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Abstract. This paper is concerned with existence of equilibrium of a set-valued map
in a given compact subset of a finite-dimensional space. Previously known conditions en-
suring existence of equilibrium imply that the set is either invariant or viable for the
differential inclusion generated by the set-valued map. We obtain some equilibrium exis-
tence results with conditions which imply neither invariance nor viability of the given set.
The problem of existence of strict equilibria is also discussed.

1. Introduction. The problem of finding an equilibrium of a multival-
ued map F in a set K ⊂ Rn, i.e., a point x ∈ K such that 0 ∈ F (x), is
important in many topics of analysis. Let us only underline that this problem
contains the fixed point problem.

Results on existence of such equilibria have already been obtained for
instance

• in [10] for K convex compact and F upper semicontinuous with closed
convex values,
• in [3] for K a compact L-retract and F upper semicontinuous with

closed convex values.

(Note that these papers and their bibliography concerns spaces more
general than Rn.)

We emphasize that conditions used in [10], [3], [11] and [9] imply (at least
in Rn) that K is viable for the differential inclusion

ẋ(t) ∈ F (x(t)) for a.e. t ≥ 0,(1)

namely: For each x0 ∈ K there is at least one trajectory x(·) for (1) with
x(0) = x0 such that x(t) ∈ K for all t ≥ 0. Indeed, these conditions imply

2000 Mathematics Subject Classification: Primary 54C60; Secondary 34A60, 54C65,
47H04.

Key words and phrases: equilibrium, strict equilibrium, viability, differential inclusion,
multivalued map, Lipschitz selection.

[19]



20 P. Cardaliaguet et al.

the tangential condition

∀x ∈ K, F (x) ∩ TK(x) 6= ∅(2)

(with TK(x) the usual contingent cone), which is equivalent by the viability
theorem (cf. [1]) to the viability of K for (1). This fact is even a key point
in the existence of equilibria (cf. [9] or [1, Theorem 3.7.5]).

Here, we propose a different approach. We give various sufficient condi-
tions for equilibrium existence and these conditions do not imply the viabil-
ity of K.

In the present paper, we study the equilibrium problem by looking at
topological properties of the subset Ks of the boundary of K where all
trajectories of (1) leave K immediately. This set is used in the Ważewski
topological principle (cf. [6], [5]). Our first main result is the following:

Theorem 1.1. Let K ⊂ Rn and F : Rn( Rn satisfy :

(I) K is a compact C1,1 n-manifold with boundary ;
(II) F is a continuous map with compact convex values and at most

linear growth;
(III) Ks(F ) is closed and , if nonempty , it is a C1,1 (n− 1)-submanifold

of ∂K with boundary ;
(IV) χ(K,Ks(F )) 6= 0.

Then there is an equilibrium of F in K.

The key point of our proof is a reduction to an ordinary differential
equation via a suitable single-valued approximation of F well adapted to Ks.
The single-valued case, where the map generates a flow, has been studied
in [15].

Also we consider topological properties of the complement of K and de-
rive the existence on equilibrium. Note that [13] contains results on equilib-
rium existence when the complement of K has suitable viability properties.

Finally, we study the existence of a strict equilibrium in K, i.e., a point
x ∈ K such that {0} = F (x), using selection techniques developed for
equilibria. The second main result is

Theorem 1.2. Let K ⊂ Rn and F satisfy assumptions (I), (III), (IV)
of Theorem 1.1,

0 6∈ IntlinF (x) F (x) for every x ∈ K with |F (x)| > 0(3)

(where |F (x)| := sup{|y| | y ∈ F (x)} and IntlinF (x) F (x) denotes the relative
interior of F (x) in the subspace linF (x) ⊂ Rn spanned by F (x)), and let
F be Lipschitz with 0 6∈ F (x) for every x ∈ ∂K. Then there exists a strict
equilibrium of F in IntK.
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The organization of the paper is as follows. After some preliminaries the
third section is devoted to sufficient conditions for solving the equilibrium
problem without viability. In the last section, the existence of strict equilibria
is studied.

2. Preliminaries. Throughout the paper, by IntA, clA (or A) and ∂A
we denote respectively the interior, closure and boundary of a subset A of
a metric space X. The open ball centred at x0 with radius r is denoted by
B(x0, r), and the unit ball B(0, 1) by B1. We also write | · | for the Euclidean
norm. By dM(x) (or dist(x,M)) we denote the distance from a point x to
a closed set M . By the distance between two sets N,M ⊂ X we mean the
number dist(N,M) := inf{d(x, y) | x ∈ N, y ∈M}.

In (1) we assume that F is a Marchaud map, i.e., F is upper semicontin-
uous with compact convex values and at most linear growth. By a solution
to the inclusion (1) we mean an absolutely continuous map x : [0,∞)→ Rn
satisfying (1) almost everywhere. For x0 ∈ Rn, we denote by SF (x0) the set
of all solutions to (1) with x(0) = x0 (starting from x0).

Definition 2.1. We say that a trajectory x(·) for the inclusion (1) is
viable in K if x(t) ∈ K for all t ≥ 0. A set K is said to be viable under F if
for each x0 ∈ K there is at least one trajectory x(·) for (1) which is viable
in K and x(0) = x0. The viability kernel of K for F (written ViabF (K)) is
the largest closed subset of K viable under F (possibly empty, in general).
Equivalently (see [1, Theorem 4.1.2]), ViabF (K) is the subset of all initial
states such that from each of them starts at least one solution viable in K.
We say that the set K is invariant under F if all trajectories for (1) starting
from K are viable in K.

