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A polynomial with 2k critical values at infinity

by Janusz Gwoździewicz and Maciej Sękalski (Kielce)

Abstract. We construct a polynomial f : C2 → C of degree 4k + 2 with no critical
points in C2 and with 2k critical values at infinity.

Let f : C2 → C be a polynomial. We call λ ∈ C a critical value of f at
infinity if there exists a sequence zn ∈ C2 such that zn →∞, grad f(zn)→
(0, 0) and f(zn) → λ as n → ∞. Several equivalent definitions of critical
values at infinity are given in [Dur]. The definition we use is due to Ha
(see [Dur]).

When studying polynomial automorphisms of C2 we encounter polyno-
mials with no critical points in C2 (see, for example [Eph], [G-P]). It is
natural to ask if such a polynomial can have many critical values at infinity.

For a given integer k > 0 we construct a polynomial f : C2 → C of
degree 4k + 2 such that

(i) f has no critical points in C2,
(ii) f has exactly 2k critical values at infinity.

Let A(x) = xk − 1, B(x) = xk+1/(k + 1)− x and

f(x, y) = (yA2 − x)2 +B.

To prove (i) recall that critical points of f are solutions of ∂f/∂x =
∂f/∂y = 0, so we have

{
2(yA2 − x)(2yAA′ − 1) +A = 0,

2(yA2 − x)A2 = 0.

The second equality gives A = 0 or yA2 − x = 0. If A = 0 then from the
first equality we obtain x = 0, which is impossible because A(0) 6= 0. If we
assume that yA2−x = 0 then A = 0 and we again arrive at a contradiction.
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Now we will show that the critical values of f at infinity are − k
k+1a

and a2 − k
k+1a, where a is any root of the polynomial A. Assume that

zn = (xn, yn) is a sequence which satisfies the following four conditions:

zn →∞,(1)
∂f

∂x
(zn) = 2(ynA(xn)2 − xn)(2ynA(xn)A′(xn)− 1) + A(xn)→ 0,(2)

∂f

∂y
(zn) = 2(ynA(xn)2 − xn)A(xn)2 → 0,(3)

f(zn) = (ynA(xn)2 − xn)2 +B(xn)→ λ ∈ C.(4)

Replacing zn by a subsequence we may additionally assume that xn → ∞
or that xn → b ∈ C.

If xn tends to infinity then by (3), ynA(xn)2−xn → 0. Hence f(zn)→∞
(because B(xn)→∞), which contradicts (4).

Now suppose that xn converges to b ∈ C and that b is not a root of A.
From (3) we have ynA(xn)2− xn → 0, which gives yn → b/A(b)2. Hence the
sequence zn is bounded contrary to (1). We have thus proven that xn → a,
where a is a root of A.

From (4) we see that the sequence ynA(xn)2 − xn is convergent. If it
converges to 0, then f(zn) → B(a) = − k

k+1a. Now suppose ynA(xn)2 −
xn → α 6= 0. Then according to (2) we have 2ynA(xn)A′(xn)− 1→ 0 since
otherwise (∂f/∂x)(zn) would not be convergent to zero. Hence

ynA(xn)2 − xn =
A(xn)

2A′(xn)
[(2ynA(xn)A′(xn)− 1) + 1]− xn → −a,

and we see from (4) that

f(zn)→ a2 +B(a) = a2 − k

k + 1
a.

Conversely,− k
k+1a and a2− k

k+1a for a ∈ A−1(0) are critical values of f at
infinity. Indeed, taking xn → a, yn = xn/A(xn)2 we obtain f(zn)→ − k

k+1a

and taking xn → a, yn = 1/(2A(xn)A′(xn)) we get f(zn)→ a2 − k
k+1a.

It suffices to show that the above numbers are pairwise different. We will
show that if a 6= b and a, b ∈ A−1(0) then

a2 − k

k + 1
a 6= b2 − k

k + 1
b,

a2 − k

k + 1
a 6= − k

k + 1
b.

The first unequality can be rewritten as (a− b)
(
a+ b− k

k+1

)
6= 0, therefore

it is enough to show that the equality a+ b = k
k+1 does not hold. If it holds,

then a and b must be conjugate, giving a + ā = k
k+1 . Multiplying this by
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(k + 1)a we obtain

(k + 1)a2 − ka+ k + 1 = 0, ak − 1 = 0.

To show that these equalities cannot both hold consider the resultant R of
the polynomials (k + 1)x2 − kx+ k + 1 and xk − 1, i.e.

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k + 1 −k k + 1 0 . . . 0

0 k + 1 −k k + 1 . . . 0
...

. . .
...

0 . . . k + 1 −k k + 1 0

0 . . . 0 k + 1 −k k + 1

1 0 . . . −1 0

0 1 0 . . . −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and the natural homomorphism φ : Z→ Z/(k + 1)Z. Then

φ(R) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0 0

0 . . . 0 0 1 0

1 0 . . . −1 0

0 1 0 . . . −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)k+1.

Hence R 6= 0.
To conclude the proof we need to show that the equality

a2 − k

k + 1
a = − k

k + 1
b(5)

is false for any a, b ∈ A−1(0). Notice that if k = 1 then a = b = 1 and
a2 − 1

2a = 1
2 6= −1

2 = −1
2b. Suppose that k > 1. Since (5) can be written as

k + 1
k

= a−1 − ba−2 = a−1 + (−ba−2),

the numbers a−1 and −ba−2 must be conjugate. Thus −ba−2 = a. Multiply-
ing the above equality by ka we arrive at

ka2 − (k + 1)a+ k = 0.

Of course ak − 1 = 0. By using the same method as earlier, i.e. using a re-
sultant modulo k, we can show that the system of equations

kx2 − (k + 1)x+ k = 0, xk − 1 = 0

has no solutions for k > 1. This completes the proof.
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