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On the equivalence of Green functions
for general Schrodinger operators on a half-space

by ABDOUL IFRA and LOTFI RIAHI (Tunis)

Abstract. We consider the general Schrodinger operator L = div(A(z)Vz) —pon a
half-space in R™, n > 3. We prove that the L-Green function G exists and is comparable
to the Laplace-Green function G 5o provided that p is in some class of signed Radon
measures. The result extends the one proved on the half-plane in [9] and covers the case of
Schrodinger operators with potentials in the Kato class at infinity K5° considered by Zhao
and Pinchover. As an application we study the cone Cr,(R}) of all positive L-solutions
continuously vanishing on the boundary {z, = 0}.

1. Introduction In the last two decades, the problem of comparability
of Green functions for elliptic operators has been discussed by several au-
thors in different situations. For elliptic operators with sufficiently regular
coefficients on bounded smooth domains, we refer the reader to [1] and [4].
In [2], Cranston, Fabes and Zhao studied the problem for Schrédinger oper-
ators with potentials in the Kato class K!°¢ on bounded Lipschitz domains.
Their work extends the one due to Zhao [10]. For Schrédinger operators with
short range potentials on Lipschitz domains (bounded or unbounded) with
compact boundary, the problem was studied by Herbst and Zhao in [3]. In
[6], Pinchover studied the problem for elliptic operators on R™ with lower
order terms in the Kato class at infinity, K °, which contains the class of
short range potentials. However, for Schrodinger operators on arbitrary do-
mains such as unbounded domains with noncompact boundary, nothing is
proved about this problem. In this paper we are interested in the problem
for the general Schrodinger operator

L:LO_Mv

where Ly = div(A(x)V;) on the half-space R’} = {z = (z1,...,2,) € R":
x, > 0}, n > 3. The matrix A is assumed to be real, symmetric, uniformly
elliptic with locally Lipschitz continuous coefficients and p is a signed Radon
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measure. By [8] we know that the Lo-Green function Gy is comparable to
the Laplace-Green function G4 on R} .

Our main purpose is to study the existence of the L-Green function
and its comparability to G on the half-space R” when p is in a general
class of signed Radon measures denoted by K. The Schrédinger operator
L = Ly — V(z) with potential V' in the class K2° introduced by Zhao [11,
12] and Pinchover [6] is just the special case when p has the density V' with
respect to the Lebesgue measure. Hence our result extends those proved by
Herbst and Zhao [3] and Pinchover [6] to the case of the half-space. The
comparability result enables us to obtain potential-theoretic results for L
which are known to hold for A. We prove as an application a Liouville type
theorem for L-positive solutions on the half-space R} .

The paper is organized as follows. In Section 2, we give some preliminar-
ies and notations. In Section 3, we introduce the class X and we study some
of its properties. In particular we prove that this class strictly contains the
class of measures V(z)dzx with V' in K °. In Section 4, we prove the exis-
tence of the L-Green function and the comparability result when g is in IC
with minimal condition. In Section 5, we study the structure of Cr (R} ), the
cone of positive L-solutions on R} continuously vanishing on the boundary.
We show that Cp (R’ ) is a one-dimensional cone, a result which fails to hold
even in simple cases such as L = A — ¢, with ¢ € R\ {0}.

Throughout the paper the letter C' denotes a generic positive constant
which may vary in value from line to line.

2. Preliminaries and notations. As already mentioned, we will deal
with the Schrodinger operator

L =div(A(z)Vys) — u
on the half-space R} = {z = (21,...,2,) € R" : 2, > 0}, n > 3. We

put Lo = div(A(z)V,). We assume that the matrix A(z) = (a; (mﬁlgi,jgn
is real, symmetric, and uniformly elliptic, i.e. there is A > 1 such that
ATHIEN? < (A(@)€,€) < AJ|€]|? for all z € R} and € € R™. The coefficients
a;; are A-locally Lipschitz continuous. p is a signed Radon measure.

We denote by G the Lo-Green function on R’.