Obviously, for single-valued locally Lipschitz right-hand sides the no-
tions of viable and invariant sets coincide. Later on we shall use the nota-
tion σ(F (x)) for a Steiner point of a convex set F (x) (see e.g. [2]). If F is
Lipschitz, the map x 7→ σ(F (x)) is a Lipschitz selection of F .

One defines

TK(x) := {v ∈ Rn | lim inf
h→0+

dist(x+ hv,K)/h = 0},

the Bouligand tangent cone to K at x. Viability and invariance conditions
can be characterized using Bouligand cones, as follows (see e.g. [1]):

Proposition 2.2. A closed set K is viable under a Marchaud map F if
and only if

F (x) ∩ TK(x) 6= ∅ for every x ∈ K.
If F is Lipschitz , then a closed set K is invariant under F if and only if

F (x) ⊂ TK(x) for every x ∈ K.
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We introduce the following notations for subsets of the boundary of K:

Ks(F ) := {x0 ∈ ∂K | ∀x ∈ SF (x0) : x leaves K immediately},
Ke(F ) := {x0 ∈ ∂K | ∃x ∈ SF (x0) : x leaves K immediately}.

When there is no ambiguity, we shall write briefly Ks and Ke.

Note that for F Lipschitz continuous, using the local invariance theorem
(see e.g. [1, Theorem 5.3.4]), one can describe Ke by suitable tangent cones
conditions. Indeed, if Ke is closed, we have

∂K \Ke = {x ∈ ∂K | ∃Ux ⊂ ∂K, open, x ∈ Ux, ∀z ∈ Ux : F (z) ⊂ TK(z)}.
Moreover, Ke = Ks when F is Lipschitz and single-valued.

In the Appendix we also give a necessary and a sufficient condition for
points in ∂K to belong to Ks, in terms of tangent cones. These conditions
were first proved in [5] and announced in [6].

Recall that a subset M of Rn is said to be a proximal retract (see e.g.
[16]), if there is an open neighbourhood V of M such that

πM (x) := {y ∈M | |y − x| = inf
u∈M
|u− x|} is a singleton(4)

for every x ∈ U . This means that πM is a retraction from V onto M . One
can prove that each C1,1 manifold is a proximal retract.

A subset M of a metric space X is an L-retract (of X) if there are an
open neighbourhood U of M in X, a retraction r : U → M and a constant
L > 0 such that

d(r(x), x) ≤ Ldist(x,M) for every x ∈ U .

It is seen that each proximal retract is an L-retract with constant 1.

We say that a setK is of finite type if the graded vector space {Hq(K)}q≥0

is of finite type, i.e., Hq(K) = 0 for almost all q ≥ 0, and dimHq(K) < ∞
for all q ≥ 0. Here H denotes the Čech homology functor.

For each set of finite type the Euler characteristic

χ(K) :=
∞∑

q=0

(−1)q dimHq(K)

is defined (see e.g. [4]). If we have a pair (K,M) of spaces (M closed in K),
with M ⊂ K and such that both K and M are of finite type, we can define
χ(K,M) := χ(K) − χ(M). Note that χ(K) = λ(id), the Lefschetz number
of the identity map.

We will say that a compact space X is a Lefschetz set if for any con-
tinuous map f : X → X, the condition λ(f) 6= 0 implies that there is a
fixed point of f . This class of spaces is large. It contains compact absolute
neighbourhood retracts and, more generally, compact approximate absolute
neighbourhood retracts (see e.g. [14]).
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3. Equilibria without viability

3.1. Using properties of Ks. In this subsection we deal with the situation
where K may not be a viability domain. The boundary ∂K may contain
simultaneously points at which a field is strictly inward and others where it
is strictly outward.

The first result is a simple consequence of the following.

Proposition 3.1 (adapted version of Theorem 4.1 of [15]). Let f : Rn →
Rn be a Lipschitz map and suppose that K and Ks(f) satisfy assumptions (I)
and (III) of Theorem 1.1 with χ(K,Ks(f)) 6= 0. Then there is an equilibrium
of f in K.

As a consequence one obtains the following easy

Corollary 3.2. Let K ⊂ Rn be a compact subset , Ω ⊂ Rn an open
neighbourhood of K and F : Ω( Rn a Lipschitz map. Assume that Ks and
K are as in Proposition 3.1 and that Ks = Ke. Then there is an equilibrium
of F in K.

To prove the above corollary, take any Lipschitz selection f of F and
apply Proposition 3.1.

Above we have assumed that F is so regular that it has Lipschitz se-
lections for which, under Ks = Ke, we can use a single-valued approach.
Weakening these two assumptions, i.e. lipschitzeanity of F and equality
Ks = Ke, is the aim of our main Theorem 1.1. In the proof we will use the
following crucial lemma.

Lemma 3.3. Let K and F satisfy (I)–(III) of Theorem 1.1 and suppose
0 6∈ F (x) for every x ∈ ∂K. Then, for every ε > 0, there exists f : Rn → Rn
such that

(a) 〈f(x), νx〉 < 0 for every x ∈ ∂K \ Ks(F ), where νx is an outward
normal vector to K at x;

(b) for every x ∈ K, if f(x) = 0, then there is y ∈ K ∩B(x, ε) such that
0 ∈ F (y);

(c) Ks(f) = Ks(F );
(d) f is Lipschitz.

Proof. We proceed in two steps.

Step 1. We construct an open set U in Rn such that K \Ks(F ) ⊂ U
and Ks(F ) ∩ U = ∅, and a map g : U → Rn such that

(A) 〈g(x), νx〉 < 0 for every x ∈ ∂K \Ks(F );
(B) g is C∞ in U ;
(C) g(x) ∈ F (x) + dKs(F )(x)B1 for every x ∈ K \Ks(F );
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(D) for every x ∈ K \Ks(F ), if 0 6∈ F (y) for each y ∈ B(x, ε)∩K, then
g(x) ∈ F (x) + 1

2dF (x)(0)B1.

