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The Picard–Ionescu problem for
hyperbolic inclusions with modified argument

by Georgeta Teodoru (Iaşi)

Abstract. We consider the Picard–Ionescu problem for hyperbolic inclusions with
modified argument. Existence of a local solution is proved and some properties of the set
of solutions are established.

1. Introduction. In his 1927 PhD thesis [17], D. V. Ionescu studied,
for the first time in the mathematical literature, boundary value problems
of Darboux, Cauchy, Picard and Goursat types for second order partial
differential equations with modified argument.

More recently, a series of authors studied the same problems for second
order hyperbolic equations and inclusions of various forms.

The existence of solutions to the Darboux problem for second order hy-
perbolic inclusions on bounded domains and unbounded domains in Banach
spaces has been studied [1] by several authors by various methods.

For example, Marian Dawidowski, Michał Kisielewicz and Ireneusz Ku-
biaczyk [9] consider the Darboux problem





z′′xy ∈ F (x, y, z) for a.e. (x, y) ∈ P = [0, a]× [0, b],

z(x, 0) = u(x), z(0, y) = v(y), for x ∈ [0, a] and y ∈ [0, b],

z(0, 0) = v(0) = u(0) = z0,

where F : P ×E → 2E is a multifunction with nonempty values and E is a
separable Banach space.

Assuming that:

(A) F (x, y, ·) : E → 2E is lower-semicontinuous for each fixed (x, y) ∈ P ;
(B) F is measurable on P × E,
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and other hypotheses, the existence of a Carathéodory selection for F being
ensured, the authors prove, by the Artstein–Prikry selection theorem, the
existence of a solution in the domain P .

The Darboux, Cauchy, Picard and Goursat problems for the same in-
clusion were studied by Georgeta Teodoru in [26] and in a series of papers,
under the hypothesis that F (x, y, ·) : Ω → 2R

n

, where Ω is an open sub-
set in Rn, is upper-semicontinuous, using the Kakutani–Ky Fan fixed point
theorem.

Several authors have investigated the Darboux problem for hyperbolic
functional differential inclusions in Banach spaces on bounded and
unbounded domains [2]–[4], using various methods, e.g. fixed point theo-
rems.

For example [4] deals with the existence of solutions on an unbounded
domain for the following hyperbolic functional differential inclusion (Dar-
boux problem):





∂2u(x, y)
∂x∂y

∈ F (x, y, u(x,y)), (x, y) ∈ J × J = [0,∞)× [0,∞),

u(x, y) = φ(x, y), (x, y) ∈ [−r1,∞)× [−r2,∞) \ (0,∞)× (0,∞),

where F : J × J × C([−r1, 0] × [−r2, 0], E) → 2E is a nonempty closed,
bounded and convex valued multivalued map, φ ∈ C([−r1,∞)× [−r2,∞) \
(0,∞)×(0,∞), E), r1>0, r2>0, and (E, | · |) a real separable Banach space.

For each u ∈ C([−r1,∞) × [−r2,∞), E) and each (x, y) ∈ J × J the
function u(x,y) : [−r1, 0]× [−r2, 0] → E is defined by u(x,y)(s, t) = u(x+ s,
y + t) for (s, t) ∈ [−r1, 0] × [−r2, 0]. Using Ma’s fixed point theorem, the
authors prove that the problem has at least one solution on [−r1,∞) ×
[−r2,∞).

Picard’s problem [8] for a quasilinear hyperbolic equation consists in
determining one of its solutions, provided that the values of the solution on
an arc of a characteristic curve and also on another curve having a common
point with the former arc are known; this common point may be taken
as the origin of coordinates. Picard’s problem in which one of the data
carrying curves is a segment of a characteristic curve is a particular case of
the classical Goursat problem [8].

