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A uniqueness result for an inverse problem

by Robert Dalmasso (Grenoble)

Abstract. We establish a uniqueness result for an overdetermined boundary value
problem. We also raise a new question.

1. Introduction. Let Ω ⊂ R2 be a smooth bounded simply-connected
open set. We consider the following elliptic boundary value problem:

∆u = − λu− µ in Ω(1)

u = 0 on ∂Ω,(2)

where λ and µ are real constants. An interesting problem is to examine
whether one can identify the constants λ and µ from knowledge of the normal
flux ∂u/∂n on ∂Ω corresponding to some nontrivial solution of (1)–(2). For
more general right hand sides this inverse problem arises for instance in
plasma physics in connection with the modelling of Tokamaks [1]. But even
in the very particular case of an affine term the problem is difficult. It is
well known that if Ω is a disk then such identification of (λ, µ) is completely
impossible, even in the case where a sign is imposed on the right hand side
of the equation: It is shown in [4] that there is a continuum of coefficient
pairs (λ, µλ) ∈ R2, and therefore a continuum of affine functions, which give
rise to the same normal derivative on the boundary. We refer the reader to
paper [4] for a more detailed description of the problem in general and the
difficulties encountered.

A partial answer to this problem was first obtained by Vogelius in [4],
and more recently we have also given a contribution [2], [3]: Under some
conditions on the domain and on the normal derivative, there exist at most
finitely many pairs of coefficients.

In order to formulate and explain our goal we first describe the construc-
tion of the continuum of coefficient pairs (λ, µλ) ∈ R2 in the case where Ω
is the unit disk. Let Jz denote the zth Bessel function. For any λ > 0 such
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that
√
λ is not a zero of J1 we define the function

(3) uλ(x) =
J0(
√
λ |x|)− J0(

√
λ)

2
√
λJ1(
√
λ)

, |x| < 1.

For λ < 0 we define the function

(4) uλ(x) = −i J0(i
√
−λ |x|)− J0(i

√
−λ)

2
√
−λJ1(i

√
−λ)

, |x| < 1.

We recall that J1 has only real zeros [5, pp. 482–483]. We easily verify that
uλ is a solution of problem (1)–(2) such that

∂uλ
∂n

= −1
2

on ∂Ω,

with the constant µ = µλ given by

µλ =





√
λJ0(

√
λ)

2J1(
√
λ)

, λ > 0,

i
√
−λJ0(i

√
−λ)

2J1(i
√
−λ)

, λ < 0.

The function (3) (resp. (4)) has a removable singularity at λ = 0, and the
corresponding solution is

u0(x) =
1
4

(1− |x|2), |x| < 1.

Now we notice that u0 is the torsion function relative to the unit disk. We
state the following problem.

Problem. Let χ be the torsion function relative to Ω, that is,

∆χ+ 1 = 0 in Ω,

χ = 0 on ∂Ω.

What can we say about the existence of (λ, µ) ∈ R2 and u satisfying (1)–(2)
and

(5)
∂u

∂n
=
∂χ

∂n
on ∂Ω ?

The construction above shows that, when Ω is the unit disk, there is a
continuum of coefficient pairs (λ, µλ) and uλ which solve the problem. Using
only elementary facts we shall prove the following result.

Theorem 1. Assume that Ω is a true ellipse. If there exist λ, µ ∈ R and
u satisfying (1)–(2) and (5), then λ = 0, µ = 1 and u = χ.
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2. Proof of Theorem 1. We have

Ω =
{
x = (x1, x2) ∈ R2 :

x2
1

a2 +
x2

2

b2
< 1
}

(a > b > 0) and

χ(x) =
a2b2

2(a2 + b2)

(
1− x2

1

a2 −
x2

2

b2

)
.

Let
x1(θ) = a cos θ, x2(θ) = b sin θ, θ ∈ [0, 2π],

be a parametrization of ∂Ω. The curvature of ∂Ω at x(θ) = (x1(θ), x2(θ))
is given by

κ(θ) =
ab

(a2 sin2 θ + b2 cos2 θ)3/2
,

and the exterior normal n = (n1, n2) is given by

n1 =
b cos θ

(a2 sin2 θ + b2 cos2 θ)1/2
, n2 =

a sin θ
(a2 sin2 θ + b2 cos2 θ)1/2

.

We define

φ(θ) =
∂χ

∂n
(x(θ)) = − ab

a2 + b2
(a2 sin2 θ + b2 cos2 θ)1/2,

and
ds = (a2 sin2 θ + b2 cos2 θ)1/2 dθ.

Now let u be a solution of (1)–(2) and (5). We shall use a formula established
in [2, Lemma 2.4 2), p. 782] (see also [3]).