To do this, we first find, for every x ∈ K \ Ks(F ), a vector vx ∈ Rn
and an open neighbourhood Ux of x in Rn satisfying the following three
conditions:

Ux ∩Ks(F ) = ∅,(5)

∀y ∈ Ux ∩K, vx ∈ (F (y) + dKs(F )(y)B1) ∩
(
F (y) + 1

2dF (y)(0)B1

)
,(6)

∀x ∈ ∂K\Ks(F ) ∀y ∈ Ux ∩ ∂K, 〈vx, νy〉 < 0.(7)

Case 1. Let x ∈ ∂K \ Ks(F ). Then there exists wx ∈ F (x) ∩ TK(x).
Set ηx := dKs(F )(x) > 0, µx := dF (x)(0) > 0 and εx := 1

8 min{µx, ηx}.
Take an open neighbourhood Ux ⊂ B(x, ε) of x such that dKs(F )(y) ≥ ηx/2,
dF (y)(0) ≥ µx/2 and F (x) ⊂ F (y) + εxB1 for every y ∈ Ux.

Now take vx := wx − txνx (tx > 0 sufficiently small) such that vx ∈
F (x) + εxB1. Then, for y ∈ Ux ∩K,

vx ∈ F (y) + 2εxB1 ⊂ F (y) + 1
4ηxB1 ⊂ F (y) + 1

2dKs(F )(y)B1.(8)

Analogously,

vx ∈ F (y) + 2εxB1 ⊂ F (y) + 1
4µxB1 ⊂ F (y) + 1

2dF (y)(0)B1.(9)

Moreover, we can take Ux so small that 〈vx, νy〉 < 0 for every y ∈ Ux ∩ ∂K,
since 〈vx, νx〉 = 〈wx, νx〉 − tx < 0.

Case 2. Let x ∈ IntK and 0 6∈ F (x). As above, we can find Ux ⊂ B(x, ε)
with Ux∩∂K = ∅ and vx ∈ F (x) satisfying (6) and 0 6∈ F (y) for any y ∈ Ux.

Case 3. For x ∈ IntK with 0 ∈ F (x), take vx = 0 and choose Ux ⊂
B(x, ε) such that Ux ∩ ∂K = ∅ and vx ∈ F (y) + dKs(F )(y)B1 for every
y ∈ Ux.

Choose a countable, locally finite covering {Uxi | xi ∈ K \ Ks(F )} of
K \Ks(F ) and consider a smooth (C∞) partition of unity {λi : Uxi → [0, 1]}
subordinate to it. Define U :=

⋃∞
i=1 Uxi and notice that K \Ks(F ) ⊂ U and

U ∩Ks(F ) = ∅. For every x ∈ U , set I(x) := {i ∈ N | λi(x) 6= 0} and define

g(x) :=
∑

i∈I(x)

λi(x)vxi .

Since each λi is C∞, (B) holds. To verify (A), take x ∈ ∂K \ Ks(F )
and notice that, by the definition of vxi and Uxi , for each i ∈ I(x), one has
xi ∈ ∂K \Ks(F ) and

〈g(x), νx〉 =
∑

i∈I(x)

λi(x)〈vxi , νx〉 < 0.
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Now, for x ∈ K \Ks(F ) and i ∈ I(x), because the right-hand side of (6) is
convex one deduces that

g(x) =
∑

i∈I(x)

λi(x)vxi ∈ F (x) + dKs(F )(x)B1,

and (C) is also satisfied. Finally, let x ∈ K \Ks(F ) be such that 0 6∈ F (y)
for every y ∈ B(x, ε). Then, by (9), vxi ∈ F (x) + 1

2dF (x)(0)B1, and hence

g(x) ∈ F (x) + 1
2dF (x)(0)B1, verifying (D) and ending Step 1.

Step 2. In order to construct the map f we first define, for x ∈ Ks(F ),
a map vx(·) and an open neighbourhood Ux of x in the following way.

Case 1. Let x ∈ Int∂K Ks(F ). We know that minv∈F (x)〈v, νx〉 ≥ 0 and
0 6∈ F (x). Fix wx ∈ F (x), so 〈wx, νx〉 ≥ 0. Write µx := dF (x)(0) and take an
open neighbourhood Ux of x in Rn such that Ux∩∂∂KKs(F ) = ∅, Ux∩∂K ⊂
Ks(F ) and dF (y)(0) ≥ µx/2 for every y ∈ Ux ∩K.

Define vx := wx + txνx, where tx > 0 is so small that vx ∈ F (x) +
1
8µxB1, and consequently, inclusion (9) holds for every y ∈ Ux∩K. Moreover,
〈vx, νy〉 > 0 for y ∈ Ux ∩Ks(F ).

Case 2. Suppose that x ∈ ∂∂KKs(F ). Then, since x ∈ Ks(F ) which is
closed, we know by Lemma 5.2 in the Appendix that there is v ∈ F (x) ∩
TK(x) such that v ∈ TKs(F )(x). There is an open neighbourhood Vx of x in

Rn and a C1,1 diffeomorphism φ : Vx → φ(Vx) ⊂ Rn such that φ(x) = 0,

φ(Vx ∩K) = {(y1, . . . , yn) ∈ Rn | y1 ≤ 0} =: X,

φ(Vx ∩Ks(F )) = {(y1, . . . , yn) ∈ X | y1 = 0 and y2 ≥ 0} =: Xs.

