A polynomial with $2 k$ critical values at infinity

by Janusz Gwoździewicz and Maciej Sękalski (Kielce)

Abstract

We construct a polynomial $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ of degree $4 k+2$ with no critical points in \mathbb{C}^{2} and with $2 k$ critical values at infinity.

Let $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a polynomial. We call $\lambda \in \mathbb{C}$ a critical value of f at infinity if there exists a sequence $z_{n} \in \mathbb{C}^{2}$ such that $z_{n} \rightarrow \infty, \operatorname{grad} f\left(z_{n}\right) \rightarrow$ $(0,0)$ and $f\left(z_{n}\right) \rightarrow \lambda$ as $n \rightarrow \infty$. Several equivalent definitions of critical values at infinity are given in [Dur]. The definition we use is due to Ha (see [Dur]).

When studying polynomial automorphisms of \mathbb{C}^{2} we encounter polynomials with no critical points in \mathbb{C}^{2} (see, for example [Eph], [G-P]). It is natural to ask if such a polynomial can have many critical values at infinity.

For a given integer $k>0$ we construct a polynomial $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ of degree $4 k+2$ such that
(i) f has no critical points in \mathbb{C}^{2},
(ii) f has exactly $2 k$ critical values at infinity.

Let $A(x)=x^{k}-1, B(x)=x^{k+1} /(k+1)-x$ and

$$
f(x, y)=\left(y A^{2}-x\right)^{2}+B
$$

To prove (i) recall that critical points of f are solutions of $\partial f / \partial x=$ $\partial f / \partial y=0$, so we have

$$
\left\{\begin{array}{l}
2\left(y A^{2}-x\right)\left(2 y A A^{\prime}-1\right)+A=0 \\
2\left(y A^{2}-x\right) A^{2}=0
\end{array}\right.
$$

The second equality gives $A=0$ or $y A^{2}-x=0$. If $A=0$ then from the first equality we obtain $x=0$, which is impossible because $A(0) \neq 0$. If we assume that $y A^{2}-x=0$ then $A=0$ and we again arrive at a contradiction.

[^0]Now we will show that the critical values of f at infinity are $-\frac{k}{k+1} a$ and $a^{2}-\frac{k}{k+1} a$, where a is any root of the polynomial A. Assume that $z_{n}=\left(x_{n}, y_{n}\right)$ is a sequence which satisfies the following four conditions:

$$
\begin{align*}
& z_{n} \rightarrow \infty \tag{1}\\
& \frac{\partial f}{\partial x}\left(z_{n}\right)=2\left(y_{n} A\left(x_{n}\right)^{2}-x_{n}\right)\left(2 y_{n} A\left(x_{n}\right) A^{\prime}\left(x_{n}\right)-1\right)+A\left(x_{n}\right) \rightarrow 0 \tag{2}\\
& \frac{\partial f}{\partial y}\left(z_{n}\right)=2\left(y_{n} A\left(x_{n}\right)^{2}-x_{n}\right) A\left(x_{n}\right)^{2} \rightarrow 0 \tag{3}\\
& f\left(z_{n}\right)=\left(y_{n} A\left(x_{n}\right)^{2}-x_{n}\right)^{2}+B\left(x_{n}\right) \rightarrow \lambda \in \mathbb{C} \tag{4}
\end{align*}
$$

Replacing z_{n} by a subsequence we may additionally assume that $x_{n} \rightarrow \infty$ or that $x_{n} \rightarrow b \in \mathbb{C}$.

If x_{n} tends to infinity then by $(3), y_{n} A\left(x_{n}\right)^{2}-x_{n} \rightarrow 0$. Hence $f\left(z_{n}\right) \rightarrow \infty$ (because $B\left(x_{n}\right) \rightarrow \infty$), which contradicts (4).

Now suppose that x_{n} converges to $b \in \mathbb{C}$ and that b is not a root of A. From (3) we have $y_{n} A\left(x_{n}\right)^{2}-x_{n} \rightarrow 0$, which gives $y_{n} \rightarrow b / A(b)^{2}$. Hence the sequence z_{n} is bounded contrary to (1). We have thus proven that $x_{n} \rightarrow a$, where a is a root of A.

From (4) we see that the sequence $y_{n} A\left(x_{n}\right)^{2}-x_{n}$ is convergent. If it converges to 0 , then $f\left(z_{n}\right) \rightarrow B(a)=-\frac{k}{k+1} a$. Now suppose $y_{n} A\left(x_{n}\right)^{2}-$ $x_{n} \rightarrow \alpha \neq 0$. Then according to (2) we have $2 y_{n} A\left(x_{n}\right) A^{\prime}\left(x_{n}\right)-1 \rightarrow 0$ since otherwise $(\partial f / \partial x)\left(z_{n}\right)$ would not be convergent to zero. Hence

$$
y_{n} A\left(x_{n}\right)^{2}-x_{n}=\frac{A\left(x_{n}\right)}{2 A^{\prime}\left(x_{n}\right)}\left[\left(2 y_{n} A\left(x_{n}\right) A^{\prime}\left(x_{n}\right)-1\right)+1\right]-x_{n} \rightarrow-a
$$