In this paper, by analogy with Picard’s problem for the quasilinear single-
valued hyperbolic equations [8], [23], we consider the Picard–Ionescu prob-
lem for hyperbolic inclusions with modified argument of the form

(1.1)
∂2z(x, y)
∂x∂y

∈ F (x, y, z(g(x, y), h(x, y))), (x, y) ∈ D = [0, a]× [0, b],
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with initial values

(1.2)

{
z(x, 0) = P (x), 0 ≤ x ≤ a,
z(ψ(y), y) = Q(y), 0 ≤ y ≤ b,

where the curve γ is given by x = ψ(y), ψ ∈ C1([0, b]; [0, a]) is a given
monotonic function, and

(1.3) ψ(0) = 0, 0 ≤ ψ(y) ≤ a for 0 ≤ y ≤ b,
F : D × Ω → 2R

n

is a multifunction with compact, convex and nonempty
values, Ω ⊂ Rn is an open subset, and g ∈ C(D; [0, a]), h ∈ C(D; [0, b]),
P ∈ AC([0, a];Rn), Q ∈ AC([0, b];Rn) with P (0) = Q(0).

Under suitable assumptions, we prove the existence of a local solution of
this problem, and that the set of its solutions is compact in the Banach space
C(D0;Rn), D0 = [0, x0] × [0, y0] ⊂ D, x0 = ψ(y0), 0 ≤ y0 ≤ b; moreover,
as a function of the initial values, this set defines an upper-semicontinuous
multifunction.

This study was suggested by papers which deal with the Picard prob-
lem [8], [11], [22], [25], with the Picard–Ionescu problem for single-valued
hyperbolic equations [13], [14], [28], and by [26], [27].

2. Preliminaries. The definitions and Theorem 2.1 in this section are
taken from [5], [10]–[12], [19]–[21], [24].

Definition 2.1. Let X and Y be two nonempty sets. A multifunction
Φ : X → 2Y is a function from X into the family of all nonempty subsets
of Y . To each x ∈ X, Φ associates a subset Φ(x) of Y . The set

⋃
x∈X Φ(x)

is the range of Φ.

Definition 2.2. Let Φ : X → 2Y .

(a) If A ⊂ X, the image of A under Φ is Φ(A) =
⋃
x∈A Φ(x).

(b) If B ⊂ Y , the counterimage of B under Φ is

Φ−(B) = {x ∈ X | Φ(x) ∩B 6= ∅}.
(c) The graph of Φ, denoted by graphΦ, is the set

graphΦ = {(x, y) ∈ X × Y | y ∈ Φ(x)}.
Definition 2.3. Let Φ : X → 2X . An element x ∈ X with x ∈ Φ(x) is

called a fixed point of Φ.

Definition 2.4. A single-valued function ϕ : X → Y is said to be a
selection of Φ : X → 2Y if ϕ(x) ∈ Φ(x) for all x ∈ X.

Definition 2.5. Let X and Y be two topological spaces. A multifunc-
tion Φ : X → 2Y is upper-semicontinuous if, for any closed subset B ⊂ Y ,
Φ−(B) is closed in X.
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Definition 2.6. If (X,F) is a measurable space and Y is a topological
space, a multifunction Φ : X → 2Y is measurable if Φ−(B) ∈ F for every
closed subset B ⊂ Y .

Theorem 2.1 ([24]). Let X and Y be two metric spaces, Y compact , and
Φ : X → 2Y a multifunction with closed values. The following assertions are
equivalent :

(i) Φ is upper-semicontinuous;
(ii) the graph of Φ is closed in X × Y ;
(iii) for any sequences (xn)n∈N ⊂ X, (yn)n∈N ⊂ Y , from xn → x, yn ∈

Φ(xn), yn → y, it follows that y ∈ Φ(x).

Definition 2.7 ([10]–[12]). A function u : D → Rn is absolutely contin-
uous in Carathéodory’s sense [5, §§565–570] if u(x, y) is continuous on D,
absolutely continuous in x (for any y), absolutely continuous in y (for any x),
ux(x, y) is (possibly after a suitable definition on a two-dimensional set of
zero measure) absolutely continuous in y (for any x) and uxy is Lebesgue-
integrable on D.