As a consequence, for z ∈ Vx ∩K,

Intφ′(z)(TK(z)) = {(y1, . . . , yn) ∈ X | y1 < 0},(10)

Intφ′(z)(TRn\K(z)) = {(y1, . . . , yn) ∈ Rn | y1 > 0},(11)

and for z ∈ Vx ∩ ∂∂KKs(F ),

Int∂X φ
′(z)(TKs(F )(z)) = {(y1, . . . , yn) ∈ X | y1 = 0 and y2 > 0}.(12)

Define on φ(Vx) the map G(y) := φ′(φ−1(y))F (φ−1(y)).
Let ζ(y) := (y2, 1, 0, . . . , 0) and take w := φ′(x)v. Then 〈w, e1〉 = 0

and 〈w, e2〉 ≥ 0, where e1, e2 are the unit vectors of the first two axes. Let
uθ(y) := w + θζ(y), where θ > 0. Then

〈uθ(y), e1〉 < 0 for y ∈ ∂X \Xs,

〈uθ(y), e1〉 > 0 for y ∈ Int∂X Xs,

〈uθ(y), e2〉 > 0 for y ∈ ∂∂XXs.

(13)

Define, for z ∈ Vx, vθ(z) := (φ−1)′(φ(z))uθ(φ(z)). Using (13) and the fact
that tangent cones correspond to tangent cones under the diffeomorphism
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φ (see (10)–(12)), we obtain

〈vθ(z), νz〉 < 0 for z ∈ ∂K \Ks(F ),

〈vθ(z), νz〉 > 0 for z ∈ Int∂K Ks(F ),

〈vθ(z), nz〉 > 0 for z ∈ ∂∂KKs(F ),

(14)

where nz is an inward normal vector to Ks(F ) in T∂K(z).

Similarly to Case 1, we can find an open neighbourhood Ux ⊂ Vx of x
and a small θx > 0 such that, for vx(z) := vθx(z), we have additionally

vx(z) ∈ F (z) + 1
2dF (z)(0)B1 for every z ∈ Ux ∩K.

We have constructed an open covering of K consisting of the U from
Step 1 and {Ux}x∈Ks(F ). Since Ks(F ) is compact, we can choose a finite

subcovering {Ui}ki=0, where U0 := U , and consider a smooth partition of
unity {βi} subordinate to it.

Define

f(x) := β0(x)g(x) +
k∑

i=1

βi(x)vxi(x).

To finish the proof it is sufficient to verify conditions (a)–(d).

To check (a), let x ∈ ∂K\Ks(F ) and I(x) := {i ∈ {1, . . . , k} | βi(x) 6= 0}.
From (14) and (A) it follows that 〈vxi(x), νx〉 < 0 for i ∈ I(x), and conse-
quently, 〈g(x), νx〉 < 0. Therefore, 〈f(x), νx〉 < 0.

Now, suppose that x ∈ K is such that 0 6∈ F (y) for every y ∈ B(x, ε).
Since vxi(x) ∈ F (x) + 1

2dF (x)(0)B1 for each i ∈ I(x), and g(x) ∈ F (x) +
1
2dF (x)(0)B1 (see (D)), one obtains f(x) ∈ F (x) + 1

2dF (x)(0)B1, and hence
f(x) 6= 0; condition (b) is satisfied.

To verify (c), notice that Ks(f) ⊂ Ks(F ) because of (a). Moreover, for
x ∈ Int∂K Ks(F ), β0(x) = 0 and 〈vxi , νx〉 > 0 (see Step 2, Case 1). Thus,
〈f(x), νx〉 > 0.

If x ∈ ∂∂KKs(F ), then xi ∈ ∂∂KKs(F ) for every i ∈ I(x). Moreover,
β0(x)=0, 〈vxi(x), νx〉=0 and 〈vxi , nx〉 > 0, which implies that 〈f(x), nx〉>0
while 〈f(x), νx〉 = 0. From Lemma 5.2(1) it follows that a trajectory for f
starting from x leaves the set K immediately. Therefore Ks(f) = Ks(F ).

Finally, f is Lipschitz by the regularity of βi and of the diffeomorphism
φ; the proof is complete.

Proof of Theorem 1.1. We can assume that 0 6∈ F (x) for every x ∈ ∂K.
Applying Lemma 3.3 we find a Lipschitz single-valued map f satisfying
(a)–(d). Thanks to (IV), we can use Proposition 3.1 for f and obtain its
equilibrium x0 ∈ K. Property (b) implies that there is also an equilibrium
of F in K near x0.
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3.2. Using properties of the complement of K. Set K̂ := Rn \K and
recall that (see [17], [18])

TK(x) ∪ TK̂(x) = Rn, TK(x) ∩ TK̂(x) = T∂K(x) for x ∈ ∂K.(15)

The first result using K̂ to study equilibria on K, which we would like
to present, has been proved in [13] and reads as follows.

Proposition 3.4 ([13, Theorem 3.1]). Let K = IntK ⊂ Rn be a com-
pact subset of finite type with χ(K) 6= 0, Ω ⊂ Rn an open neighbourhood of
K and F : Ω( Rn a Lipschitz map satisfying

F (x) ⊂ TK̂(x) for all x ∈ ∂K, ViabF (K) ∩ ∂K = ∅.(16)

Then F has an equilibrium in IntK.

Remark 3.5. Note that condition (16) is clearly satisfied if for all x ∈
∂K, F (x) ∩ TK(x) = ∅ or, more generally, if Ks = ∂K.

