A polynomial with 2k critical values at infinity

by JANUSZ GWOŹDZIEWICZ and MACIEJ SĘKALSKI (Kielce)

Abstract. We construct a polynomial $f : \mathbb{C}^2 \to \mathbb{C}$ of degree 4k + 2 with no critical points in \mathbb{C}^2 and with 2k critical values at infinity.

Let $f : \mathbb{C}^2 \to \mathbb{C}$ be a polynomial. We call $\lambda \in \mathbb{C}$ a critical value of f at infinity if there exists a sequence $z_n \in \mathbb{C}^2$ such that $z_n \to \infty$, grad $f(z_n) \to (0,0)$ and $f(z_n) \to \lambda$ as $n \to \infty$. Several equivalent definitions of critical values at infinity are given in [Dur]. The definition we use is due to Ha (see [Dur]).

When studying polynomial automorphisms of \mathbb{C}^2 we encounter polynomials with no critical points in \mathbb{C}^2 (see, for example [Eph], [G-P]). It is natural to ask if such a polynomial can have many critical values at infinity.

For a given integer k>0 we construct a polynomial $f:\mathbb{C}^2\to\mathbb{C}$ of degree 4k+2 such that

(i) f has no critical points in \mathbb{C}^2 ,

(ii) f has exactly 2k critical values at infinity.

Let
$$A(x) = x^k - 1$$
, $B(x) = \frac{x^{k+1}}{(k+1)} - x$ and
 $f(x, y) = (yA^2 - x)^2 + B.$

To prove (i) recall that critical points of f are solutions of $\partial f/\partial x = \partial f/\partial y = 0$, so we have

$$\begin{bmatrix} 2(yA^2 - x)(2yAA' - 1) + A = 0, \\ 2(yA^2 - x)A^2 = 0. \end{bmatrix}$$

The second equality gives A = 0 or $yA^2 - x = 0$. If A = 0 then from the first equality we obtain x = 0, which is impossible because $A(0) \neq 0$. If we assume that $yA^2 - x = 0$ then A = 0 and we again arrive at a contradiction.

²⁰⁰⁰ Mathematics Subject Classification: Primary 30C10.

Key words and phrases: critical values at infinity.

The first author was partially supported by KBN Grant No. 2P03A01522.

Now we will show that the critical values of f at infinity are $-\frac{k}{k+1}a$ and $a^2 - \frac{k}{k+1}a$, where a is any root of the polynomial A. Assume that $z_n = (x_n, y_n)$ is a sequence which satisfies the following four conditions:

(1)
$$z_n \to \infty$$
,
(2) $\frac{\partial f}{\partial x}(z_n) = 2(y_n A(x_n)^2 - x_n)(2y_n A(x_n)A'(x_n) - 1) + A(x_n) \to 0$,
 $\frac{\partial f}{\partial x}(x_n) = 2(y_n A(x_n)^2 - x_n)(2y_n A(x_n)A'(x_n) - 1) + A(x_n) \to 0$,

(3)
$$\frac{\partial J}{\partial y}(z_n) = 2(y_n A(x_n)^2 - x_n)A(x_n)^2 \to 0,$$

(4)
$$f(z_n) = (y_n A(x_n)^2 - x_n)^2 + B(x_n) \to \lambda \in \mathbb{C}.$$

Replacing z_n by a subsequence we may additionally assume that $x_n \to \infty$ or that $x_n \to b \in \mathbb{C}$.

If x_n tends to infinity then by (3), $y_n A(x_n)^2 - x_n \to 0$. Hence $f(z_n) \to \infty$ (because $B(x_n) \to \infty$), which contradicts (4).

Now suppose that x_n converges to $b \in \mathbb{C}$ and that b is not a root of A. From (3) we have $y_n A(x_n)^2 - x_n \to 0$, which gives $y_n \to b/A(b)^2$. Hence the sequence z_n is bounded contrary to (1). We have thus proven that $x_n \to a$, where a is a root of A.