We denote the class of functions absolutely continuous in Carathéodory’s
sense by C∗(D;Rn) [10]–[12].

We denote by AC([t1, t2];Rn) the space of absolutely continuous func-
tions f : [t1, t2]→ Rn, endowed with the norm

‖f‖ = sup
t∈[t1,t2]

‖f(t)‖+
t2�

t1

‖f ′(t)‖ dt.

3. Results. Similarly to [6] and [26], [27] we define the notion of a lo-
cal solution for the Picard–Ionescu problem (1.1)–(1.2) and we prove the
existence of a local solution, together with some properties of the set of all
solutions, namely that it is a compact subset in the Banach space C(D0;Rn)
and, as a function of initial values, it defines an upper-semicontinuous mul-
tifunction.

Let the following hypotheses be satisfied:

(H0) The curve γ : x = ψ(y), 0 ≤ y ≤ b, is defined by the monotonic
function ψ ∈ C1([0, b]; [0, a]) which satisfies (1.3).

(H1) F : D × Ω → 2R
n

is a multifunction with compact, convex, non-
empty values in Rn, D = [0, a]× [0, b] ⊂ R2 and Ω ⊂ Rn is an open
subset.

(H2) For any (x, y) ∈ D, the mapping z 7→ F (x, y, z) is upper-semi-
continuous on Ω.

(H3) For any z ∈ Ω, the mapping (x, y) 7→ F (x, y, z) is Lebesgue-measur-
able on D.
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(H4) g ∈ C(D; [0, a]) and h ∈ C(D; [0, b]), 0 ≤ g(x, y) ≤ x ≤ a, 0 ≤
h(x, y) ≤ y ≤ b.

(H5) There exists a function k : D → R+, k ∈ L1(D;R+), such that

‖ζ‖ ≤ k(x, y), ∀ζ ∈ F (x, y, z), ∀(x, y) ∈ D, ∀z ∈ Ω.
(H6) The functions P ∈ AC([0, a];Rn), Q ∈ AC([0, b];Rn) satisfy P (0) =

Q(0).

Remark. The function α : D → Rn defined by

(3.1) α(x, y) = P (x) +Q(y)− P (ψ(y)), (x, y) ∈ D,
is absolutely continuous in Carathéodory’s sense on D.

Denote by M ⊂ Ω a convex compact nonempty set. A point (x0, y0) ∈
]0, a]×]0, b], x0 = ψ(y0), can be found such that:

(a) � x0

0 � y0

0 k(u, v) du dv<d(M,CΩ), since hypothesis (H5) ensures that the
function k is integrable; d(M,CΩ) is the distance from M to CΩ = Rn−Ω;

(b) α(D0) ⊆ M , where α : D → Rn is defined by (3.1) and D0 =
[0, x0]× [0, y0], x0 = ψ(y0).

Definition 3.1. The Picard–Ionescu problem for the hyperbolic inclu-
sion with modified argument (1.1) means to determine a solution of this
inclusion which satisfies the initial conditions (1.2).

Definition 3.2. A local solution of the Picard–Ionescu problem (1.1) +
(1.2) is defined as a function Z : D0 → Ω, Z ∈ C∗(D0;Rn), which is
absolutely continuous in Carathéodory’s sense and satisfies (1.1) for a.e.
(x, y) ∈ D0, and also conditions (1.2) for all x ∈ [0, x0] and all y ∈ [0, y0].

Theorem 3.1. Let the hypotheses (H0)–(H6) be satisfied. Then:

(i) there exists a local solution Z of the Picard–Ionescu problem (1.1) +
(1.2);

(ii) the set Sα of local solutions is compact in C(D0;Rn);
(iii) the multifunction α 7→ Sα is upper-semicontinuous from the product

AC([0, x0];Rn)× AC([0, y0];Rn), x0 = ψ(y0), to C(D0;Rn).

