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On the equivalence of Green functions
for general Schrödinger operators on a half-space

by Abdoul Ifra and Lotfi Riahi (Tunis)

Abstract. We consider the general Schrödinger operator L = div(A(x)∇x)− µ on a
half-space in Rn, n ≥ 3. We prove that the L-Green function G exists and is comparable
to the Laplace–Green function G∆ provided that µ is in some class of signed Radon
measures. The result extends the one proved on the half-plane in [9] and covers the case of
Schrödinger operators with potentials in the Kato class at infinity K∞n considered by Zhao
and Pinchover. As an application we study the cone CL(Rn+) of all positive L-solutions
continuously vanishing on the boundary {xn = 0}.

1. Introduction In the last two decades, the problem of comparability
of Green functions for elliptic operators has been discussed by several au-
thors in different situations. For elliptic operators with sufficiently regular
coefficients on bounded smooth domains, we refer the reader to [1] and [4].
In [2], Cranston, Fabes and Zhao studied the problem for Schrödinger oper-
ators with potentials in the Kato class K loc

n on bounded Lipschitz domains.
Their work extends the one due to Zhao [10]. For Schrödinger operators with
short range potentials on Lipschitz domains (bounded or unbounded) with
compact boundary, the problem was studied by Herbst and Zhao in [3]. In
[6], Pinchover studied the problem for elliptic operators on Rn with lower
order terms in the Kato class at infinity, K∞n , which contains the class of
short range potentials. However, for Schrödinger operators on arbitrary do-
mains such as unbounded domains with noncompact boundary, nothing is
proved about this problem. In this paper we are interested in the problem
for the general Schrödinger operator

L = L0 − µ,
where L0 = div(A(x)∇x) on the half-space Rn+ = {x = (x1, . . . , xn) ∈ Rn :
xn > 0}, n ≥ 3. The matrix A is assumed to be real, symmetric, uniformly
elliptic with locally Lipschitz continuous coefficients and µ is a signed Radon
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measure. By [8] we know that the L0-Green function G0 is comparable to
the Laplace–Green function G∆ on Rn+.

Our main purpose is to study the existence of the L-Green function
and its comparability to G∆ on the half-space Rn+ when µ is in a general
class of signed Radon measures denoted by K. The Schrödinger operator
L = L0 − V (x) with potential V in the class K∞n introduced by Zhao [11,
12] and Pinchover [6] is just the special case when µ has the density V with
respect to the Lebesgue measure. Hence our result extends those proved by
Herbst and Zhao [3] and Pinchover [6] to the case of the half-space. The
comparability result enables us to obtain potential-theoretic results for L
which are known to hold for ∆. We prove as an application a Liouville type
theorem for L-positive solutions on the half-space Rn+.

The paper is organized as follows. In Section 2, we give some preliminar-
ies and notations. In Section 3, we introduce the class K and we study some
of its properties. In particular we prove that this class strictly contains the
class of measures V (x)dx with V in K∞n . In Section 4, we prove the exis-
tence of the L-Green function and the comparability result when µ is in K
with minimal condition. In Section 5, we study the structure of CL(Rn+), the
cone of positive L-solutions on Rn+ continuously vanishing on the boundary.
We show that CL(Rn+) is a one-dimensional cone, a result which fails to hold
even in simple cases such as L = ∆− c, with c ∈ R \ {0}.

Throughout the paper the letter C denotes a generic positive constant
which may vary in value from line to line.

2. Preliminaries and notations. As already mentioned, we will deal
with the Schrödinger operator

L = div(A(x)∇x)− µ
on the half-space Rn+ = {x = (x1, . . . , xn) ∈ Rn : xn > 0}, n ≥ 3. We
put L0 = div(A(x)∇x). We assume that the matrix A(x) = (aij(x))1≤i,j≤n
is real, symmetric, and uniformly elliptic, i.e. there is λ ≥ 1 such that
λ−1‖ξ‖2 ≤ 〈A(x)ξ, ξ〉 ≤ λ‖ξ‖2 for all x ∈ Rn+ and ξ ∈ Rn. The coefficients
aij are λ-locally Lipschitz continuous. µ is a signed Radon measure.

