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Arc-analyticity and polynomial arcs

by Rémi Soufflet (Kraków)

Abstract. We relate the notion of arc-analyticity and the one of analyticity on re-
striction to polynomial arcs and we prove that in the subanalytic setting, these two notions
coincide.

1. Introduction. In this note, we study some properties of real func-
tions called arc-analytic functions. They are functions defined on an open set
U ⊂ Rn which are analytic on restriction to any analytic arc γ : (−ε, ε)→ U .
Such functions were first introduced by Kurdyka [Ku1] in relation to arcwise
symmetric semialgebraic sets.

In general, these functions are very far from being analytic. Several au-
thors have built arc-analytic functions which

• are not continuous (see [BMP]);
• are not subanalytic (see [BMP] and [Ku2]);
• have a non-discrete singular set (see [Ku3]).

It is therefore natural to deal first with subanalytic (or semialgebraic)
arc-analytic functions. From recent works of Bierstone and Milman [BM2]
and Parusiński [Pa], we know that arc-analytic functions with subanalytic
graphs are closely related to the so-called blow-analytic functions introduced
by Kuo [Kuo]. The latter are functions which become analytic after finitely
many compositions with suitable proper bimeromorphic maps. They give
rise to blow-analytic equivalence, a notion which has been studied by many
authors (for a general overview of the theory, see [FKK]) and which is chal-
lenging for the understanding of real-analytic singularities.

The aim of this work is to give a criterion for arc-analyticity (or equiv-
alently local blow-analyticity) which is in some sense algebraic. We will
actually prove that it suffices to check the analyticity on curves which are
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parametrized by polynomials. This gives an easier way to check the local
blow-analyticity of a given function. We will use only basic arguments such
as the Łojasiewicz inequality.

The author would like to thank J.-M. Lion, W. Pawłucki, J. Stasica and
K. Nowak for useful discussions and remarks.

2. Notation and results. In the following, U will always denote an
open subset of Rn. A polynomial arc γ : (a, b) → U , −∞ ≤ a < b ≤ ∞, is
a mapping such that all its coordinate functions are polynomial functions.
The arc γ is said to be of degree k if k is the maximum of the degrees of its
coordinate functions.

By a subanalytic function, we will always mean a function whose graph
is a subanalytic subset of some real projective space (a globally subanalytic
subset). We refer to [BM1] for the theory of subanalytic sets.

Even though we will not use the concept of locally blow-analytic func-
tions, we recall their definition for the convenience of the reader (following
the definitions given in [BM2] and [Pa]).

Definition 2.1. Let M be a smooth real-analytic manifold. A function
f : M → R is called locally blow-analytic if there is a locally finite family of
analytic morphisms {πj : Mj →M} and compact sets Kj ⊂Mj such that:

(i)
⋃
j πj(Kj) = M ;

(ii) each πj is a composition of finitely many local blowings-up with
smooth centers;

(iii) each f ◦ πj is analytic.

Our criterion of arc-analyticity is based on the following notions of con-
tinuity and analyticity on polynomial arcs.

Definition 2.2. Let f : U → R. We say that f is

• P-continuous if for all polynomial arcs γ : (−ε, ε) → U , ε > 0, the
function f ◦ γ is continuous on (−ε, ε);
• P-analytic if for all polynomial arcs γ : (−ε, ε)→ U , ε > 0, the function

f ◦ γ is analytic on (−ε, ε).
The main result says that in the subanalytic setting, the notions of arc-

analyticity and P-analyticity coincide. More precisely we have:

Theorem 2.1. Let f : U → R be a subanalytic function. The following
conditions are equivalent :

(i) f is P-analytic;
(ii) f is arc-analytic;

(iii) f is locally blow-analytic.
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The equivalence between (ii) and (iii) is a result of Bierstone and Milman
(see [BM2] and also [Pa]). We show here that (i) implies (ii). Actually,
the main point in this proof is to show that for subanalytic functions, P-
continuity implies continuity (Proposition 3.1). The proof of Theorem 2.1
is given in the next section. We finish with some examples and some open
questions.

3. Proof of Theorem 2.1. We begin with the following elementary
lemma. It is a well known polynomial curve selection lemma for open sub-
analytic subsets. To make the paper self-contained, we give a proof.