G A denotes the Laplace-Green function on R’ , which is given by

Gal(z,y) :wn< S >

ey =g

where § = (y/, —y,) when y = (v',y,) with ¥’ € R"! and y,, € R. Here
w, = (2m)""/2'(n/2 — 1) is the volume of the unit sphere S*~! in R".
We recall that there is a constant C' = C'(n, A) > 0 such that

(1) C™'GA <Gy < CGA.
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This is proved by integrating the corresponding semigroup densities with
respect to time (see [8, Remark 2, p. 142]).

A function u on R is called an L-solution if it is continuous and satisfies
Lu = 0 in the distributional sense. We denote by Cr (R’ ) (resp. Ca(R"))
the cone of positive L-solutions (resp. A-solutions) on R’} continuously van-
ishing on the boundary.

3. The class K

DEFINITION 3.1. We say that a signed Radon measure p on R” is in the
class KC if it satisfies

sup | i—"GA(x,y)!u\(dy) < 0.

zER:ﬁ Ri n

To study the class K we first give some interesting estimates of the Green
function G a.

LEMMA 3.2. There exists a constant C' > 0 such that for all z,y € R'}:
1 1 Tnln ¢ TpYn

(i) = — < Ga(z,y) < AL
Cloe—y|"=2 |z —yl? |z —y|"=2 |z — y[?
1 1 nyn

(i) = 7min<1, ’;—y2> < Gal(z,y)

C |z —y[n—2 -y
C nygn
|z — y|" |z — |

Tn C
i) 2 Gale,y) < ———.
( )yn A( y) |l‘—y|n72

Proof. We have

GA@%w:=wn< — )

e= o2 =g

n—2)/2
_ w, [1_<’x_y’2>( )/}
|z —y|n—2 lz —y|?

_ W [1 <1 Ay ><“2V2]
o=yl v =g |

Using the inequalities

t
<1-(1-1)>< for t € (0,1) and a > 0,
533 S ( ) S or (0,1) and «
we obtain
Swy, 1 TnlYn 8wy, 1 TnYn
— < G Z, < ~5
nrar— g g < AV S S T g

which proves (i).
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On the other hand,

1 nJdn nJdn . nJdn
(2) —min<1, Tny 2) < ’ y~2 §m1n<1, Ty 2).
5 | =yl |z = Y] [z =yl
Hence (ii) holds from (i) and (2).
We now prove (iii). From (ii), we have

O 2
T Galwy) < — O min(ﬂf_n, LQ)
Y Yn |‘T—y‘

C 2
< ﬁmm(:ﬂ_n, 5672)
’x_y|n Yn |-’En _yn|

Put t =z, /y, > 0. We have

2 2
. [ Tn x . t
min| —, —*— | = min|( ¢, | — <4.
Yn' |0 — ynl? t—1

__4c
|z -yl

Thus
Tn
- GA (337 y)

n
and (iii) is proved. m

PROPOSITION 3.3. For a € R, the measure y;ae*“/'dy 1s in the class IC
if and only if a < 2.

Proof. We assume that o < 2 and we will prove

sup S In GA(:U,y)y;o‘efly| dy < 0.

zER™ n
+R%}

If o < 0, then from Lemma 3.2(iii) we have

—a,—|y| —a,—|y|
X y—nGA(w,y)y;aefly‘dyg C S L_Qdy <C S ]y\4e_2 y
gn Tn o 1T —yl" o |z =yl
T T ¥
—lyl/2
gc7§—f————dy:c( i oayr ”.@O
|z —y|"?
R% lz—y|>]y| lz—y|<|y|
—lyl/2 —lz—yl/2 x
< C’( S emdyﬂ— S e—n_zdy) = 2Cwy, X re "2 dr < co.
an 1Yl on [T =l 5
If 0 < a < 2, then from Lemma 3.2(ii), (iii), we have
Yn —a —
(3) S x—GA(x,y)yn e Wldy = S coody+ S c.ody
Ry " |lz—y|>yn |z —y|<yn

2—a,—|y| —a,—y|
Yy € Y, €
<C A LT In — d =C(I I5).
—( ) oy YT ) - — y[n=2 y) i+ Do)

|z—y|>yn |z—y|<yn
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We estimate I;:

