Some monotonicity and limit results for the regularised incomplete gamma function

by WOJCIECH CHOJNACKI (Adelaide and Warszawa)

Abstract. Letting P(u, x) denote the regularised incomplete gamma function, it is shown that for each $\alpha \ge 0$, $P(x, x + \alpha)$ decreases as x increases on the positive real semiaxis, and $P(x, x + \alpha)$ converges to 1/2 as x tends to infinity. The statistical significance of these results is explored.

1. Introduction. Euler's gamma function

$$\Gamma(u) \stackrel{\Delta}{=} \int_{0}^{\infty} t^{u-1} e^{-t} dt \quad (u > 0)$$

plays an important role in many areas of mathematics and has been widely studied. The *incomplete gamma function* and its *complement*

$$\begin{split} \gamma(u,x) &\triangleq \int_{0}^{x} t^{u-1} e^{-t} \, dt \\ \Gamma(u,x) &\triangleq \int_{x}^{\infty} t^{u-1} e^{-t} \, dt \end{split} \qquad (u > 0, \, x \ge 0), \end{split}$$

and the regularised incomplete gamma function and its complement

$$P(u, x) \triangleq \frac{\gamma(u, x)}{\Gamma(u)} \qquad (u > 0, x \ge 0)$$
$$Q(u, x) \triangleq 1 - P(u, x)$$

also appear in many different contexts and applications. An extended and highly readable overview on the incomplete gamma function and the related functions can be found in [2]. For a sample of more recent work, see [3].

The aim of this paper is to prove that for each $\alpha \ge 0$, (i) $P(x, x + \alpha)$ decreases as x increases on the positive real semi-axis; and (ii) $P(x, x + \alpha)$ tends to 1/2 as $x \to \infty$.

[283]

²⁰⁰⁰ Mathematics Subject Classification: Primary 33B15; Secondary 62H12.

Key words and phrases: gamma function, regularised incomplete gamma function, chi-square distribution, monotonicity.

W. Chojnacki

The original motivation for these results comes from estimation theory. Suppose that the outcome of a chance experiment is described by a realvalued random variable X with mean m and variance σ^2 . In the event that m and σ^2 are unknown, these values can be estimated based on several repetitions of the experiment. If the outcomes of n repetitions are represented by a sequence X_1, \ldots, X_n of n independent copies of X, then a natural estimate of m is the sample mean

$$\overline{X}_n \stackrel{\Delta}{=} \frac{1}{n} \sum_{k=1}^n X_k$$

and a natural estimate of σ^2 is the sample variance

$$S_n^2 \stackrel{\Delta}{=} \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X}_n)^2.$$

Sometimes the sample variance is defined as

$$S_n^{\prime 2} \stackrel{\Delta}{=} \frac{1}{n-1} \sum_{k=1}^n (X_k - \overline{X}_n)^2.$$

The advantage of adopting the latter expression is that it specifies a *mean*unbiased estimator of σ^2 —the expected value of S'_n^2 is equal to σ^2 . Assume henceforth that X is normally distributed. The random variable

$$Y_n \stackrel{\Delta}{=} nS_n^2/\sigma^2 = (n-1)S_n'^2/\sigma^2 = \frac{1}{\sigma^2}\sum_{k=1}^n (X_k - \overline{X}_n)^2$$

then has a chi-square distribution with n-1 degrees of freedom [14, Chapter 8, §45, Theorem 1] and its cumulative distribution function is given by

$$\begin{split} \mathsf{P}(Y_n \leq x) &= \frac{1}{2^{(n-1)/2} \Gamma\left(\frac{1}{2}(n-1)\right)} \int_0^x t^{(n-1)/2-1} e^{-t/2} \, dt \\ &= P\left(\frac{1}{2}(n-1), \frac{1}{2}x\right) \quad (x \geq 0), \end{split}$$

with P(A) denoting the probability of the event A. Furthermore, in accordance with a result of van der Vaart [11], S'_n^2 is a negatively median-biased estimator of σ^2 in the sense that

(1)
$$\mathsf{P}(S_n^{\prime 2} \le \sigma^2) > \frac{1}{2}$$

for each n. Starting from the identities

(2)
$$\mathsf{P}(S_n'^2 \le \sigma^2) = \mathsf{P}((n-1)S_n'^2/\sigma^2 \le n-1) = P(\frac{1}{2}(n-1), \frac{1}{2}(n-1)),$$

van der Vaart derived inequality (1) from a more general inequality that he had established, namely,

$$P(x,x) > \frac{1}{2}$$

for each x > 0.