We denote by G0 the L0-Green function on Rn+.
G∆ denotes the Laplace–Green function on Rn+, which is given by

G∆(x, y) = wn

(
1

|x− y|n−2 −
1

|x− ỹ|n−2

)
,

where ỹ = (y′,−yn) when y = (y′, yn) with y′ ∈ Rn−1 and yn ∈ R. Here
wn = (2π)−n/2Γ (n/2− 1) is the volume of the unit sphere Sn−1 in Rn.

We recall that there is a constant C = C(n, λ) > 0 such that

(1) C−1G∆ ≤ G0 ≤ CG∆.
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This is proved by integrating the corresponding semigroup densities with
respect to time (see [8, Remark 2, p. 142]).

A function u on Rn+ is called an L-solution if it is continuous and satisfies
Lu = 0 in the distributional sense. We denote by CL(Rn+) (resp. C∆(Rn+))
the cone of positive L-solutions (resp. ∆-solutions) on Rn+ continuously van-
ishing on the boundary.

3. The class K
Definition 3.1. We say that a signed Radon measure µ on Rn+ is in the

class K if it satisfies

sup
x∈Rn+

�

Rn+

yn
xn

G∆(x, y) |µ|(dy) <∞.

To study the class K we first give some interesting estimates of the Green
function G∆.

Lemma 3.2. There exists a constant C > 0 such that for all x, y ∈ Rn+:

(i)
1
C

1
|x− y|n−2

xnyn
|x− ỹ|2 ≤ G∆(x, y) ≤ C

|x− y|n−2

xnyn
|x− ỹ|2 .

(ii)
1
C

1
|x− y|n−2 min

(
1,

xnyn
|x− y|2

)
≤ G∆(x, y)

≤ C

|x− y|n−2 min
(

1,
xnyn
|x− y|2

)
.

(iii)
xn
yn

G∆(x, y) ≤ C

|x− y|n−2 .

Proof. We have

G∆(x, y) = wn

(
1

|x− y|n−2 −
1

|x− ỹ|n−2

)

=
wn

|x− y|n−2

[
1−

( |x− y|2
|x− ỹ|2

)(n−2)/2]

=
wn

|x− y|n−2

[
1−

(
1− 4xnyn
|x− ỹ|2

)(n−2)/2]
.

Using the inequalities
t

α+ 2
≤ 1− (1− t)α ≤ t

α+ 1
for t ∈ (0, 1) and α > 0,

we obtain
8wn
n+ 2

1
|x− y|n−2

xnyn
|x− ỹ|2 ≤ G∆(x, y) ≤ 8wn

n

1
|x− y|n−2

xnyn
|x− ỹ|2 ,

which proves (i).
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On the other hand,

(2)
1
5

min
(

1,
xnyn
|x− y|2

)
≤ xnyn
|x− ỹ|2 ≤ min

(
1,

xnyn
|x− y|2

)
.

Hence (ii) holds from (i) and (2).
We now prove (iii). From (ii), we have

xn
yn

G∆(x, y) ≤ C

|x− y|n−2 min
(
xn
yn
,

x2
n

|x− y|2
)

≤ C

|x− y|n−2 min
(
xn
yn
,

x2
n

|xn − yn|2
)
.

Put t = xn/yn > 0. We have

min
(
xn
yn
,

x2
n

|xn − yn|2
)

= min
(
t,

(
t

t− 1

)2)
≤ 4.

Thus
xn
yn

G∆(x, y) ≤ 4C
|x− y|n−2 ,

and (iii) is proved.

Proposition 3.3. For α ∈ R, the measure y−αn e−|y|dy is in the class K
if and only if α < 2.

Proof. We assume that α < 2 and we will prove

sup
x∈Rn+

�

Rn+

yn
xn

G∆(x, y)y−αn e−|y| dy <∞.