Proof. (i) We denote by ZM the set of functions Z ∈ C∗(D0;Rn) which
satisfy

(3.2)
∥∥∥∥
∂2Z(x, y)
∂x∂y

∥∥∥∥ ≤ k(x, y) for a.e. (x, y) ∈ D0,

and also conditions (1.2). The notation ZM is suitable because α(x, y) ∈M
for (x, y) ∈ D0, according to (b). We remark that the absolute conti-
nuity of Z in Carathéodory’s sense ensures the existence of the deriva-
tive ∂2Z(x, y)/∂x∂y for a.e. (x, y) ∈ D0 [5, §§565–570]. We have ZM ⊂
C∗(D0;Rn). Let us prove that for any Z ∈ ZM , it follows that Z(x, y) ∈ Ω.
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Indeed, let M(x, y), N(x = ψ(y), y), N0(x = ψ(y), 0), M0(x, 0), (x, y) ∈
D, be the vertices of the rectangle

D0(x, y) = {(u, v) | ψ(y) ≤ u ≤ x, 0 ≤ v ≤ y}.
Integrating ∂2Z(x, y)/∂x∂y on D0(x, y), we obtain

(3.3)
� �

D0(x,y)

∂2Z(u, v)
∂u∂v

du dv =
y�

0

dv

x�

ψ(y)

∂2Z(u, v)
∂u∂v

du

=
y�

0

[
∂Z

∂v
(x, v)− ∂Z

∂v
(ψ(y), v)

]
dv

=
y�

0

∂Z

∂v
(x, v) dv −

y�

0

∂Z

∂v
(ψ(y), v) dv

= Z(x, y)− Z(x, 0)− Z(ψ(y), y) + Z(ψ(y), 0)

= Z(x, y)− P (x)−Q(y) + P (ψ(y)).

Hence

Z(x, y) = P (x) +Q(y)− P (ψ(y)) +
� �

D0(x,y)

∂2Z(u, v)
∂u∂v

du dv(3.4)

= α(x, y) +
� �

D0(x,y)

∂2Z(u, v)
∂u∂v

du dv.

We have D0 = D0(x0, y0) = {(u, v) | 0 ≤ u ≤ x0 = ψ(y0), 0 ≤ v ≤ y0}
and D0(x, y) ⊆ D0(x0, y0) = D0 for 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

Using (a), inequality (3.2) and (3.4) we obtain

‖Z(x, y)− α(x, y)‖ =
∥∥∥∥

� �

D0(x,y)

∂2Z(u, v)
∂u∂v

du dv

∥∥∥∥(3.5)

≤
� �

D0(x,y)

∥∥∥∥
∂2Z(u, v)
∂u∂v

∥∥∥∥ du dv ≤
� �

D0(x,y)

k(u, v) du dv

≤
� �

D0

k(u, v) du dv < d(M,CΩ).

From α(x, y) ∈M for (x, y) ∈ D0, according to (b), we have

d(Z(x, y), α(x, y)) = ‖Z(x, y)− α(x, y)‖ < d(M,CΩ),

which shows that Z(x, y) ∈ Ω for (x, y) ∈ D0.
We prove that the set ZM is convex and compact in C(D0;Rn).
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Indeed, let Z1, Z2 ∈ ZM and λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1. We have Zi ∈
C∗(D0;Rn), ‖∂2Zi(x, y)/∂x∂y‖ ≤ k(x, y) for a.e. (x, y) ∈ D0, Zi(x, 0) =
P (x) for 0 ≤ x ≤ ψ(y0), Zi(ψ(y), y) = Q(y) for 0 ≤ y ≤ y0, i = 1, 2.