In light of the above, one may wonder whether S_n^2 is also negatively median-biased. Noting, in analogy to (2), that

(4)
$$\mathsf{P}(S_n^2 \le \sigma^2) = \mathsf{P}(nS_n^2/\sigma^2 \le n) = P(\frac{1}{2}(n-1), \frac{1}{2}n),$$

one may ask, more generally, whether

(5)
$$P\left(x, x + \frac{1}{2}\right) > \frac{1}{2}$$

holds for each x > 0. It turns out that the answer to both these questions is in the affirmative.

Indeed, the monotonicity and limit properties of the functions $x \mapsto P(x, x + \alpha), \alpha \geq 0$, that will be established below immediately imply that

$$P(x, x + \alpha) > \frac{1}{2}$$

for each $\alpha \ge 0$ and each x > 0. This inequality subsumes (3) and (5) as special cases corresponding to $\alpha = 0$ and $\alpha = 1/2$.

But perhaps a more significant consequence of the afore-mentioned properties of the functions $x \mapsto P(x, x + \alpha)$, $\alpha \ge 0$, one that relies on relations (2) and (4), is that the sequences $\{\mathsf{P}(S_n^2 \le \sigma^2)\}_{n=1}^{\infty}$ and $\{\mathsf{P}(S_n'^2 \le \sigma^2)\}_{n=1}^{\infty}$ decrease and have the common limit 1/2. Thus, while always non-zero, the negative median bias in S_n^2 and in $S_n'^2$, measured by $\mathsf{P}(S_n^2 \le \sigma^2) - 1/2$ and $\mathsf{P}(S_n'^2 \le \sigma^2) - 1/2$, respectively, systematically decreases as n, the number of samples, mounts, reaching in limit the value zero.

2. Monotonicity result. We first establish the following.

THEOREM 1. For each $\alpha \geq 0$, the function $x \mapsto P(x, x + \alpha)$ is decreasing on $(0, \infty)$.

Proof. Fix $\alpha \geq 0$ arbitrarily. For each x > 0, represent

$$Q(x, x + \alpha) = \frac{1}{\Gamma(x)} \int_{x+\alpha}^{\infty} t^{x-1} e^{-t} dt$$

as

$$Q(x, x + \alpha) = f_1(x)f_2(x),$$

where

$$f_1(x) \stackrel{\Delta}{=} \frac{x^{x-1/2}e^{-x}}{\Gamma(x)},$$

$$f_2(x) \stackrel{\Delta}{=} x^{1/2-x}e^x \int_{x+\alpha}^{\infty} t^{x-1}e^{-t} dt.$$

The result of the theorem will be established once we show that both f_1 and f_2 are increasing.

W. Chojnacki

That f_1 is increasing is a well-known fact and a special case of more general results (cf. [1, Theorem 2], [7, Theorem 1]). In what follows, we give a self-contained proof of the monotonicity property of f_1 . We start with Binet's formula [13, p. 249]

$$\ln \Gamma(x) = \left(x - \frac{1}{2}\right) \ln x - x + \frac{1}{2} \ln(2\pi) + \int_{0}^{\infty} \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{e^{t} - 1}\right) \frac{e^{-tx}}{t} dt,$$

which implies that

(6)
$$\ln f_1(x) = -\frac{1}{2}\ln(2\pi) - \int_0^\infty \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{e^t - 1}\right) \frac{e^{-tx}}{t} dt.$$

Now, as we shall see shortly, the function

$$g(t) \triangleq \frac{1}{2} - \frac{1}{t} + \frac{1}{e^t - 1} \quad (t > 0)$$

is positive, and, for each t > 0, the function $x \mapsto e^{-tx}$ monotonically decreases. This immediately implies the desired monotonicity result for f_1 .