Replacing the condition F (x) ⊂ T
K̂

(x) by F (x)∩cl(Rn\T
K̂

(x)) = ∅ nar-
rows the class of problems which may be considered. Indeed, there are situa-
tions (see [13]) appropriate for Proposition 3.4 and such that cl(Rn \T

K̂
(x))

= Rn at some points.

Proposition 3.4 together with the above remark allows us to deal with a
large class of sets. In [13] there is an example of a set K which is not even
an absolute neighbourhood retract and which, together with a Lipschitz
single-valued map, satisfies the assumptions of Proposition 3.4.

The goal of this subsection is to weaken assumption (16) to be able to

consider also situations where K and K̂ are not invariant under −F and F ,
respectively. We study the behaviour of F with respect to K̂.

We start with the following.

Lemma 3.6. Let K be a Lefschetz set with χ(K) 6= 0, Ω ⊂ Rn an open
neighbourhood of K and f : Ω → Rn a Lipschitz map such that K is invari-
ant under f . Then f has an equilibrium in K.

Proof. It is well known that for f and every t ≥ 0, the Poincaré operator
Pt := et ◦ Sf : K → K, where et(x(·)) := x(t), is continuous and homotopic
to id : K → K by the homotopy H(x, s) := Pst(x). Thus

0 6= χ(K) = λ(id) = λ(Pt),

and since K is a Lefschetz set, there is a fixed point xt of Pt, which means
that there is a t-periodic trajectory for f .

Taking a sequence tn → 0, one can easily prove that there is a stationary
trajectory, which is equivalent to f having an equilibrium.
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We will also use the following simultaneous selection and approximation
result.

Lemma 3.7. Let E be a normed space, X a metric space and A ⊂ X a
compact subset. Assume that F : X ( E and Ψ : A( E are convex valued ,
F is u.s.c., Ψ is l.s.c. and the following condition is satisfied :

(17) for each x ∈ A there are yx ∈ F (x)∩Ψ(x) and an open neighbourhood

U(x) ⊂ X of x such that yx ∈ Ψ(z) for every z ∈ U(x) ∩A.
Then, for every ε > 0, there exist an open neighbourhood Ωε of A in X and
a Lipschitz map f : Ωε → E such that :

(i) f is an ε-approximation of F , i.e., f(x) ∈ F (B(x, ε))+εB1 for every
x ∈ Ωε,

(ii) f is a selection of Ψ on A.

Proof. The idea of the proof is taken from [3]. For a given ε > 0, consider
the open covering of A in X,

U(x) := B(x, ε/2) ∩ {x′ ∈ X | F (x′) ⊂ F (x) + (ε/2)B1}, x ∈ A.
Using (17) we can find, for every x ∈ A, a point yx ∈ F (x) ∩ Ψ(x) and an
open neighbourhood V (x) ⊂ U(x) of x in X such that yx ∈ Ψ(z) for each
z ∈ V (x) ∩ A. Since A is compact, we find a finite open star-refinement
V = {V1, . . . , Vk} of {V (x)}x∈A, i.e., for every i ∈ {1, . . . , k}, there is x̄ ∈ A
such that

st(Vi,V) :=
⋃
{Vj ∈ V | Vj ∩ Vi 6= ∅} ⊂ V (x̄).

Let {λi}ki=1 be a partition of unity subordinate to V. Set Ωε :=
⋃k
i=1 Vi.

Define f : Ωε → E by

f(x) :=
k∑

i=1

λi(x)yi,

where xi ∈ Vi ∩A and yi := yxi . Of course, f is Lipschitz. Moreover, by the
convexity of the values of Ψ , f is a selection of Ψ on A.

Let x ∈ ⋃ki=1 Vi. Since V is a star-refinement of {U(x)}x∈A, there is x̄ ∈ A
such that x, xi ∈ U(x̄) for each i ∈ {1, . . . , k} with x ∈ Vi. Therefore, yi ∈
F (xi) ⊂ F (x̄) + (ε/2)B1, and since F (x̄) is convex, f(x) ∈ F (x̄) + (ε/2)B1.

Hence, f(x) ∈ F (B(x, ε)) + εB1 and the proof is complete.

The lemmas above allow us to prove the following result on equilibria.

Proposition 3.8. Let K = IntK ⊂ Rn be a Lefschetz set with χ(K) 6= 0

such that the Clarke cone map Ψ(·) := C
K̂

(·) is l.s.c. on K̂. Assume that
Ω ⊂ Rn is an open neighbourhood of K and F : Ω ( Rn a Marchaud map
satisfying (17) on K̂ ∩Ω. Then F has an equilibrium in K.
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Remark 3.9. It can be proved that these assumptions imply that K is
viable under −F . However, here we relax the regularity assumption on K,
compared with [3].

Proof. Let ε > 0 be given. By Lemma 3.7, there exist an open neigh-
bourhood Ωε of ∂K in Ω and a Lipschitz map f : Ωε → Rn such that f is
an ε-approximation of F on Ωε and a selection of Ψ on ∂K.

If K \Ωε 6= ∅, then for an open set V with ∂K ⊂ V ⊂ V ⊂ Ωε, we define
an Urysohn function v : Rn → [0, 1] by

v(x) := max

{
0, 1− 1

dist(V ,K \Ωε)
dV (x)

}
.

Now we can take any Lipschitz ε-approximation g of F on K, which exists
according to [7], and join f to g by

fε(x) := v(x)f(x) + (1− v(x))g(x).

In this way we have obtained a Lipschitz map which is equal to f on ∂K
and fε(x) ∈ convF (B(x, ε)) + εB1 for every x ∈ K ∪Ωε.