2—a,—|yl —lyl
Yn € €
4 I = - dy< \ ——d
(4) 1 S iz — gyl V= S iz — y|n—2+a Y
|x7y|2yn R™
=yl =yl
e e
= S ’w_y|n—2+a dy+ S |$_y|n—2+a dy
lz—y[>]y] lz—y|<|y|
=yl —|z—yl
e e
< |y | —ay
Rsn y|n72+a RSH T — y|n72+a
oo
= 2w, S r' =% "dr < oo.
0
Now we estimate I5:
. y;aef‘yl eflaj*y'
(5) I = S |z — y[n—2 dy < S |z — y[n—2+o dy
le—y|<yn lz—y|<yn
—lz—y| o
e o —
< S mdy:wnxrl Ye T dr < 0.
Rn 0

Combining (3)—(5), we obtain

sup | 2 Gala,y)y, e M dy < .

zERT R} Tn

Conversely, assume that i “e~1¥ldy € K; we will prove a < 2. We have

n

sup | I G A, yyy, e dy < oo,
wGRi R’_f_ Tn

and from Lemma 3.2(ii) it follows that

2 —ap—|yl
sup S min<y—" Yn > In € dy < oo.

AT R T

This implies

2 —o o=yl
e
sup S min(y—n In > In dy < o0,

z€RY gy zn (] +y)? ) (el + [y

which means
2—a ,—
Yn € vl

S

n
R +

— dy < 0.
|yl
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This yields

S 2« —y S ef‘y | d /d <
Yy, ‘e v ; Yy dy, < oo,
0 wo (Y +yn)"
which means
©0 ) S n—2,—r
Yo YeYn dr dy, < oo
(S] " oty
Hence
e 2Yn p—2 —r
2—a —Yn r e
Y-~ %e ——drdy, < ©
(S) " ySn (r+yn)™ " ’
and thus

o
S ylm e 3 dy, < oco.
0

This necessarily implies that o < 2. m

Now we will show that the class K is more general than the Kato class at
infinity, K2°, considered by Zhao [11, 12] and Pinchover [6]. For the reader’s
convenience, we recall the definition of K°.

DEFINITION 3.4. We say that a Borel measurable function V' on R,
n > 3, is in the class K, ° if it satisfies

V
lin}) sup S % d 0,
TTUERL oyl <Ry T vl
lim sup wd =0
Mo gt 7~ yln2

* (lyl=zM)NR%
Note that if V € K;° then for all M > 0,
| v)ldy < .

(lyl<M)NR7Y

In particular V € L (R").

loc

From [11], we have

PROPOSITION 3.5. If V € K;°, then V is Green bounded, i.e.

v
sup S L‘y)gdy < 00.
z€RY R™ 1;_y|n

PROPOSITION 3.6. The class K strictly contains the class of Green
bounded potentials.
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Proof. Since by Lemma 3.2(iii),

Yn 1

" a < -

T, A(aj)y) = ’x_y’n_Qa
it follows from Proposition 3.5 that when V is in K3°, V(z)dz is in K.
Moreover for 1 < o < 2 and M > 0 we have

Ve Way>e™ | yrvdy = +oo.
(ly|<M)NRY (ly|<M)NRY

This implies that g, “e~1¥l ¢ K. The conclusion follows from Proposi-
tion 3.3. =

4. The L-Green function. In this section we study the existence of
the L-Green function G and its comparablity to G o when g is in the class K.

Following the classical potential theory, a Borel measurable function G :
R xR — 10, +00] is called a Green function for the Schrédinger operator
L = A—pifforall y € R}, LG(-,y) = —&, on RY in the distributional
sense, where ¢, is the Dirac measure at y and G(-,y) vanishes outside a
polar set on IR’} . To prove our main result we shall first prove the following
3G-Theorem which was established in the two-dimensional case in [9].