Lemma 3.1. Let A ⊂ Rn be a subanalytic set of pure dimension n and
let x0 be a point in the frontier of A. Then there exists a polynomial arc
γ : (−ε, ε)→ Rn such that γ(0) = x0 and γ((0, ε)) ⊂ A.

Proof. Assume for simplicity that x0 = 0 is the origin of Rn. By the
usual curve selection lemma for subanalytic subsets, there exists an analytic
arc µ : (−ε, ε)→ Rn such that µ(0) = 0 and µ((0, ε)) ⊂ A. Denote by B the
frontier of A. From the Łojasiewicz inequality and up to taking a smaller
ε > 0, there exist c > 0 and k ∈ N such that, for all t ∈ (0, ε), we have

d(B,µ(t)) ≥ ctk.(1)

Let µl be the polynomial arc obtained by taking the Taylor expansion of
order l of each coordinate function of µ. Fix l > k. By the analyticity of µ
there exists a constant K > 0 such that, for all t ∈ (0, ε),

d(µl(t), µ(t)) ≤ Ktl.(2)

Assume that ε is so small that Ktl < ctk for all t ∈ (0, ε). Then, as A is of
pure dimension n, the set

C =
⋃

t∈(0,ε)

B(µ(t),Ktl)

is open and contained in A, where B(µ(t),Ktl) denotes the open ball cen-
tered at µ(t) of radius Ktl. Then, for ε yet smaller if necessary, the poly-
nomial arc µl+1 : (−ε, ε) → Rn is such that µl+1((0, ε)) is contained in C.
This completes the proof.

The following corollary will also be useful in what follows.

Corollary 3.1. Let A ⊂ Rn be a subanalytic set of pure dimension n
such that

(i) A = A+ ∪ A−, where A+ and A− are open subanalytic sets and
A+ ∩ A− = {x0};

(ii) there exists an analytic curve µ : (−ε, ε)→ Rn such that µ(0) = x0,
µ((−ε, 0)) ⊂ A− and µ((0, ε)) ⊂ A+.
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Then there exists a polynomial curve γ : (−ε, ε)→ Rn such that γ(0) =
x0, γ((−ε, 0)) ⊂ A− and γ((0, ε)) ⊂ A+.

Proof. This is immediate from the proof of the previous lemma: it suffices
to truncate the asymptotic expansion of µ both for t > 0 and for t < 0, and
then to choose the truncation which gives the required inclusions for both
A− and A+.

Remark 3.1. Note that the corollary is obviously false if we remove the
second assumption, as one can see by taking A− = {(x, y) ∈ R2

− | 3x < y <
2x < 0} and A+ = {(x, y) ∈ R2

+ | 0 < x < y < 2x}.
The following lemma is also elementary. It will be used in the proof of

Proposition 3.1.

Lemma 3.2. Let A ⊂ Rn be a subanalytic subset of dimension d < n.
Then, for all x ∈ A, there exists a linear arc L : (−ε, ε) → Rn such that
L(0) = x and L((0, ε)) ⊂ Rn \A.

Proof. Assume that there exists x ∈ A such that for all linear arcs L
passing through x, the set A contains an open segment of L containing x.
Denote by SL such a segment of maximum length. Then the map

D : RP (n− 1)→ R
which associates to L the length of SL, is subanalytic. It follows that there
exists a closed subanalytic subset Z of RP (n−1) of dimension at most n−2
such that D is continuous on RP (n − 1) \ Z. Let K ⊂ RP (n − 1) \ Z be a
compact subset with non-empty interior. The function D is bounded from
below on K by a strictly positive constant. This allows us to deduce that
the set A must contain a cone of vertex x generated by the lines L belonging
to K. This contradicts the assumption that dim(A) < n.

The next result is the key point in the proof of Theorem 2.1. It comes
from a weaker version due to Bierstone and Milman (see [BM2, Lemma 6.8]).

Proposition 3.1. Let f : U → R be a subanalytic function. Then f is
continuous if and only if f is P-continuous.