If α < 0, then from Lemma 3.2(iii) we have
�

Rn+

yn
xn

G∆(x, y)y−αn e−|y| dy ≤ C
�

Rn+

y−αn e−|y|

|x− y|n−2 dy ≤ C
�

Rn+

|y|−αe−|y|
|x− y|n−2 dy

≤ C
�

Rn+

e−|y|/2

|x− y|n−2 dy = C
( �

|x−y|≥|y|
. . . dy +

�

|x−y|≤|y|
. . . dy

)

≤ C
( �

Rn

e−|y|/2

|y|n−2 dy +
�

Rn

e−|x−y|/2

|x− y|n−2 dy

)
= 2Cwn

∞�

0

re−r/2 dr <∞.

If 0 ≤ α < 2, then from Lemma 3.2(ii), (iii), we have

(3)
�

Rn+

yn
xn

G∆(x, y)y−αn e−|y| dy =
�

|x−y|≥yn
. . . dy +

�

|x−y|≤yn
. . . dy

≤ C
( �

|x−y|≥yn

y2−α
n e−|y|

|x− y|n dy +
�

|x−y|≤yn

y−αn e−|y|

|x− y|n−2 dy

)
= C(I1 + I2).
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We estimate I1:

I1 =
�

|x−y|≥yn

y2−α
n e−|y|

|x− y|n dy ≤
�

Rn

e−|y|

|x− y|n−2+α dy(4)

=
�

|x−y|≥|y|

e−|y|

|x− y|n−2+α dy +
�

|x−y|≤|y|

e−|y|

|x− y|n−2+α dy

≤
�

Rn

e−|y|

|y|n−2+α dy +
�

Rn

e−|x−y|

|x− y|n−2+α dy

= 2wn
∞�

0

r1−αe−rdr <∞.

Now we estimate I2:

I2 =
�

|x−y|≤yn

y−αn e−|y|

|x− y|n−2 dy ≤
�

|x−y|≤yn

e−|x−y|

|x− y|n−2+α dy(5)

≤
�

Rn

e−|x−y|

|x− y|n−2+α dy = wn

∞�

0

r1−αe−r dr <∞.

Combining (3)–(5), we obtain

sup
x∈Rn+

�

Rn+

yn
xn

G∆(x, y)y−αn e−|y| dy <∞.

Conversely, assume that y−αn e−|y|dy ∈ K; we will prove α < 2. We have

sup
x∈Rn+

�

Rn+

yn
xn

G∆(x, y)y−αn e−|y| dy <∞,

and from Lemma 3.2(ii) it follows that

sup
x∈Rn+

�

Rn+

min
(
yn
xn
,

y2
n

|x− y|2
)
y−αn e−|y|

|x− y|n−2 dy <∞.

This implies

sup
x∈Rn+

�

Rn+

min
(
yn
xn
,

y2
n

(|x|+ |y|)2

)
y−αn e−|y|

(|x|+ |y|)n−2 dy <∞,

which means
�

Rn+

y2−α
n e−|y|

|y|n dy <∞.
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This yields
∞�

0

y2−α
n e−yn

�

Rn−1

e−|y
′|

(|y′|+ yn)n
dy′ dyn <∞,

which means
∞�

0

y2−α
n e−yn

∞�

0

rn−2e−r

(r + yn)n
dr dyn <∞.

Hence
∞�

0

y2−α
n e−yn

2yn�

yn

rn−2e−r

(r + yn)n
dr dyn <∞,

and thus
∞�

0

y1−α
n e−3yn dyn <∞.

This necessarily implies that α < 2.

Now we will show that the class K is more general than the Kato class at
infinity, K∞n , considered by Zhao [11, 12] and Pinchover [6]. For the reader’s
convenience, we recall the definition of K∞n .

Definition 3.4. We say that a Borel measurable function V on Rn+,
n ≥ 3, is in the class K∞n if it satisfies

lim
r→0

sup
x∈Rn+

�

(|x−y|≤r)∩Rn+

|V (y)|
|x− y|n−2 dy = 0,

lim
M→+∞

sup
x∈Rn+

�

(|y|≥M)∩Rn+

|V (y)|
|x− y|n−2 dy = 0.