From (4) we see that the sequence $y_n A(x_n)^2 - x_n$ is convergent. If it converges to 0, then $f(z_n) \to B(a) = -\frac{k}{k+1}a$. Now suppose $y_n A(x_n)^2 - x_n \to \alpha \neq 0$. Then according to (2) we have $2y_n A(x_n)A'(x_n) - 1 \to 0$ since otherwise $(\partial f/\partial x)(z_n)$ would not be convergent to zero. Hence

$$y_n A(x_n)^2 - x_n = \frac{A(x_n)}{2A'(x_n)} \left[(2y_n A(x_n) A'(x_n) - 1) + 1 \right] - x_n \to -a,$$

and we see from (4) that

$$f(z_n) \to a^2 + B(a) = a^2 - \frac{k}{k+1}a.$$

Conversely, $-\frac{k}{k+1}a$ and $a^2 - \frac{k}{k+1}a$ for $a \in A^{-1}(0)$ are critical values of f at infinity. Indeed, taking $x_n \to a$, $y_n = x_n/A(x_n)^2$ we obtain $f(z_n) \to -\frac{k}{k+1}a$ and taking $x_n \to a$, $y_n = 1/(2A(x_n)A'(x_n))$ we get $f(z_n) \to a^2 - \frac{k}{k+1}a$.

It suffices to show that the above numbers are pairwise different. We will show that if $a \neq b$ and $a, b \in A^{-1}(0)$ then

$$a^{2} - \frac{k}{k+1} a \neq b^{2} - \frac{k}{k+1} b,$$

 $a^{2} - \frac{k}{k+1} a \neq -\frac{k}{k+1} b.$

The first unequality can be rewritten as $(a-b)(a+b-\frac{k}{k+1}) \neq 0$, therefore it is enough to show that the equality $a+b=\frac{k}{k+1}$ does not hold. If it holds, then a and b must be conjugate, giving $a+\bar{a}=\frac{k}{k+1}$. Multiplying this by (k+1)a we obtain

$$(k+1)a^2 - ka + k + 1 = 0, \quad a^k - 1 = 0.$$

To show that these equalities cannot both hold consider the resultant R of the polynomials $(k+1)x^2 - kx + k + 1$ and $x^k - 1$, i.e.

$$R = \begin{vmatrix} k+1 & -k & k+1 & 0 & \dots & 0 \\ 0 & k+1 & -k & k+1 & \dots & 0 \\ \vdots & & \ddots & & & \vdots \\ 0 & \dots & k+1 & -k & k+1 & 0 \\ 0 & \dots & 0 & k+1 & -k & k+1 \\ 1 & 0 & \dots & -1 & 0 \\ 0 & 1 & 0 & \dots & -1 \end{vmatrix}$$

and the natural homomorphism $\phi : \mathbb{Z} \to \mathbb{Z}/(k+1)\mathbb{Z}$. Then

$$\phi(R) = \begin{vmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & & & \vdots \\ 0 & \dots & 0 & 1 & 0 & 0 \\ 0 & \dots & 0 & 0 & 1 & 0 \\ 1 & 0 & \dots & -1 & 0 \\ 0 & 1 & 0 & \dots & -1 \end{vmatrix} = (-1)^{k+1}$$

Hence $R \neq 0$.

To conclude the proof we need to show that the equality

(5)
$$a^2 - \frac{k}{k+1}a = -\frac{k}{k+1}b$$

is false for any $a, b \in A^{-1}(0)$. Notice that if k = 1 then a = b = 1 and $a^2 - \frac{1}{2}a = \frac{1}{2} \neq -\frac{1}{2} = -\frac{1}{2}b$. Suppose that k > 1. Since (5) can be written as $\frac{k+1}{k} = a^{-1} - ba^{-2} = a^{-1} + (-ba^{-2}),$

the numbers a^{-1} and $-ba^{-2}$ must be conjugate. Thus $-ba^{-2} = a$. Multiplying the above equality by ka we arrive at

$$ka^2 - (k+1)a + k = 0.$$

Of course $a^k - 1 = 0$. By using the same method as earlier, i.e. using a resultant modulo k, we can show that the system of equations

$$kx^{2} - (k+1)x + k = 0, \quad x^{k} - 1 = 0$$

has no solutions for k > 1. This completes the proof.

Acknowledgments. We found k critical values of f at infinity in the first version of this paper. We would like to thank Tadeusz Krasiński who suggested that f has 2k critical values at infinity.

References

- [Dur] A. H. Durfee, Five definitions of critical point at infinity, in: Singularities: The Brieskorn Anniversary Volume, Progr. Math. 162, Birkhaüser, 1998, 345–360.
- [Eph] R. Ephraim, Special polars and curves with one place at infinity, in: Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 353–359.
- [G-P] J. Gwoździewicz and A. Płoski, On the singularities at infinity of plane algebraic curves, Rocky Mountain J. Math. 32 (2002), 139–148.

Department of Mathematics Technical University Al. 1000LPP 7 25-314 Kielce, Poland E-mail: matjg@tu.kielce.pl matms@tu.kielce.pl

Reçu par la Rédaction le 19.1.2004

(1497)