Proof. As f is subanalytic, it is enough to check the continuity on an-
alytic arcs (see [BM2, Lemma 6.8]). The problem is local so assume that
f(0) = 0 and that f is not continuous at the origin of Rn. Then there exist
a constant c > 0 and an analytic arc γ : (−ε, ε) → Rn such that γ(0) = 0
and |f ◦ γ(t)| ≥ 2c/3 > 0 for all t ∈ (0, ε). Set

A = {x ∈ Rn | |f(x)| ≥ c/3}.
Then γ((0, ε)) ⊂ A. Moreover, we have:

Claim. The subanalytic set A has maximal dimension n at zero.
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Indeed, suppose that dim0(A) < n. Let t ∈ (0, ε) and let B be the ball
of center γ(t) and of radius small enough such that B does not contain the
origin. Set

C = B \ A.
By Lemma 3.2, there exists a linear arc L : (−δ, δ)→ Rn such that L(0) =
γ(t) and L((0, δ)) ⊂ C. Thus |f ◦ L(s)| < c/3 if s ∈ (0, δ) and |f ◦ L(0)| ≥
2c/3, which contradicts the continuity of f on polynomial arcs. This proves
the claim.

It follows from the proof of the claim that there exists an open suban-
alytic set E such that E ⊂ A and the origin belongs to the frontier of E.
We now apply Lemma 3.1: there exists a polynomial arc λ : (−δ, δ) → Rn
such that λ((0, δ)) ⊂ E and λ(0) = 0. Then |f ◦λ(s)| ≥ c/3 for all s ∈ (0, δ)
and f ◦ λ(0) = 0. Thus f restricted to λ is not continuous and the proof is
complete.

Proof of Theorem 2.1. Suppose that f is P-analytic but not arc-analytic.
Then there exists an analytic arc γ : (−ε, ε) → Rn such that g = f ◦ γ is
not analytic at the origin (up to translation, this can always be assumed).
Two cases arise:

Case 1. As g is subanalytic, it has a Puiseux expansion for t ∈ (0, ε):

g(t) =
∑

i≥0

ait
ni/q

with q ≥ 1. In this first case, we assume that this expansion is not the
expansion of an analytic function at 0 (i.e. q > 1). We then write it in the
form

g(t) = p(t) + atr + bts + o0(ts)

where p is a polynomial, r is the smallest exponent which is not an integer
and s > r.

Now consider the following set:

A = {(t, v) ∈ (0, ε)× R | |v − g(t)| < ts}.
Then A is an open subanalytic set containing Γ = {(t, g(t)) | t ∈ (0, ε)}.
The map F : (0, ε)× Rn → R2 defined by F (t, u) = (t, f(u)) is subanalytic
and continuous by Proposition 3.1. Let G = {(t, γ(t)) | t ∈ (0, ε)}. Then
B = F−1(A) is an open subanalytic set containing G. From the proof of
Lemma 3.1, there exists a truncation of γ, which is a polynomial arc µ :
(−ε, ε)→ Rn, such that µ(0) = 0 and the graph of µ lies in B for t ∈ (0, ε).
Then, for all t ∈ (0, ε), we have

|f ◦ µ(t)− g(t)| < ts,
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and so f ◦ µ has the same asymptotic expansion as g up to order r. This
contradicts the analyticity of f restricted to the polynomial arc µ.

Case 2. Denote by g− and g+ the asymptotic expansions of f ◦ γ on
(−ε, 0) and (0, ε) respectively. In this second case, we assume that both g−
and g+ extend to analytic functions in a neighborhood of 0 but g− 6= g+.
Write

g−(t) =
∑

n≥0

a−n t
n, t ∈ (−ε, 0),

g+(t) =
∑

n≥0

a+
n t
n, t ∈ (0, ε),

and let p > 0 be the first integer such that a−p 6= a+
p . As in the previous

case, we now consider the sets

A− = {(t, v) ∈ (−ε, 0)× R | |v − g−(t)| < tp+1},
A+ = {(t, v) ∈ (0, ε)× R | |v − g+(t)| < tp+1},

and the sets B− = F−1(A−), B+ = F−1(A+) and B = B− ∪ B+ for the
same map F as in the preceding case. These sets are open and satisfy the
assumption of Corollary 3.1 for the analytic arc γ. Hence one can find a
polynomial arc (once more a truncation of γ) δ : (−ε, ε) → Rn such that
δ((−ε, 0))⊂B− and δ((0, ε))⊂B+. This implies that, for all t∈(−ε, ε)\{0},

|f ◦ δ(t)− g±(t)| < tp+1.