That g(t) is positive for each t > 0 can be seen as follows. Using the Maclaurin series expansion of $t \mapsto e^t$, we find

$$\frac{1}{e^t - 1} - \frac{1}{t} = -\frac{e^t - 1 - t}{t(e^t - 1)} = -\frac{\frac{1}{2}t^2 + o(t^2)}{t^2 + o(t^2)} \to -\frac{1}{2} \quad \text{as } t \to 0,$$

so $\lim_{t\to 0} g(t) = 0$. The proof of the assertion will be complete once we show that g is increasing. Now

$$g'(t) = \frac{1}{t^2} - \frac{e^t}{(e^t - 1)^2} = \frac{(e^t - 1)^2 - t^2 e^t}{t^2 (e^t - 1)^2}.$$

The numerator of the rightmost term is equal to zero when t = 0 and its derivative

$$2(e^{t}-1)e^{t}-2te^{t}-t^{2}e^{t}=2e^{t}\left(e^{t}-1-t-\frac{t^{2}}{2}\right)$$

is positive, implying that both the numerator and g'(t) are positive for t > 0. Thus g(t) is indeed increasing for t > 0.

The positivity of g can alternatively be deduced from the representation

$$\frac{g(t)}{t} = \sum_{n=1}^{\infty} \frac{2}{t^2 + 4n^2 \pi^2} \quad (t > 0)$$

(cf. [9, p. 64]). We also mention that the positivity of g can be viewed as part of a more general result concerning the Maclaurin series expansion of $t \mapsto t/(e^t - 1)$ (cf. [5, Theorem 3]).

We now pass to proving that f_2 is increasing. Setting t = xw, we obtain

(7)
$$\int_{x+\alpha}^{\infty} t^{x-1} e^{-t} dt = x^x \int_{1+\alpha/x}^{\infty} w^{x-1} e^{-xw} dw = x^x e^{-x} \int_{1+\alpha/x}^{\infty} e^{-xv(w)} \frac{dw}{w},$$

where

$$v(w) \stackrel{\Delta}{=} w - \ln w - 1.$$

It is readily verified that the function $w \mapsto v(w)$ is increasing on $[1, \infty)$ with image $[0, \infty)$. Let $t \mapsto w(t)$ be its inverse, which, of course, is an increasing function from $[0, \infty)$ onto $[1, \infty)$. For each x > 0, let

$$t_x \stackrel{\Delta}{=} \frac{\alpha}{x} - \ln\left(1 + \frac{\alpha}{x}\right).$$

Clearly, t_x is non-negative, with $t_x = 0$ when $\alpha = 0$, and, as

$$v\left(1+\frac{\alpha}{x}\right) = t_x,$$

we have

$$w(t_x) = 1 + \frac{\alpha}{x}.$$

In an independent step, note that differentiating the relation

$$w(t) - \ln w(t) - 1 = t$$

leads to

(8)
$$w'(t) = \frac{w(t)}{w(t) - 1}$$

for t > 0. Now, the change of variable w = w(t) and the subsequent change t = s/x in the rightmost integral of (7) with use of (8) in between yield

$$\int_{1+\alpha/x}^{\infty} e^{-xv(w)} \frac{dw}{w} = \int_{t_x}^{\infty} e^{-xt} \frac{w'(t)}{w(t)} dt = \int_{t_x}^{\infty} e^{-xt} \frac{dt}{w(t) - 1}$$
$$= x^{-1} \int_{xt_x}^{\infty} e^{-s} \frac{ds}{w(\frac{s}{x}) - 1}.$$

Hence

$$f_2(x) = x^{-1/2} \int_{xt_x}^{\infty} e^{-s} \frac{ds}{w(\frac{s}{x}) - 1}$$

or, equivalently,

(9)
$$f_2(x) = \int_0^\infty 1_{(xt_x,\infty)}(s)h\left(\frac{s}{x}\right)s^{-1/2}e^{-s}\,ds,$$

where 1_E denotes the characteristic function of the set E and

(10)
$$h(t) \stackrel{\Delta}{=} \frac{t^{1/2}}{w(t) - 1} \quad (t > 0).$$

We shall next show that

- (i) the function h is decreasing on $(0, \infty)$;
- (ii) the function $x \mapsto xt_x$ is non-increasing on $(0, \infty)$.

This will imply that, for each s > 0, the function $x \mapsto h(s/x)$ is increasing on $(0, \infty)$ and the function $x \mapsto 1_{(xt_x,\infty)}(s)$ is non-decreasing on $(0,\infty)$. The increasing monotonicity of f_2 will then follow on account of (9).