It follows from the properties of functions absolutely continuous in
Carathéodory’s sense that λ1Z1 + λ2Z2 ∈ C∗(D0;Rn). Moreover,

∥∥∥∥
∂2(λ1Z1 + λ2Z2)(x, y)

∂x∂y

∥∥∥∥ =
∥∥∥∥λ1

∂2Z1(x, y)
∂x∂y

+ λ2
∂2Z2(x, y)
∂x∂y

∥∥∥∥

≤ λ1

∥∥∥∥
∂2Z1(x, y)
∂x∂y

∥∥∥∥+ λ2

∥∥∥∥
∂2Z2(x, y)
∂x∂y

∥∥∥∥

≤ λ1k(x, y) + λ2k(x, y) = k(x, y) for a.e. (x, y) ∈ D0,

and

(λ1Z1 + λ2Z2)(x, 0) = λ1Z1(x, 0) + λ2Z2(x, 0)

= λ1P (x) + λ2P (x) = P (x) for 0 ≤ x ≤ ψ(y0),

(λ1Z1 + λ2Z2)(ψ(y), y) = λ1Z1(ψ(y), y) + λ2Z2(ψ(y), y)

= λ1Q(y) + λ2Q(y) = Q(y) for 0 ≤ y ≤ y0,

showing that λ1Z1 + λ2Z2 ∈ ZM , hence ZM is convex.

In order to prove that ZM is compact, according to Arzelà–Ascoli’s the-
orem, we show that ZM is equibounded and equicontinuous.

It follows from (3.4) and (a) that

‖Z(x, y)‖ ≤ ‖α(x, y)‖+
� �

D0(x,y)

∥∥∥∥
∂2Z(u, v)
∂u∂v

∥∥∥∥du dv

≤ ‖α(x, y)‖+
� �

D0

k(u, v) du dv

≤ ‖α(x, y)‖+ d(M,CΩ) for (x, y) ∈ D0,

hence ZM is equibounded.

Let h, k ∈ R be such that (x+ h, y + k) ∈ D0. From (3.4) we have

Z(x+ h, y + k)− Z(x, y) = [P (x+ h)− P (x)]

+ [Q(y + k)−Q(y)]− [P (ψ(y + k))− P (ψ(y))]

+
y+k�

0

dv

x+h�

ψ(y+k)

∂2Z(u, v)
∂u∂v

du−
y�

0

dv

x�

ψ(y)

∂2Z(u, v)
∂u∂v

du

= [P (x+ h)− P (x)] + [Q(y + k)−Q(y)]− [P (ψ(y + k))− P (ψ(y))]
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+
y�

0

dv

x+h�

x

∂2Z(u, v)
∂u∂v

du−
y�

0

dv

ψ(y+k)�

ψ(y)

∂2Z(u, v)
∂u∂v

du

+
y+k�

y

dv

x+h�

ψ(y+k)

∂2Z(u, v)
∂u∂v

du,

from which we obtain

‖Z(x+ h, y + k)− Z(x, y)‖ ≤ ‖P (x+ h)− P (x)‖+ ‖Q(y + k)−Q(y)‖

+ ‖P (ψ(y + k))− P (ψ(y))‖+
∥∥∥∥
y�

0

dv

x+h�

x

∂2Z(u, v)
∂u∂v

du

∥∥∥∥

+
∥∥∥∥
y�

0

dv

ψ(y+k)�

ψ(y)

∂2Z(u, v)
∂u∂v

du

∥∥∥∥+
∥∥∥∥
y+k�

y

dv

x+h�

ψ(y+k)

∂2Z(u, v)
∂u∂v

du

∥∥∥∥.

From the continuity of P for 0 ≤ x ≤ a, Q and ψ for 0 ≤ y ≤ b and
from the absolute continuity of the integral, it follows that for every ε > 0,
there exists a δ(ε) > 0 such that for h < δ(ε), k < δ(ε) each of the six
terms on the right hand side above is < ε/6; hence ‖Z(x + h, y + k) −
Z(x, y)‖ < ε, which shows that ZM is equicontinuous, hence compact in
C(D0;Rn).

We denote by G the set of triples (α,Z,U) ∈ C∗(D0;Rn) × ZM × ZM
such that

(3.6)
∂2U(x, y)
∂x∂y

∈ F (x, y, Z(g(x, y), h(x, y))) for a.e. (x, y) ∈ D0.