THEOREM 4.3 (3G-Theorem). There exists a positive constant Cy such
that for x,y,z € R", we have

Cule Joos) ¢
GO (337 y)
Proof. By (1) and Lemma 3.2(i), we have

2 Go(,2) + 2 Goe)).

n n

1
5 N(‘T’y) < GO(xvy) < CN(CL',y),

where

1 TnlYn
N = —.
@Y = Ty o=

Thus to prove the theorem it suffices to prove the inequality
N(z,z)N(z,y) (zn Zn )
—— =2 (Ol —N(z,z)+ — N(z,y) ],
N(z,y) Tn (%) Yn (23)
which is equivalent to
6) o —y" |z =g < Clla— 2" 2o = 21> + |z — y[" %]z — 7).
By symmetry we may assume |z — z| < |z — y|. We have
2 —y[" 72 < (|lz — 2| + |z —y))" T < 2"z —y"
and
|z — 91> < (Jo — 2| + ]2 = 7])* = 2%z — 9I%,
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which yields
o —y[" Pl = g1* < 2"z —y|" Pz - g1,
and (6) follows with C' =2". =

Now we are ready to prove the main result of this section.

THEOREM 4.4. Let p € KC with 4Co||u|| < 1. Then the L-Green function
G exists and is comparable to G a, i.e. there is a constant C' > 0 such that

C_IGA <G <CGA.
Proof. From the 3G-Theorem, we have
[ Gole, 2)Go(z,y) lul(d2)
RY
Zn Zn
<0 § (2 Gulon2) + 2 Golen) ) Inlld=) Gato )
R} n Yn
< 2Co|[ul|Go(x, y)-
Since Gy < oo outside the diagonal and |p[{z} = 0 for all z € R, it follows
that for x # y € R and m € N, we may define
G3m+1<x7 y) = Gsm * G(](J,', y) = S Gsm(xa Z)G()(Z, y) ,U,(dZ)
RY
with G0 = Go. By induction we obtain

Go™ (2, y)| < 2Co[|ul))™ Go(z, y)-
Since 2Cy||p|| < 1, it follows that
3 165" @) € T Golev)
We then define G by
G(:r,y):{+oo . %f.’IJ:yv
Zmzo(_l) Gy (z,y) fx#y.

Clearly, since GGy vanishes on IR, it follows from the previous inequality
that G has the same property. Moreover, we have

Go(y) = G(y) + | Go(-,2)G(z,y) u(dz)  on RY\ {y}.
R}

This resolvent equation implies the equality

LG(? y) = &y
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in the distributional sense. Thus G is the L-Green function on R”} . Moreover,
for all x # y, we have

G(:Evy) - Go(ZIT,y) = Z(—l)mGSm(l‘,y)

Hence, for all x # y, we have

(G(z,y) = Gola,y)| < Y 2Co|lull)"Go(z,y) =

m>1

2Co ||l

_2OlB ).
= 2Co ] “0Y)

By recalling that G = Gy = 400 on the diagonal and that 4Cy||u|| < 1, we

get
1 — 4G | p| 1
———— G <G < ————— G
1= 2G| ul 1=2C | pl

Since by (1), G is comparable to G a, the proof is complete. m

5. The structure of Cr(R7}). The comparison theorem implies that
when g is in I with 4Cy||p|| < 1, the L-Green function behaves like the
A-Green function in particular at infinity and near the boundary {z, = 0}.
This fact enables us to prove that the Martin boundaries with respect to L
and A are homeomorphic. The proof follows the idea of Theorem 2.3 in [7].
Using this observation and potential-theoretic arguments we will prove that
the set Cr(R) of all positive L-solutions on R’} continuously vanishing on
the boundary {x,, = 0} is a one-dimensional cone. This kind of result fails
to hold even in simple cases such as L = A — ¢, where ¢ is a nonzero real
constant. In fact our main result is the following.

THEOREM 5.1. Let p be in K with 4Co||p|| < 1. Then the set Cr(R%) is
a one-dimensional cone generated by a function equivalent to x.,.

Before we prove our main result we shall determine the Martin boundary
with respect to A on the half-space. We first briefly recall the notion of the
Martin boundary introduced by Martin in [5].

Let £2 be a domain in R™ and let x( be a fixed reference point in §2. Recall
that a sequence (y,,) in {2 is called fundamental if it has no accumulation
point and for any x € (2, the limit lim,, Ga(x, Ym)/Ga(x0, ym) exists. Here
G A denotes the Laplace—Green function on 2. Two fundamental sequences
are called equivalent if the corresponding limits are the same. The class
of all fundamental sequences equivalent to a given one determines an ideal
boundary element of 2. The set of ideal boundary elements of {2 is called
the Martin boundary of {2 corresponding to A. For any Martin boundary
element z = (y,,,), we write

Ka(z,z) =lim ———=
Al ) = B G s o )

)
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which is a positive A-harmonic function of z in 2. Ka(-, z) will be called
the A-Martin kernel with pole z normalized at x.