and we see from (4) that

$$
f\left(z_{n}\right) \rightarrow a^{2}+B(a)=a^{2}-\frac{k}{k+1} a
$$

Conversely, $-\frac{k}{k+1} a$ and $a^{2}-\frac{k}{k+1} a$ for $a \in A^{-1}(0)$ are critical values of f at infinity. Indeed, taking $x_{n} \rightarrow a, y_{n}=x_{n} / A\left(x_{n}\right)^{2}$ we obtain $f\left(z_{n}\right) \rightarrow-\frac{k}{k+1} a$ and taking $x_{n} \rightarrow a, y_{n}=1 /\left(2 A\left(x_{n}\right) A^{\prime}\left(x_{n}\right)\right)$ we get $f\left(z_{n}\right) \rightarrow a^{2}-\frac{k}{k+1} a$.

It suffices to show that the above numbers are pairwise different. We will show that if $a \neq b$ and $a, b \in A^{-1}(0)$ then

$$
\begin{aligned}
& a^{2}-\frac{k}{k+1} a \neq b^{2}-\frac{k}{k+1} b, \\
& a^{2}-\frac{k}{k+1} a \neq-\frac{k}{k+1} b
\end{aligned}
$$

The first unequality can be rewritten as $(a-b)\left(a+b-\frac{k}{k+1}\right) \neq 0$, therefore it is enough to show that the equality $a+b=\frac{k}{k+1}$ does not hold. If it holds, then a and b must be conjugate, giving $a+\bar{a}=\frac{k}{k+1}$. Multiplying this by
$(k+1) a$ we obtain

$$
(k+1) a^{2}-k a+k+1=0, \quad a^{k}-1=0
$$

To show that these equalities cannot both hold consider the resultant R of the polynomials $(k+1) x^{2}-k x+k+1$ and $x^{k}-1$, i.e.

$$
R \xlongequal{ }\left|\begin{array}{cccccc}
k+1 & -k & k+1 & 0 & \cdots & 0 \\
0 & k+1 & -k & k+1 & \ldots & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & \ldots & k+1 & -k & k+1 & 0 \\
0 & \ldots & 0 & k+1 & -k & k+1 \\
1 & 0 & \ldots & & -1 & 0 \\
0 & 1 & 0 & \ldots & & -1
\end{array}\right|
$$

and the natural homomorphism $\phi: \mathbb{Z} \rightarrow \mathbb{Z} /(k+1) \mathbb{Z}$. Then

$$
\phi(R)=\left|\begin{array}{cccccc}
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & \ldots & 0 & 1 & 0 & 0 \\
0 & \ldots & 0 & 0 & 1 & 0 \\
1 & 0 & \ldots & & -1 & 0 \\
0 & 1 & 0 & \ldots & & -1
\end{array}\right|=(-1)^{k+1}
$$

Hence $R \neq 0$.
To conclude the proof we need to show that the equality

$$
\begin{equation*}
a^{2}-\frac{k}{k+1} a=-\frac{k}{k+1} b \tag{5}
\end{equation*}
$$

is false for any $a, b \in A^{-1}(0)$. Notice that if $k=1$ then $a=b=1$ and $a^{2}-\frac{1}{2} a=\frac{1}{2} \neq-\frac{1}{2}=-\frac{1}{2} b$. Suppose that $k>1$. Since (5) can be written as

$$
\frac{k+1}{k}=a^{-1}-b a^{-2}=a^{-1}+\left(-b a^{-2}\right)
$$

the numbers a^{-1} and $-b a^{-2}$ must be conjugate. Thus $-b a^{-2}=a$. Multiplying the above equality by $k a$ we arrive at

$$
k a^{2}-(k+1) a+k=0
$$

Of course $a^{k}-1=0$. By using the same method as earlier, i.e. using a resultant modulo k, we can show that the system of equations

$$
k x^{2}-(k+1) x+k=0, \quad x^{k}-1=0
$$

has no solutions for $k>1$. This completes the proof.

Acknowledgments. We found k critical values of f at infinity in the first version of this paper. We would like to thank Tadeusz Krasiński who suggested that f has $2 k$ critical values at infinity.

References

[Dur] A. H. Durfee, Five definitions of critical point at infinity, in: Singularities: The Brieskorn Anniversary Volume, Progr. Math. 162, Birkhaüser, 1998, 345-360.
[Eph] R. Ephraim, Special polars and curves with one place at infinity, in: Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 353-359.
[G-P] J. Gwoździewicz and A. Płoski, On the singularities at infinity of plane algebraic curves, Rocky Mountain J. Math. 32 (2002), 139-148.

Department of Mathematics
Technical University
Al. 1000LPP 7
25-314 Kielce, Poland
E-mail: matjg@tu.kielce.pl
matms@tu.kielce.pl

[^0]: 2000 Mathematics Subject Classification: Primary 30C10.
 Key words and phrases: critical values at infinity.
 The first author was partially supported by KBN Grant No. 2P03A01522.