We now prove that, for each α ∈ C∗(D0;Rn) with α(x, y) ∈ M for (x, y) ∈
D0, the set of pairs (Z,U) such that (α,Z,U) ∈ G is nonempty, and the set
G is closed.

Indeed, let Z ∈ ZM . The hypotheses in Theorem 1 of [6] are satisfied
for T = D0, µ the Lebesgue measure on T , U = Ω ⊂ Rn, E = Rn and
the multifunction F , due to (H2) and (H3). By that theorem, there exists a
µ-measurable multifunction Γ : D0 → 2R

n

with compact, nonempty values
such that

(3.7) Γ (x, y) ⊂ F (x, y, Z(g(x, y), h(x, y))), ∀(x, y) ∈ D0.

The hypotheses in Theorems 2 and 3 of [7] are satisfied for T = D0,
U = Rn, Γ : D0 → Comp(Rn). Hence, there exists a measurable selection
β of Γ , i.e. a measurable single-valued function β : D0 → Rn with β(x, y) ∈
Γ (x, y) for (x, y) ∈ D0.
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Define U : D0 → Rn by

U(x, y) = α(x, y) +
� �

D0(x,y)

β(u, v) du dv(3.8)

= α(x, y) +
y�

0

dv

x�

ψ(y)

β(u, v) du, (x, y) ∈ D0.

Then (α,Z,U) ∈ G because

(3.9) β(x, y) ∈ Γ (x, y) ⊂ F (x, y, Z(g(x, y), h(x, y)))

for a.e. (x, y) ∈ D0,

(3.10)
∂2U(x, y)
∂x∂y

= β(x, y) ∈ Γ (x, y)

⊂ F (x, y, Z(g(x, y), h(x, y))), for a.e. (x, y) ∈ D0,

(3.11)
∥∥∥∥
∂2U(x, y)
∂x∂y

∥∥∥∥ = ‖β(x, y)‖ ≤ k(x, y), ∀(x, y) ∈ D0,

by hypothesis (H5) for ζ = β(x, y), and

(3.12)

{
U(x, 0) = P (x), 0 ≤ x ≤ x0 = ψ(y0),

U(ψ(y), y) = Q(y), 0 ≤ y ≤ y0.

The conditions (3.12), which show that U satisfies the initial conditions
(1.2), follow from (3.8). Indeed, for y = 0, by (3.8) we obtain

U(x, 0) = α(x, 0) = P (x) +Q(0)− P (ψ(0)) = P (x) +Q(0)− P (0) = P (x)

for 0 ≤ x ≤ x0 = ψ(y0), and for x = ψ(y), 0 ≤ y ≤ y0, (3.8) yields

U(ψ(y), y) = α(ψ(y), y) = P (ψ(y))+Q(y)−P (ψ(y)) = Q(y), 0 ≤ y ≤ y0.

To prove that G is closed, let {(αn, Zn, Un)}n∈N ⊂ G be a sequence
convergent to (α,Z,U) in the space (AC([0, x0];Rn) × AC([0, y0];Rn)) ×
C(D0;Rn)× L1(D0;Rn), x0 = ψ(y0). We must check that (α,Z,U) ∈ G.

The set{∂2Un(x,y)/∂x∂y}n∈N is relatively weakly compact in L1(D0;Rn)
by the Dunford–Pettis criterion [15]. Indeed, the hypotheses of the criterion
are satisfied, because:

1)
� �

D0

∥∥∥∥
∂2Un(u, v)
∂u∂v

∥∥∥∥ du dv ≤
� �

D0

k(u, v) du dv = K,

K > 0 is a constant,

2)
� �

A

∥∥∥∥
∂2Un(u, v)
∂u∂v

∥∥∥∥ du dv ≤
� �

A

k(u, v) du dv < ε if µ(A) < δ(ε),

from the absolute continuity of Lebesgue integral,
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3) for every ε > 0 there exists a compact set C ⊂ D0 such that
� �

D0−C

∥∥∥∥
∂2Un(u, v)
∂u∂v

∥∥∥∥du dv ≤ ε.