Lemma 1. We have

λ

2π�

0

φ2(x1n2 − x2n1)n1n2 ds+ µ2
2π�

0

(x1n2 − x2n1)n1n2 ds+ a12µ+ b12 = 0,

where a12 and b12 are independent of λ and µ, and

a12 =
2π�

0

φ((2κ(x.n)− 1)(n2
1 − n2

2)− 4κ(x1n2 − x2n1)n1n2) ds,

with x.n = x1n1 + x2n2.

Remark 1. In [2], a12 is not given explicitly, but it can be easily ob-
tained from the proof (see also [3]). We do not need the precise formula
for b12.

Now using the residue formula we obtain
2π�

0

φ2(x1n2 − x2n1)n1n2 ds =
πa3b3(a2 − b2)

4(a2 + b2)2 ,(6)
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2π�

0

(x1n2 − x2n1)n1n2 ds =
πab(a− b)
a+ b

,(7)

and

(8) a12 = − πab(a− b)3

(a+ b)(a2 + b2)
.

Lemma 2. We have

λ
a2b2(a+ b)
4(a2 + b2)2 + (µ2 − 1)

1
a+ b

+ (1− µ)
(a− b)2

(a+ b)(a2 + b2)
= 0.

Proof. Since Lemma 1 holds for λ = 0 and µ = 1 we get

λ

2π�

0

φ2(x1n2−x2n1)n1n2 ds+(µ2−1)
2π�

0

(x1n2−x2n1)n1n2 ds+a12(µ−1) = 0,

and the result follows by using (6)–(8).

Lemma 3. We have

µ = 1− λ a2b2

4(a2 + b2)
.

Proof. When λ = 0 we have u = µχ and (5) implies that µ = 1. If λ > 0
we define

w(x) = cosh

√
λ ab√

a2 − b2
(
x1

a
+ i

x2

b

)
, x ∈ R2,

and if λ < 0 we define

w(x) = cos

√
−λ ab√
a2 − b2

(
x1

a
+ i

x2

b

)
, x ∈ R2.

We have
∆w + λw = 0 in R2.

Now using Green’s formula we can write

λ
�

Ω

wudx = −
�

Ω

u∆w dx

= −
�

Ω

w∆udx+
�

∂Ω

w
∂χ

∂n
dσ

= λ
�

Ω

wudx+ µ
�

Ω

w dx+
�

∂Ω

w
∂χ

∂n
dσ,

from which we deduce that
�

∂Ω

w
∂χ

∂n
dσ + µ

�

Ω

w dx = 0.
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We have �

Ω

w dx = πab,

and �

∂Ω

w
∂χ

∂n
dσ =

∑

n≥0

λna2nb2n

(2n)!(a2 − b2)n
In,

where

In = − ab

a2 + b2

2π�

0

(a2 sin2 θ + b2 cos2 θ)e2inθ dθ.

Since

I0 = −πab, I1 =
πab(a2 − b2)
2(a2 + b2)

, In = 0 for n ≥ 2,

the lemma follows.

Now we can complete the proof of the theorem. Assume that µ 6= 1.
Then Lemma 3 implies that λ 6= 0. Using Lemmas 2 and 3 we get µ = 1
and we reach a contradiction. Therefore µ = 1. By Lemma 3 we have λ = 0
and the theorem follows.

We conclude this note with the following conjecture and two remarks.

Conjecture. Disks are the only smooth bounded simply-connected
open sets for which problem (1)–(2) and (5) has more than one solution.

Remark 2. It seems clear that there is some connection between the
above inverse problem and other studies related to the Schiffer conjecture.
A smooth bounded simply-connected open set Ω is said to have the Schiffer
property if (for any λ) the overdetermined boundary value problem

∆v + λv + 1 = 0 in Ω,(9)

v = 0,
∂v

∂n
= 0 on ∂Ω,(10)

has no solution. It is well known that disks do not have the Schiffer property.
Indeed, let r > 0 be such that J1(

√
r) = 0. Then the function

vr(x) =
1
r

(
J0(
√
r|x|)

J0(
√
r)
− 1
)
, x ∈ Ω,

satisfies (9)–(10) with λ = r when Ω is the unit disk.
The Schiffer conjecture asserts that disks are the only smooth bounded

simply-connected open sets for which (9)–(10) has a solution for even a
single value of λ. It has been shown ([6]) that for smooth bounded simply-
connected open sets the Schiffer property is equivalent to the Pompeiu prop-
erty. We shall not define the latter, instead we refer the reader to the bibli-
ographic survey of the Pompeiu problem ([7]).
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Remark 3. Notice that the argument used in the proof of Lemma 3
provides a very simple proof that true ellipses have the Schiffer property.
Indeed, assume that (9)–(10) has a solution. Multiplying (9) by w and using
Green’s formula and (10) we arrive at

�

Ω

w dx = 0,

and we get a contradiction.
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