We will study the case of 2 = R"}. Let R" be the compactification of
R™ which adjoins the sphere at infinity S7!. Specifically S ! is a copy of
the unit sphere S”~! in R". Let (ym)m be a sequence in R’} which has no
accumulation point. By compactness of R™ it has a subsequence still denoted

(Ym )m which tends to z € OR” or to e € Si(_oi) as m — 00, where Si(_olo) is
a copy of the half-sphere Sﬁ_l ={ec Sn=le, > 0}. We identify Si(_olo)
with Sﬁfl.
Recall that
n—=2

GA@,y):L[l_(l_w) 2 }

|z —y|"? |z —y?
For z € OR"} = {x,, = 0}, we have
Galz,y) [z —y>" |z —yI?

lim =227~ im =
y=zyeRt Ga(ro,y)  y—zyeRy [0 —y[>" 2o [o —y[?

Ty |To— 2"
C xon |z -2
This shows that any z € OR is a Martin boundary element and

Ka(z,z) =~ M.
ZTon |T— 2"
Moreover we have
Galzy) _ [z =y @ |mo -9
lyl—o0, yeR? GA(T0,Y)  lyl—oo,yeR? |To — Y2 T |2 — T2 Ton

)

which shows that any e € Sz_l is a Martin boundary element and Ka(z,e)
= xn/vx(],n-

Thus the Martin boundary with respect to A is identical to OR’} U S:i_l
and by the Martin representation theorem, for every positive A-solution u
on R, there are two positive Borel measures o on R’} and v on Si_l such
that

u(x) = S Ka(z,2z)do(z) + S Ka(x,e)dv(e)

OR% Si71
_ n
_ I S el do(z) +« T
movn OR" ’.’1; - Z|n xO,n
+

Obviously the first part in the right member of this representation tends to
zero at infinity. Hence when u tends to zero as x, — 07, we get u(z) =
Xy /%o, This shows that Ca(R") is a one-dimensional cone generated by
the function ug(z) = zy,.
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Proof of Theorem 5.1. Since by Theorem 4.4, G and G o are comparable,
the Martin boundary with respect to L is homeomorphic to the Martin
boundary with respect to A (Theorem 2.3 in [7]), and so it is identical to
OR"} U S’i_l. Moreover, for all z € R’ and z € R’} U Sfr_l,

(7) C 2 Ka(x,2) < Kp(x,2) < C?°Kal(z, 2),

where C' is the constant which occurs in Theorem 4.4.
Now let v € Cr(R"}). By the Martin representation theorem, there are
two positive Borel measures o on dR"} and v on 5’2*1 such that

v(x) = S Kp(z,2)do(z) + S K (z,e)dv(e).
ORY 51—1

From (7), it follows that the function
u(x) = S Ka(z,2z)do(z) + S Ka(x,e)dv(e)

8R1 Si—l
= S Ka(z,2)do(z) + « n
Zo,n

oR™
is in Ca(R?"). Hence o = 0 and u(x) = axy,/o,,. This implies that
(8) v(@)= | Kp(z,e)dve).
srt
On the other hand, from (7) we have, for all e € Sﬁ_l,

2 Ln < Kp(z,e) < C? In_
Zo,n Zo,n
It follows that, for all e, & € S7 ™,
074KL('7A€) S KL('ae) S C4KL('7a'

Since K,(-,e) is a minimal positive L-solution and K, (zo,e) = K1 (zo,€)
=1, we deduce that for all e, e € Si_l,
(9) Kp(e) = K(-,e).
Hence we deduce from (8) and (9) that v = aKr(-,e) for some a > 0.

This shows that Cr (R’ ) is a one-dimensional cone generated by Kp(-,e).
Moreover by (7), K1(-,e) is equivalent to x,,, which completes the proof.
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