It follows that {∂2Un(x, y)/∂x∂y}n∈N is weakly convergent to a function
V ∈ L1(D0;Rn). For each (x, y) ∈ D0, we have

(3.13) U(x, y) = w- lim
n→∞

Un(x, y)

= w- lim
n→∞

[
αn(x, y) +

� �

D0(x,y)

∂2Un(u, v)
∂u∂v

du dv

]

= α(x, y) +
� �

D0(x,y)

V (u, v) du dv = α(x, y)+
y�

0

dv

x�

ψ(y)

V (u, v) du.

From the weak convergence ∂2Un(x,y)/∂x∂y⇀V (x,y), (x, y)∈D0, using
a corollary of Mazur’s theorem [16], it follows that there exists a sequence
of convex combinations {Wr}r∈N of the set {∂2Ur/∂x∂y, ∂

2Ur+1/∂x∂y, . . .},
strongly convergent to V in L1(D0;Rn). Then we can extract a subsequence
{Wri} from {Wr}r∈N which converges to V for a.e. (x, y) ∈ D0.

Since F (x, y, Z) is convex and compact for all (x, y) ∈ D and for all
Z ∈ Ω, from the previous results and from Lemma 2 of [6] we deduce that

V (x, y) ∈
∞⋂

r=1

conv
( ∞⋃

n=r

∂2Un(x, y)
∂x∂y

)
(3.14)

⊂
∞⋂

r=1

conv
( ∞⋃

n=r

F (x, y, Zn(g(x, y), h(x, y)))
)

⊂ F (x, y, Z(g(x, y), h(x, y))) for a.e. (x, y) ∈ D0.

Since ∂2U(x, y)/∂x∂y = V (x, y) by (3.13), it follows from (3.14) that

(3.15)
∂2U(x, y)
∂x∂y

= V (x, y) ∈ F (x, y, Z(g(x, y), h(x, y)))

for a.e. (x, y) ∈ D0, and also (3.12), hence U satisfies the initial conditions
(1.2) for (x, y) ∈ D0, i.e. (α,Z,U) ∈ G.

Take α ∈ C∗(D0;Rn) with α(x, y) ∈M for (x, y) ∈ D0. To each Z ∈ ZM
we associate the set Φ(Z) ⊂ ZM as follows:

U ∈ Φ(Z) ⇔ U ∈ ZM ,
∂2U(x, y)
∂x∂y

∈ F (x, y, Z(g(x, y), h(x, y)))(3.16)

for a.e. (x, y) ∈ D0.

We thus define a multifunction Φ : ZM → 2ZM . The set Φ(Z) is convex, com-
pact and nonempty. Indeed, Φ(Z) is convex since F (x, y, Z(x, y)) is convex
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by hypothesis (H1). Indeed, let Ui ∈ Φ(Z), i = 1, 2. By definition, Ui ∈ ZM ,
hence Ui ∈ C∗(D0;Rn),

∂2Ui(x, y)
∂u∂v

∈ F (x, y, Z(g(x, y), h(x, y))) for a.e. (x, y) ∈ D0,
∥∥∥∥
∂2Ui(x, y)
∂u∂v

∥∥∥∥ ≤ k(x, y) for a.e. (x, y) ∈ D0

Ui(x, 0) = P (x) for 0 ≤ x ≤ ψ(y0),

Ui(ψ(y), y) = Q(y) for 0 ≤ y ≤ y0, for i = 1, 2.