We show that K is invariant under −fε. First, let x be a solution for
−fε starting from an interior point of K. Suppose, on the contrary, that x
leaves K at some s > 0. Then y(·) := x(s − ·) is a solution for fε starting
from x(s) ∈ ∂K and reaching the interior point of K at s > 0. But this is

impossible since K̂ is invariant under fε. By continuity of the solution map
S−fε the set K is invariant under −fε.

Since ε was arbitrary, we can choose a sequence εm → 0 and fm := fεm .
Using Lemma 3.6, we can find for every m ≥ 1 a point xm ∈ K with
0 = fm(xm). By standard arguments, since F has a closed graph, we pass
to the limit as m→∞ obtaining an equilibrium of F in K.

Corollary 3.10. Let K = IntK ⊂ Rn be a Lefschetz set with χ(K) 6= 0

such that the map Ψ(·) := C
K̂

(·) is l.s.c. on K̂. Assume that Ω ⊂ Rn is an
open neighbourhood of K and F : Ω( Rn a Marchaud map satisfying

F (x) ∩ IntΨ(x) 6= ∅ for each x ∈ K̂ ∩Ω.(18)

Then F has an equilibrium in K.

Proof. It is easy to check that ocndition (18) implies (17).

Example 3.11. Let

K1 := {(x, y) ∈ R2 | −1 ≤ x ≤ 0 and
√

1− (x+ 1)2 − 1 ≤ y ≤ 1},
K2 := {(x, y) ∈ R2 | 0 ≤ x ≤ 1 and

√
1− (x− 1)2 − 1 ≤ y ≤ 1},

K := K1 ∪K2 ∪ clB((1, 1), 1) ∪ clB((−1, 1), 1).
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Consider any Marchaud map F : R2 ( R2 with x ∈ F (x) on ∂K. One can
readily check that condition (17) is satisfied, as are the other assumptions of

Theorem 3.8. Notice that neither K nor K̂ is an L-retract, so the approach
of [3] cannot be used.

Remark 3.12. Note that the class of sets such that the Clarke tangent
cone map is l.s.c. contains the class of sleek sets, i.e., where the Bouligand
cone map is l.s.c., so it contains all proximate retracts. One can easily see
that this class is essentially larger. Note also that it is not included in the
class of L-retracts (the example above) and vice-versa (one can modify an
example in [19, p. 219]).

Example 3.13. Consider the set K from Example 3.11 and the following
problem: 




ẋ(t) = f(x(t), u(t), v(t)),

x(0) = x0 ∈ K,
u, v ∈ U,

(19)

where U = clB(0, r), r < 1. Assume that f(x, u, v) = h(x, u) + g(x, v),
where h, g : R2 → R2 are continuous maps satisfying

h(x, u) = x+ u for every x ∈ ∂K,
|g(x, v)| ≤ l|x|, l < r, for each x ∈ ∂K and v ∈ U,

and g({x} × U) is convex for every x ∈ Rn.

Then there are x0 ∈ Rn and controls u and v giving a stationary trajec-
tory for (19). Indeed, one can check that F (x) := f({x} × U × U) satisfies
the assumptions of Theorem 3.8.

4. Strict equilibria. In this section we find several sufficient conditions
for existence of strict equilibria in prescribed compact sets.
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4.1. Basic properties. The notion of a strict equilibrium coincides with
the one of ordinary equilibrium in the single-valued case while it brings
important information for multivalued maps and differential inclusions. For
instance, from each strict equilibrium of a Lipschitz map there starts only
a stationary trajectory.

Some difficulties in finding strict equilibria are visible in the following
example.

Example 4.1. Consider the set K := [−2, 2]× [−2, 2] and the Lipschitz
map F : R2 ( R2,

F (x, y) := [x− 1, x+ 1]× {0}.
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It is easy to check that Ks = Ke = ({−2} × [−2, 2]) ∪ ({2} × [−2, 2]), Ks

is compact and disconnected with χ(K,Ks) = −1 6= 0. Notice that the
behaviour of F on ∂K guarantees the existence of equilibria. Nevertheless,
none of them is strict.

One of possible methods of finding strict equilibria is to study single-
valued selections of the multivalued map, as in the following general obser-
vation.

Remark 4.2. Let K ⊂ X be a compact set and F : K ( Rn a multi-
valued map. Assume that there is a single-valued selection f : K → Rn of
F with

∀x ∈ K : f(x) = 0 ⇒ F (x) = {0}.(20)

Then, obviously, each equilibrium of f is a strict equilibrium of F .
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However, it is not obvious how to find, for a given multivalued map, a
selection satisfying (20) and simultaneously having an equilibrium.

Below we give several conditions implying the existence of such a selec-
tion.

Proposition 4.3. Let K ⊂ Rn be a compact set , Ω an open neighbour-
hood of K in Rn and F : Ω ( Rn a Lipschitz map satisfying (3). Assume
that the map f := σ(F (·)), where σ(F (x)) is a Steiner point of F (x), sat-
isfies assumptions guaranteeing the existence of equilibria of f . Then there
exists a strict equilibrium of F in K.

Proof. Notice that f is a Lipschitz selection of F satisfying (20).

Below we give sufficient conditions for (3) to hold.

Corollary 4.4. If instead of (3) we assume that

F (x) ∩ −F (x) ⊂ {0} for every x ∈ K,(21)

(this can be expressed by saying that no value of F contains opposite direc-
tions) or

(22) there are a map γ : K → ∂B1 and a constant c > 0 such that
〈γ(x), y〉 ≥ c|y| for every x ∈ K and y ∈ F (x)

(that is, there is a guiding function for F ), then there exists a strict equilib-
rium of F in K.

We also list some sufficient conditions guaranteeing the existence of equi-
libria for all possible continuous (or Lipschitz) selections of F .