Note that if V ∈ K∞n then for all M > 0,
�

(|y|≤M)∩Rn+

|V (y)| dy <∞.

In particular V ∈ L1
loc(Rn+).

From [11], we have

Proposition 3.5. If V ∈ K∞n , then V is Green bounded , i.e.

sup
x∈Rn+

�

Rn+

|V (y)|
|x− y|n−2 dy <∞.

Proposition 3.6. The class K strictly contains the class of Green
bounded potentials.
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Proof. Since by Lemma 3.2(iii),
yn
xn

G∆(x, y) ≤ 1
|x− y|n−2 ,

it follows from Proposition 3.5 that when V is in K∞n , V (x)dx is in K.
Moreover for 1 ≤ α < 2 and M > 0 we have�

(|y|≤M)∩Rn+

y−αn e−|y| dy ≥ e−M
�

(|y|≤M)∩Rn+

y−αn dy = +∞.

This implies that y−αn e−|y| /∈ K∞n . The conclusion follows from Proposi-
tion 3.3.

4. The L-Green function. In this section we study the existence of
the L-Green function G and its comparablity to G∆ when µ is in the class K.

Following the classical potential theory, a Borel measurable function G :
Rn+×Rn+ → ]0,+∞] is called a Green function for the Schrödinger operator
L = ∆ − µ if for all y ∈ Rn+, LG(·, y) = −εy on Rn+ in the distributional
sense, where εy is the Dirac measure at y and G(·, y) vanishes outside a
polar set on ∂Rn+. To prove our main result we shall first prove the following
3G-Theorem which was established in the two-dimensional case in [9].

Theorem 4.3 (3G-Theorem). There exists a positive constant C0 such
that for x, y, z ∈ Rn+, we have

G0(x, z)G0(z, y)
G0(x, y)

≤ C0

(
zn
xn

G0(x, z) +
zn
yn

G0(z, y)
)
.

Proof. By (1) and Lemma 3.2(i), we have
1
C
N(x, y) ≤ G0(x, y) ≤ CN(x, y),

where

N(x, y) =
1

|x− y|n−2

xnyn
|x− ỹ|2 .

Thus to prove the theorem it suffices to prove the inequality

N(x, z)N(z, y)
N(x, y)

≤ C
(
zn
xn

N(x, z) +
zn
yn

N(z, y)
)
,

which is equivalent to

(6) |x− y|n−2|x− ỹ|2 ≤ C(|x− z|n−2|x− z̃|2 + |z − y|n−2|z − ỹ|2).

By symmetry we may assume |x− z| ≤ |z − y|. We have

|x− y|n−2 ≤ (|x− z|+ |z − y|)n−2 ≤ 2n−2|z − y|n−2,

and
|x− ỹ|2 ≤ (|x− z|+ |z − ỹ|)2 = 22|z − ỹ|2,
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which yields
|x− y|n−2|x− ỹ|2 ≤ 2n|z − y|n−2|z − ỹ|2,

and (6) follows with C = 2n.

Now we are ready to prove the main result of this section.

Theorem 4.4. Let µ ∈ K with 4C0‖µ‖ < 1. Then the L-Green function
G exists and is comparable to G∆, i.e. there is a constant C > 0 such that

C−1G∆ ≤ G ≤ CG∆.
Proof. From the 3G-Theorem, we have

�

Rn+

G0(x, z)G0(z, y) |µ|(dz)

≤ C0

�

Rn+

(
zn
xn

G0(x, z) +
zn
yn

G0(z, y)
)
|µ|(dz)G0(x, y)

≤ 2C0‖µ‖G0(x, y).

Since G0 <∞ outside the diagonal and |µ|{x} = 0 for all x ∈ Rn+, it follows
that for x 6= y ∈ Rn+ and m ∈ N, we may define

G∗m+1
0 (x, y) = G∗m0 ∗G0(x, y) ≡

�

Rn+

G∗m0 (x, z)G0(z, y)µ(dz)

with G∗00 = G0. By induction we obtain

|G∗m0 (x, y)| ≤ (2C0‖µ‖)mG0(x, y).