Thus f ◦ δ has the same asymptotic expansion as g− and g+ up to order p,
which gives a contradiction.

Remark 3.2. The analyticity on restriction to polynomial arcs with de-
grees bounded by some constant k ∈ N does not imply the arc-analyticity
for all subanalytic functions. Actually such a k depends on each subanalytic
function considered. Take for instance

f(x, y) =
xy2

x2 + y4 , (x, y) 6= (0, 0),

and f(0) = 0. Then f is a subanalytic function which is analytic when
restricted to any (affine) line in R2 but which is not arc-analytic. This way
the reader can build examples of subanalytic functions which are analytic
on restriction to polynomial arcs with degree less than k but which are not
arc-analytic (for all k).

Remark 3.3. Proposition 3.1 is not true in general for non-subanalytic
functions. Consider for instance the function

f(x, y) =
|x|λy

|x|2λ + y2 , (x, y) 6= (0, 0),
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such that f(0) = 0 and 0 < λ < 1 is irrational. Then it is easy to check that
f is continuous on every analytic arc but not on the arc given by y = |x|λ.

This example shows that there is no straightforward generalization of
Proposition 3.1 (or Theorem 2.1) if we replace “subanalytic” by “definable
in some o-minimal structure” (even polynomially bounded, see [DM]).

Remark 3.4. A pointwise version of Proposition 3.1 should exist but
with some further assumption. Indeed, P-continuity at one point x0 (i.e. con-
tinuity on restriction to germs of polynomial arcs passing through the given
point x0) does not imply continuity at this point even in the algebraic case
as one can see from the following example: let f be the function defined by

f(x, y) = 1 if x < 0 and y2 = x(x2 − 1),

and f(x, y) = 0 if not. Then f is P-continuous at the origin but of course
not continuous at the origin. This follows from the fact that the cubic curve
y2 = x(x2−1) is not rational (or unicursal) and thus cannot be parametrized
by polynomial functions (its genus is not equal to zero).

Questions and remarks. The notions of arc-analyticity and P-analyticity
can be defined at points in the following way:

Definition 3.1. Let f : U → R be a function and x ∈ U . We say that
f is arc-analytic (resp. P-analytic) at x if it is analytic on restriction to any
germ of analytic (resp. polynomial) curve passing through x.

From a recent work of Kurdyka and Paunescu, we know that if f is a
continuous bounded subanalytic function, then the set S of points where it
is not arc-analytic is a subanalytic closed and nowhere dense subset [KP].
In this paper, we have proved the following two facts (for f subanalytic):

(i) If f is P-continuous at x0 and continuous on segments in a neigh-
borhood of x0 then f is continuous at x0.

(ii) If f is P-analytic at x0 and continuous in a neighborhood of x0 then
f is arc-analytic at x0.

Hence by [KP] and the second statement (corresponding to Theorem
2.1), for bounded continuous subanalytic functions, the notion of arc-analy-
ticity at a given point coincides with the one of P-analyticity at this point.
Therefore, the following questions seem to be of interest:

1 (Uniform version of Theorem 2.1). Let f : U → R be a continuous
bounded subanalytic function. Does there exist k ∈ N such that, for all
x0 ∈ U , if f is analytic on restriction to germs of polynomial arcs of degree
at most k passing through x0, then f is arc-analytic at x0 (1)?

(1) The author has recently proved that the answer is yes. This will be presented in
another paper.
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2. Let d, n be some integers. Does there exist k(d, n) ∈ N such that, for
all polynomials P ∈ R[x1, . . . , xn, y] of degree at most d with P (0) = 0,
and for all roots f : U → R of P (i.e. P (x, f(x)) = 0 for all x ∈ U , U a
neighborhood of the origin in Rn), if f is analytic on restriction to germs
of polynomial arcs of degree at most k(d, n) passing through 0, then f is
arc-analytic at 0?

If we drop the assumption of continuity, the answer to the question in
item 1 is negative, as one can see from Example 3.4 or from the following
example: let f : R2 → R be defined by f(x, y) = 1 if (x, y) = (sin2(t), t3)
and t > 0, and f(x, y) = 0 if not.
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Reçu par la Rédaction le 23.4.2003
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