Example 4.5. (1) Let K and F satisfy the assumptions of Proposition
3.4 or Corollary 3.2. Then each Lipschitz selection of F has an equilibrium
in K.

(2) Let K be a closed ball in Rn and F : K ( Rn be of the form
F (x) = x − ϕ(x), where ϕ is a continuous, compact convex valued map
satisfying

x 6∈ λϕ(x) for each x ∈ ∂K and 0 < λ < 1.(23)

Then each continuous selection (existing due to Michael’s selection theorem)
has an equilibrium in K.

(3) Let K = IntK be compact and F : K ( Rn a Lipschitz, com-
pact convex valued map with 0 6∈ F (∂K). If Deg(F, IntK) 6= 0, then each
continuous selection has an equilibrium in K.

The second statement follows easily from the Nonlinear Alternative ap-
plied to any continuous selection of ϕ (see e.g. [12]). The third one is an
immediate consequence of a construction of the topological degree for com-
pact convex valued u.s.c. maps (see e.g. [8]).
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As a consequence, the following fixed point result can be obtained.

Corollary 4.6. Let K be a closed ball in Rn and ϕ : K ( Rn a
Lipschitz map with compact strictly convex values which satisfies (23) and

x 6∈ ϕ(x) \ extϕ(x) for every x ∈ K,(24)

where extϕ(x) stands for the set of extremal points of ϕ(x). Then there is
a point x ∈ K such that ϕ(x) = {x}.

Proof. Note that the map F (·) := ·−ϕ(·) satisfies (21) and use Example
4.5(2).

4.2. Strict equilibria on smooth sets. In the present subsection, under
some smoothness assumptions on K, we obtain strict equilibria of a Lip-
schitz map F without looking for a Lipschitz selection of F satisfying (20).
Moreover, although the existence of a strict equilibrium implies the existence
of equilibria of each selection, in the situation presented below (Ks 6= Ke)
it would not be easy to check it for any of them.

This subsection is devoted to the proof of the second main result of our
paper, Theorem 1.2. Note that the assumption 0 6∈ F (x) on ∂K is essential.
To see this, consider the following.

Example 4.7. Let K := [0, 1] ⊂ R and F (x) = [−1, 0]. Then Ks = ∅,
so χ(K,Ks) = 1 6= 0. Obviously, conditions (I), (III) and (3) are satisfied
while there is no strict equilibrium of F in K.

In what follows we proceed analogously to Subsection 3.1.

Proof of Theorem 1.2. We modify the proof of Lemma 3.3 and find first
an open set U ⊂ Rn with K \Ks(F ) ⊂ U , Ks(F ) ∩ U = ∅ and a Lipschitz
map g : U → Rn satisfying (A), (C), (D) and

(E) for every x ∈ IntK, if g(x) = 0, then σ(F (x)) = 0.

To do this, we repeat Step 1, Case 1 and Case 2 of the proof of Lemma
3.3, obtaining vx(y) := vx for y ∈ Ux in both cases.

In Case 3, that is, for x ∈ IntK with 0 ∈ F (x), take an open neighbour-
hood Ux ⊂ B(x, ε) in Rn such that Ux ∩ ∂K = ∅, and for each y ∈ Ux, put
vx(y) := σ(F (y)). Then, obviously, vx(y) ∈ F (y) ⊂ F (y) + dKs(F )(y)B1 for
every y ∈ Ux.

Choosing a countable, locally finite covering {Uxi | xi ∈ K \Ks(F )} of
K \Ks(F ) and a subordinate smooth partition of unity {λi}, we can define
g : U =

⋃∞
i=1 Uxi → Rn by

g(x) :=
∑

i∈I(x)

λi(x)vxi(x).

Since g is Lipschitz and satisfies (A), (C), (D), we have to show only (E).
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We claim that for every x ∈ IntK, if g(x) = 0, then 0 ∈ F (xi) for each
i ∈ I(x) and xi ∈ IntK.

Indeed, otherwise there is i ∈ I(x) with 0 6∈ F (xi). From the construction
of Uxi it follows that 0 6∈ F (x). Therefore,

0 = g(x) ∈ F (x) + 1
2dF (x)(0) 63 0;

a contradiction. Since there are no equilibria of F on ∂K, we have xi ∈ IntK.
Since 0 ∈ F (xi) and xi ∈ IntK, by the construction of vxi(·) one has

vxi = σ(F (x)) for every i ∈ I(x). Hence, g(x) = σ(F (x)).
Now, following Step 2 of the proof of Lemma 3.3, we construct a suitable

map f satisfying (a)–(d). Moreover, from the construction of Uxi it follows
that if f(x) = 0, then βi(x) = 0 for every i ≥ 1, which implies that

0 = f(x) = g(x) = σ(F (x)).(25)

Applying Proposition 3.1 for f we find an equilibrium x ∈ IntK of f .
By (25) and (3), it is a strict equilibrium of F ; the proof is complete.

5. Appendix. Below we give conditions, in terms of tangent cones,
allowing us to check when a point x ∈ ∂K belongs to Ks. As a consequence,
we obtain a sufficient condition for Ks to be closed. We will use the following
notation (cf. [18]):

Ko := {x ∈ ∂K | F (x) ∩ TK(x) = ∅}, DK(x) := Rn \ TRn\K(x).

The relation between Ks and Ko is given in the following.

Lemma 5.1. For any Marchaud map,

Ko ⊂ Ks ⊂ Ko.

Proof. If a point belongs to Ko, then any solution starting from this
point leaves K immediately, otherwise the tangential condition (2) would
be satisfied. So, Ko ⊂ Ks.