For 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1 with λ1 + λ2 = 1, we have λ1U1 + λ2U2 ∈ ZM
because ZM is convex,

∂2(λ1U1 + λ2U2)(x, y)
∂x∂y

= λ1
∂2U1(x, y)
∂x∂y

+ λ2
∂2U2(x, y)
∂x∂y

∈ F (x, y, Z(g(x, y), h(x, y)))

for a.e. (x, y) ∈ D0, because F (x, y, Z(g(x, y), h(x, y)) is convex by hypoth-
esis, and

∥∥∥∥
∂2(λ1U1 + λ2U2)(x, y)

∂x∂y

∥∥∥∥ ≤ λ1

∥∥∥∥
∂2U1(x, y)
∂x∂y

∥∥∥∥+ λ2

∥∥∥∥
∂2U2(x, y)
∂x∂y

∥∥∥∥
≤ λ1k(x, y) + λ2k(x, y) = k(x, y), for a.e. (x, y) ∈ D0,

(λ1U1 + λ2U2)(x, 0) = λ1U1(x, 0) + λ2U2(x, 0)

= λ1P (x) + λ2P (x) = P (x) for 0 ≤ x ≤ ψ(y0),

(λ1U1 + λ2U2)(ψ(y), y) = λ1U1(ψ(y), y) + λ2U2(ψ(y), y)

= λ1Q(y) + λ2Q(y) = Q(y) for 0 ≤ y ≤ y0.

Hence Φ(Z) is convex. We have Φ(Z) ⊂ ZM where ZM is compact. The
multifunction Φ has a closed graph, because graph Φ = G for each fixed α
and G is closed. It follows that Φ(Z) is compact in C(D0;Rn). The set Φ(Z)
is nonempty since it contains U , defined by (3.8).

The multifunction Φ : ZM → 2ZM , having a closed graph, is upper-
semicontinuous by Theorem 2.1. By the Kakutani–Ky Fan fixed point the-
orem [15], [24], Φ has a fixed point, i.e. there exists Z ∈ ZM such that
Z ∈ Φ(Z), hence Z = U ; but U is of the form (3.8), so Z is a solution of the
Darboux–Ionescu problem (1.1)+(1.2).

(ii) Sα is compact because it is the set of fixed points of the multifunc-
tion Φ.

(iii) The graph H of the multifunction α 7→ Sα, defined on C∗(D0;Rn)
with values in 2ZM , Sα ⊂ Φ(ZM ) ⊂ 2ZM , is closed in (AC([0, x0];Rn) ×
AC([0, y0];Rn))×ZM , x0 = ψ(y0), since H is the image of the compact set
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H1 of the triples (α,Z,U) ∈ G with Z = U under the projection mapping
(α,Z,U) 7→ (α,Z). The mapping α 7→ Sα is—in general—a multifunction
because several solutions of problem (1.1)+(1.2) can exist, which are fixed
points of the mapping Φ corresponding to the same function α. Because H
is closed by Theorem 2.1, it follows that α 7→ Sα is upper-semicontinuous on
AC([0, x0] ;Rn)× AC([0, y0] ;Rn), x0 = ψ(y0), which completes the proof.

Remarks. (a) The same method yields the existence of a local solution
to the Picard–Ionescu problem (1.1)+(1.2′), where

(1.2′)

{
z(x, 0) = P (x), −a′ ≤ x ≤ a,
z(ψ(y), y) = Q(y), 0 ≤ y ≤ b,

where P ∈ AC([−a′, a];Rn), Q and ψ satisfy the same hypotheses as before,
x = ψ(y) takes values in [−a′, a] with a′ > 0.

(b) In a similar way, one can prove the existence of a local solution of
the Picard–Ionescu problem (1.1)+(1.2′′), where

(1.2′′)

{
z(x, 0) = P (x), −a′ ≤ x ≤ a,
z(ψ(y), y) = Q(y), −b′ ≤ y ≤ b,

where P ∈ AC([−a′, a];Rn), Q ∈ AC([−b′, b];Rn), P (0) = Q(0), and the
function ψ ∈ C1([−b′, b]; [−a′, a]) satisfies

(1.3′) ψ(0) = 0, −a′ ≤ ψ(y) ≤ a for − b′ ≤ y ≤ b, with b′ > 0.
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