To prove (i), it suffices to show that the function

$$h_1(t) \stackrel{\Delta}{=} h^{-2}(t) = \frac{(w(t) - 1)^2}{t} \quad (t > 0)$$

is increasing. To this end, define

$$h_2(t) \stackrel{\Delta}{=} \frac{1}{2} (w(t) - 1)^2 - tw(t) \quad (t \ge 0).$$

In view of (8),

$$h_{2}'(t) = (w-1)w' - w - tw' = -tw' = -\frac{tw}{w-1} < 0,$$

so h_2 is decreasing. Since $h_2(0) = 0$, it follows that $h_2(t) < 0$ for each t > 0. The latter result can be reformulated as

(11)
$$2 - \frac{(w-1)^2}{tw} > 0$$

for each t > 0. Now, in view of (8),

$$h_1'(t) = \frac{2(w-1)w'}{t} - \frac{(w-1)^2}{t^2} = \frac{2w}{t} - \frac{(w-1)^2}{t^2}$$
$$= \frac{w}{t} \left[2 - \frac{(w-1)^2}{tw} \right].$$

This together with (11) yields $h'_1(t) > 0$ for each t > 0, showing that h_1 is increasing.

To establish (ii), note that the derivative of $x \mapsto xt_x$ at x > 0 is equal to

(12)
$$\frac{\alpha}{x+\alpha} - \ln\left(1+\frac{\alpha}{x}\right)$$

By the mean-value theorem,

$$\ln\left(1+\frac{\alpha}{x}\right) = \ln(x+\alpha) - \ln x = \frac{\alpha}{\xi}$$

for some ξ with $x \leq \xi \leq x + \alpha$. It is now obvious that expression (12) is non-positive, yielding the desired result.

3. Limit result. We now prove the following.

THEOREM 2. For each $\alpha \geq 0$, $\lim_{x\to\infty} P(x, x + \alpha) = 1/2$.

Proof. Continuing with the notation from the proof of Theorem 1, we first calculate separately $\lim_{x\to\infty} f_1(x)$ and $\lim_{x\to\infty} f_2(x)$.

Using (6) and the fact that the integrand in (6) tends decreasingly to zero as x increases to infinity, we infer from Levi's monotone convergence theorem that

$$\lim_{x \to \infty} \ln f_1(x) = -\frac{1}{2} \ln(2\pi),$$

whence

(13)
$$\lim_{x \to \infty} f_1(x) = \frac{1}{\sqrt{2\pi}}.$$

This latter result can also be deduced from the well-known asymptotic expansion for the logarithm of the gamma function (see e.g. [9, p. 62]).

To determine the other limit, first note that

$$\lim_{x \to \infty} x t_x = \alpha - \lim_{x \to \infty} x \ln\left(1 + \frac{\alpha}{x}\right) = 0$$

As the function $x \mapsto xt_x$ is non-increasing on $(0, \infty)$, we see that, for each $s > 0, 1_{(xt_x,\infty)}(s)$ non-decreasingly tends to 1 as x increases to infinity. Next, note that by de l'Hôpital's rule and (8),

$$\lim_{t \to 0} \frac{(w(t) - 1)^2}{t} = \lim_{t \to 0} 2(w(t) - 1)w'(t) = \lim_{t \to 0} 2w(t) = 2.$$

As h (defined in (10)) is decreasing on $(0, \infty)$, we deduce that, for each s > 0, $x \mapsto h(s/x)$ increasingly tends to $2^{-1/2}$ as x increases to infinity. Thus, for each s > 0, the integrand in (9) non-decreasingly tends to $2^{-1/2}s^{-1/2}e^{-s}$ as x increases to infinity. An application of Levi's monotone convergence theorem now reveals that

$$\lim_{x \to \infty} f_2(x) = 2^{-1/2} \int_0^\infty s^{-1/2} e^{-s} \, ds,$$

which jointly with

$$\int_{0}^{\infty} s^{-1/2} e^{-s} \, ds = 2 \int_{0}^{\infty} e^{-u^2} \, du = \sqrt{\pi}$$

yields

$$\lim_{x \to \infty} f_2(x) = \sqrt{\frac{\pi}{2}}$$

Finally, the last equality together with (13) leads to

$$\lim_{x \to \infty} P(x, x + \alpha) = 1 - \lim_{x \to \infty} Q(x, x + \alpha) = 1 - \lim_{x \to \infty} f_1(x) f_2(x) = \frac{1}{2}$$
establishing the theorem.