Let us now show that Ks ⊂ Ko. The set K \Ko is locally compact, and
the tangential condition (2) is everywhere satisfied from the very definition
of Ko. The viability theorem (cf. [1, Theorem 3.3.2]) states that for any
point of K \Ko, there exists at least one solution starting from this point,
which remains in K on some [0, τ ], τ > 0, i.e., the point is not in Ks. This
proves that if a point does not belong to Ko, then it does not belong to Ks,
i.e., Ks ⊂ Ko.

Unfortunately, the set Ko is seldom closed. We will now study what
happens for points of Ko \Ko. A proof of the lemma below is given for the
convenience of the reader because it has not been published anywhere yet.

Lemma 5.2 ([5, Proposition 3.1] or [6, Proposition 2.1]). Let K be closed
and F be a Marchaud map locally Lipschitz around x ∈ Ko \Ko.
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(1) If F (x) ∩ (DK(x) ∪ T∂K\Ko(x)) = ∅, then x ∈ Ks.

(2) If F (x) ∩DK(x) 6= ∅ or F (x) ∩ TKo(x) = ∅, then x 6∈ Ks.

Proof. To prove (1) assume for a while that x 6∈ Ks, i.e., that there is
x(·) ∈ SF (x) viable in K on [0, ε] with ε > 0.

If there exists a sequence tm > 0 converging to 0 such that x(tm) ∈ ∂K
for any m, then, up to a subsequence, and because x(tm) 6∈ Ko from the
viability theorem, we have

x(tm)− x
tm

→ v ∈ F (x) ∩ T∂K\Ko(x),

which is impossible.

So, we can find α > 0 such that x(s) ∈ IntK for 0 < s ≤ α. Recall
that x 6∈ Ko means that F (x) ∩ TK(x) 6= ∅. On the other hand, from the
assumption, F (x) ∩ DK(x) = ∅. So, by (15), there is v ∈ F (x) ∩ T∂K(x).
Since F (x) ∩ T∂K\Ko(x) = ∅, one can find hm → 0 and vm → v such
that x + hmvm ∈ Ko. According to Filippov’s theorem (see e.g. [1]), there
exist xm(·) ∈ SF (x + hmvm) converging to x(·) in the topology of uniform
convergence. Moreover, xm(·) leaves K immediately for any m because x+
hmvm ∈ Ko ⊂ Ks. Since x(α) ∈ IntK, also xm(α) ∈ IntK for m large
enough, and there is tm ∈ (0, α) such that xm(·) is viable on [tm, α]. We
choose tm such that xm(tm) ∈ ∂K, and in fact xm(tm) ∈ ∂K \ Ko. Since
x(s) ∈ IntK for 0 < s ≤ α, the sequence tm converges to 0.

Let us now remark that from the convexity of F (x), up to a subsequence,

xm(tm)− (x+ hmvm)

tm
→ w ∈ F (x).(26)

Indeed, for any ε > 0, there exists a neighbourhood V of x on which F (y) ⊂
F (x) + εB1, because F is upper semicontinuous. For m large enough, xm(·)
remains in V on [0, tm], and we have

xm(tm)− (x+ hmvm) ∈ tm(F (x) + εB1),

which proves (26).

Now we show that xm(tm)−x
tm+hm

converges, up to a subsequence, to a point
of F (x) ∩ T∂K\Ko(x), which contradicts our assumption.

To this end, notice that

xm(tm)− x
hm + tm

=
tm

tm + hm

xm(tm)− (x+ hmvm)

tm
+

hm
tm + hm

vm

which converges, up to a subsequence, to λw + (1 − λ)v, where λ ∈ [0, 1].
We conclude thanks to the convexity of F (x).

To prove (2), we have to show that there is x(·) ∈ SF (x) which remains
in K on some [0, ε] with ε > 0.
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If F (x) ∩ DK(x) 6= ∅, Filippov’s Theorem shows that there exists a
solution in SF (x) locally viable in K.

If not, since x 6∈ Ko, the set F (x) ∩ T∂K(x) is not empty. Since F (x) ∩
TKo(x) = ∅, there exists v ∈ F (x) ∩ T∂K\Ko(x). Let vm → v and hm → 0

be such that x + hmvm ∈ ∂K \Ks (recall that Ks = Ko). Therefore there
exist xm(·) ∈ SF (x + hmvm) viable in K on [0, tm], where tm ∈ (0,∞]. We
choose xm(·) and tm in such a way that

tm = sup {inf{t > 0 | x(t) 6∈ K} | x(·) ∈ SF (x+ hmvm)}
= inf{t > 0 | xm(t) 6∈ K}.

Since F is a Marchaud map, such tm and xm exist (see [1, p. 135]). It is seen
that if tm <∞, then xm(tm) ∈ Ks.

Assume that a subsequence of {tm}, called {tm} again, converges to 0.
Then, as in the first part of the proof, we can show that a subsequence of
xm(tm)−x
tm+hm

converges to an element of F (x) ∩ TKs(x), i.e., to an element of
F (x) ∩ TKo(x). This is impossible.

So, there exists ε > 0 such that each xm(·) is viable in K on [0, ε]. A
subsequence of {xm(·)} converges to an element x(·) ∈ SF (x) which remains
in K on [0, ε], i.e., x does not belong to Ks. This ends the proof.
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Université de Bretagne Occidentale
6, avenue Victor Le Gorgeu B.P. 809
29285 Brest Cedex, France
E-mail: Pierre.Cardaliaguet@univ-brest.fr

Marc.Quincampoix@univ-brest.fr

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University

Chopina 12/18
87-100 Toruń, Poland
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