Since 2C0‖µ‖ < 1, it follows that
∑

m≥0

|G∗m0 (x, y)| ≤ 1
1− 2C0‖µ‖

G0(x, y).

We then define G by

G(x, y) =
{

+∞ if x = y,∑
m≥0(−1)mG∗m0 (x, y) if x 6= y.

Clearly, since G0 vanishes on ∂Rn+, it follows from the previous inequality
that G has the same property. Moreover, we have

G0(·, y) = G(·, y) +
�

Rn+

G0(·, z)G(z, y)µ(dz) on Rn+ \ {y}.

This resolvent equation implies the equality

LG(·, y) = −εy
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in the distributional sense. Thus G is the L-Green function on Rn+. Moreover,
for all x 6= y, we have

G(x, y)−G0(x, y) =
∑

m≥1

(−1)mG∗m0 (x, y).

Hence, for all x 6= y, we have

|G(x, y)−G0(x, y)| ≤
∑

m≥1

(2C0‖µ‖)mG0(x, y) =
2C0‖µ‖

1− 2C0‖µ‖
G0(x, y).

By recalling that G = G0 = +∞ on the diagonal and that 4C0‖µ‖ < 1, we
get

1− 4C0‖µ‖
1− 2C0‖µ‖

G0 ≤ G ≤
1

1− 2C0‖µ‖
G0.

Since by (1), G0 is comparable to G∆, the proof is complete.

5. The structure of CL(Rn+). The comparison theorem implies that
when µ is in K with 4C0‖µ‖ < 1, the L-Green function behaves like the
∆-Green function in particular at infinity and near the boundary {xn = 0}.
This fact enables us to prove that the Martin boundaries with respect to L
and ∆ are homeomorphic. The proof follows the idea of Theorem 2.3 in [7].
Using this observation and potential-theoretic arguments we will prove that
the set CL(Rn+) of all positive L-solutions on Rn+ continuously vanishing on
the boundary {xn = 0} is a one-dimensional cone. This kind of result fails
to hold even in simple cases such as L = ∆ − c, where c is a nonzero real
constant. In fact our main result is the following.

Theorem 5.1. Let µ be in K with 4C0‖µ‖ < 1. Then the set CL(Rn+) is
a one-dimensional cone generated by a function equivalent to xn.

Before we prove our main result we shall determine the Martin boundary
with respect to ∆ on the half-space. We first briefly recall the notion of the
Martin boundary introduced by Martin in [5].

Let Ω be a domain in Rn and let x0 be a fixed reference point in Ω. Recall
that a sequence (ym) in Ω is called fundamental if it has no accumulation
point and for any x ∈ Ω, the limit limmG∆(x, ym)/G∆(x0, ym) exists. Here
G∆ denotes the Laplace–Green function on Ω. Two fundamental sequences
are called equivalent if the corresponding limits are the same. The class
of all fundamental sequences equivalent to a given one determines an ideal
boundary element of Ω. The set of ideal boundary elements of Ω is called
the Martin boundary of Ω corresponding to ∆. For any Martin boundary
element z = (ym), we write

K∆(x, z) = lim
m

G∆(x, ym)
G∆(x0, ym)

,
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which is a positive ∆-harmonic function of x in Ω. K∆(·, z) will be called
the ∆-Martin kernel with pole z normalized at x0.

We will study the case of Ω = Rn+. Let Rn be the compactification of
Rn which adjoins the sphere at infinity Sn−1

∞ . Specifically Sn−1
∞ is a copy of

the unit sphere Sn−1 in Rn. Let (ym)m be a sequence in Rn+ which has no
accumulation point. By compactness of Rn it has a subsequence still denoted
(ym)m which tends to z ∈ ∂Rn+ or to e ∈ Sn−1

+(∞) as m→∞, where Sn−1
+(∞) is

a copy of the half-sphere Sn−1
+ = {e ∈ Sn−1 : en > 0}. We identify Sn−1

+(∞)

with Sn−1
+ .