4. Related work. We conclude with a few comments about related results reported in the literature.

Van der Vaart [11] established that for each x > 0 the sequence $\{P(x+n, x+n)\}_{n=1}^{\infty}$ decreases and has limit 1/2. Inequality (3) is one consequence of this result. Another, based on (2), is that the sequence $\{P(S_{2n+m}^{\prime 2} \leq \sigma^2)\}_{n=1}^{\infty}$ decreases when m = 0 and m = 1; the objects involved here are the same as in the Introduction. Note that van der Vaart's result is insufficient to infer that the sequence $\{P(S_n^{\prime 2} \leq \sigma^2)\}_{n=1}^{\infty}$ decreases. However, as was already alluded to earlier, this latter result follows immediately from our Theorem 1.

Vietoris [12] proved that the sequence $\{P(n,n)\}_{n=1}^{\infty}$ decreases and the sequence $\{P(n, n-1)\}_{n=1}^{\infty}$ increases, with 1/2 being the common limit of both sequences.

Van de Lune [10] and, independently, Temme [8] proved that the function $x \mapsto P(x, x-1)$ increases to 1/2 on $[1, \infty)$.

Merkle [6] asserted that the function $x \mapsto P(x, x)$ is decreasing on $(0, \infty)$, but his argument to validate the statement is incorrect. Merkle represents P(x, x) as $P(x, x) = p_1(x)p_2(x)$, where $p_1(x) \stackrel{\Delta}{=} x^{x-1}e^{-x}/\Gamma(x)$ and $p_2(x) \stackrel{\Delta}{=} \gamma(x, x)x^{1-x}e^x$, and claims that both p_1 and p_2 are decreasing. But while the first function is decreasing [4], the second is not. Figure 1 illustrates the

Fig. 1. Contrasting behaviours of p_1 and p_2 : (a) graph of p_1 ; (b) graph of p_2 .

Fig. 2. Basic MATLAB code to generate graphs of p_1 and p_2 .

different behaviours of the two functions. A basic MATLAB code to generate the relevant graphs is given in Figure 2.

References

- H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), 373–389.
- [2] W. Gautschi, *The incomplete gamma functions since Tricomi*, in: Tricomi's Ideas and Contemporary Applied Mathematics (Rome/Turin, 1997), Atti Convegni Lincei 147, Accad. Naz. Lincei, Rome, 1998, 203–237.
- [3] M. E. H. Ismail and A. Laforgia, Functional inequalities for incomplete gamma and related functions, Math. Inequal. Appl. 9 (2006), 299–302.
- [4] J. D. Kečkić and P. M. Vasić, Some inequalities for the gamma function, Publ. Inst. Math. (Beograd) (N.S.) 11 (25) (1971), 107–114.
- [5] S. Koumandos, Remarks on some completely monotonic functions, J. Math. Anal. Appl. 324 (2006), 1458–1461.
- [6] M. J. Merkle, Some inequalities for the Chi square distribution function, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 2 (1991), 89–94.
- [7] F. Qi, R.-Q. Cui, C.-P. Chen, and B.-N. Guo, Some completely monotonic functions involving polygamma functions and an application, J. Math. Anal. Appl. 310 (2005), 303–308.
- [8] N. M. Temme, Some problems in connection with the incomplete gamma functions, Tech. Rep. TW 205/80, Stichting Mathematisch Centrum, Amsterdam, 1980.
- [9] —, Special Functions: An Introduction to the Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, Wiley, New York, 1996.
- [10] J. van de Lune, A note on Euler's (incomplete) gamma function, Tech. Rep. ZN 61/75, Stichting Mathematisch Centrum, Amsterdam, 1975.
- H. R. van der Vaart, Some extensions of the idea of bias, Ann. Inst. Statist. Math. 32 (1961), 436–447.
- [12] L. Vietoris, Dritter Beweis der die unvollständige Gammafunktion betreffenden Lochschen Ungleichungen, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 192 (1983), 83–91.
- [13] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4 ed., Cambridge University Press, 1927.
- [14] S. Zubrzycki, Lectures in Probability Theory and Mathematical Statistics, Elsevier, New York, 1973.

School of Computer Science The University of Adelaide Adelaide, SA 5005, Australia E-mail: wojciech.chojnacki@adelaide.edu.au

Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Dewajtis 5, 01-815 Warszawa, Poland

> Received 25.7.2008 and in final form 25.9.2008

(1906)