≥ 0, where � t0 denotes a Riemann-type integral. Since the set-
valued functions s 7→ Φ(s,G(x)) are increasing, Corollary 4.4 in [6] implies
that the set-valued functions t 7→ F t(x), x ∈ K, are concave. That means
that the iteration semigroup {F t : t ≥ 0} is concave.

Corollary 4. Let K be a closed convex cone with nonempty interior
in a Banach space. Suppose that {F t : t ≥ 0} is a differentiable iteration
semigroup of continuous linear set-valued functions F t : K → cc(K) with
F 0(x) = {x} for x ∈ K. Then this semigroup is increasing if and only if
0 ∈ G(x) for x ∈ K.

Proof. Suppose that {F t : t ≥ 0} is increasing. Then x ∈ F t(x) for
x ∈ K and

0 ∈ G(x) = lim
t→0+

F t(x)− x
t

(13)

for x ∈ K, t ≥ 0.
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To prove the converse, note that by Theorem 1 the set-valued function
Φ(t, x) := F t(x) is a solution of problem (7)–(8) with Ψ(x) = {x} and by
the Proposition in [11],

F t(x) = x+
t�
0

F s(G(x)) ds.(14)

If (13) holds then by (14), x ∈ F t(x) for x ∈ K, t ≥ 0, so this semigroup is
increasing.
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