Recall that

G∆(x, y) =
wn

|x− y|n−2

[
1−

(
1− 4xnyn
|x− ỹ|2

)n−2
2
]
.

For z ∈ ∂Rn+ = {xn = 0}, we have

lim
y→z, y∈Rn+

G∆(x, y)
G∆(x0, y)

= lim
y→z, y∈Rn+

|x− y|2−n
|x0 − y|2−n

xn
x0,n

|x0 − ỹ|2
|x− ỹ|2

=
xn
x0,n

|x0 − z|n
|x− z|n .

This shows that any z ∈ ∂Rn+ is a Martin boundary element and

K∆(x, z) =
xn
x0,n

|x0 − z|n
|x− z|n .

Moreover we have

lim
|y|→∞, y∈Rn+

G∆(x, y)
G∆(x0, y)

= lim
|y|→∞, y∈Rn+

|x− y|2−n
|x0 − y|2−n

xn
x0,n

|x0 − ỹ|2
|x− ỹ|2 =

xn
x0,n

,

which shows that any e ∈ Sn−1
+ is a Martin boundary element and K∆(x, e)

= xn/x0,n.
Thus the Martin boundary with respect to ∆ is identical to ∂Rn+ ∪Sn−1

+
and by the Martin representation theorem, for every positive ∆-solution u
on Rn+, there are two positive Borel measures σ on ∂Rn+ and ν on Sn−1

+ such
that

u(x) =
�

∂Rn+

K∆(x, z) dσ(z) +
�

Sn−1
+

K∆(x, e) dν(e)

=
xn
x0,n

�

∂Rn+

|x0 − z|n
|x− z|n dσ(z) + α

xn
x0,n

.

Obviously the first part in the right member of this representation tends to
zero at infinity. Hence when u tends to zero as xn → 0+, we get u(x) =
αxn/x0,n. This shows that C∆(Rn+) is a one-dimensional cone generated by
the function u0(x) = xn.
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Proof of Theorem 5.1. Since by Theorem 4.4, G and G∆ are comparable,
the Martin boundary with respect to L is homeomorphic to the Martin
boundary with respect to ∆ (Theorem 2.3 in [7]), and so it is identical to
∂Rn+ ∪ Sn−1

+ . Moreover, for all x ∈ Rn+ and z ∈ ∂Rn+ ∪ Sn−1
+ ,

(7) C−2K∆(x, z) ≤ KL(x, z) ≤ C2K∆(x, z),

where C is the constant which occurs in Theorem 4.4.
Now let v ∈ CL(Rn+). By the Martin representation theorem, there are

two positive Borel measures σ on ∂Rn+ and ν on Sn−1
+ such that

v(x) =
�

∂Rn+

KL(x, z) dσ(z) +
�

Sn−1
+

KL(x, e) dν(e).

From (7), it follows that the function

u(x) =
�

∂Rn+

K∆(x, z) dσ(z) +
�

Sn−1
+

K∆(x, e) dν(e)

=
�

∂Rn+

K∆(x, z) dσ(z) + α
xn
x0,n

is in C∆(Rn+). Hence σ ≡ 0 and u(x) = αxn/x0,n. This implies that

(8) v(x) =
�

Sn−1
+

KL(x, e) dν(e).

On the other hand, from (7) we have, for all e ∈ Sn−1
+ ,

C−2 xn
x0,n

≤ KL(x, e) ≤ C2 xn
x0,n

.

It follows that, for all e, ẽ ∈ Sn−1
+ ,

C−4KL(·, ẽ) ≤ KL(·, e) ≤ C4KL(·, ẽ).
Since KL(·, e) is a minimal positive L-solution and KL(x0, e) = KL(x0, ẽ)
= 1, we deduce that for all e, ẽ ∈ Sn−1

+ ,

(9) KL(·, e) = KL(·, ẽ).
Hence we deduce from (8) and (9) that v = αKL(·, e) for some α ≥ 0.
This shows that CL(Rn+) is a one-dimensional cone generated by KL(·, e).
Moreover by (7), KL(·, e) is equivalent to xn, which completes the proof.
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